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A self-consistent analysis is reported of traditional diffraction-based particle size

determination techniques applied to synthetic diffraction profiles generated

with the Patterson approach. The results show that dimensions obtained from

traditional techniques utilizing peak fitting or Fourier analysis for single-crystal

nanoparticles have best-case error bounds of around 5%. For arbitrarily shaped

particles, lower error magnitudes are possible only if the zeroes of the thickness

fringes are used. The errors for sizes obtained by integral-breadth- and Fourier-

decomposition-based techniques depend on the shape of the diffracting

domains. In the case of integral-breadth analysis, crystal shapes which scatter

more intensity into the central peak of the rocking curve have lower size errors.

For Fourier-decomposition analysis, crystals which have non-uniform distribu-

tions of chord lengths exhibit nonlinearities in the initial ranges of the

normalized Fourier cosine coefficient versus column length (|AL| versus L) plots,

even when the entire rocking curve is used in the decomposition. It is

recommended that, in routine analysis, all domain size determination techniques

should be applied to all reflections in a diffraction pattern. If there is significant

divergence among these results, the ‘average particle size(s)’ obtained might not

be reliable.

1. Introduction

Diffraction-peak-shape analysis techniques for determining

crystallite size (also termed domain size) are very popular,

possess a massive literature base and, in some cases, have

NIST Standard Reference Materials (SRMs) (Cline et al.,

2020). However, the reliability, accuracy, precision and

usefulness of the dimensions obtained from these techniques

are still the subject of vigorous scientific debate. Some of the

issues raised are common to all particle size determination

methods. First, commonly used terms such as particle size,

average particle size, particle size distribution etc. depend on

the technique used for their determination and are not well

defined for arbitrary particle shapes or characterization

techniques (Matyi et al., 1987). Second, different experimental

techniques used for size characterization are sensitive to

different parts of a given particle size distribution and can

yield vastly different values for the ‘average’ size of the same

assembly of particles. Thus, while none of these values are

‘wrong’, none, individually, can adequately describe the size of

a particle of arbitrary shape, or an aggregate of such particles

of different sizes. Further, such differences usually become

more pronounced if, in addition to a size distribution, there is

a distribution of particle shapes within the aggregate. In such

cases even computed distributions of size within the aggre-

gates might be technique dependent.
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Disagreements are also encountered when one compares

crystallite sizes obtained from different diffraction formula-

tions. For unstrained single crystals scattering in the kinematic

regime, the crystallite size obtained from formulations based

on the Scherrer approach is the maximum real-space length1

of the coherently scattering domains along the scattering

wavevector, q � k (Patterson, 1939a,b; Williamson & Hall,

1953). In contrast, Fourier analysis techniques of line shapes

from such samples yield the average chord length along k

(Guinier, 1994). For a given line profile, whether this average

chord length obtained from Fourier methods is equal to the

maximum crystal dimension obtained from the Scherrer

approach depends on the shape of the crystal.

If there are additional sources of broadening in the

diffraction line profile, as well as contributions from neigh-

bouring peaks and the background intensity profile, obtaining

an accurate and useful crystallite size from diffraction line

profile analysis becomes more laborious and more error

prone. This may be one of the reasons for the many conflicting

statements in the literature about the efficacy of various

formulations. For example, while some authors warn against

the use (abuse) of the Scherrer equation (Matyi et al., 1987;

Palosz et al., 2010; Leoni, 2019), others have concluded that it

is a reliable technique, especially if strain broadening is

negligible and lower-order peaks are used (Kaszkur, 2006;

Ying et al., 2009; Dorofeev et al., 2012). Some authors discount

the use of diffraction techniques altogether for specific

applications. Tomaszewski (2013) asserted that critical grain

sizes for size-induced phase transitions cannot be determined

using diffraction methods, stating that ‘none of the known

methods give the correct value for the crystallite size of

nanocrystals! It is only possible to talk about the range of

values.’

Another factor which complicates the comparison of crystal

sizes obtained from various diffraction formulations is the lack

of rigorous uncertainty values. Many experimental parameters

influence the peak profile, some in a highly nonlinear manner,

and the propagation of errors for some formulations is quite

complicated. Currently there are no rigorous formalisms

which can compute, from first principles, the full uncertainty

range associated with crystallite sizes determined by diffrac-

tion methods (Young et al., 1967).

In this work we have investigated the lower error bound

(minimum uncertainty) associated with the accuracy and

trueness (closeness between the average of an infinite number

of replicate measured quantity values and a reference quantity

value; Noyan et al., 2020) of average crystal sizes obtained

from the most popular diffraction formulations. For these

computations we utilized the Patterson equations (Patterson,

1939a,b) to generate stand-alone diffraction peaks for various

reflections of perfect Au crystallites with thin-film, cylindrical

and spherical geometries. These intensity data are exact, with

no counting uncertainty; thus, the peaks are exactly repro-

ducible with infinite precision. These peak profiles were

analysed for the average ‘particle size’ using the Scherrer

equation (both FWHM and integral-breadth modes) and

Fourier-decomposition approaches. Also, since the Patterson

equations are based on exact geometric shapes, and the

computed peaks are free from all confounding effects (such as

limited angular range, background intensity, peak overlap and

asymmetry), we expected this approach to provide the best

achievable accuracy, and hence the minimum error bound, for

particle sizes obtained by diffraction techniques.

2. Theory and simulations

We first reprise the 1939 Patterson formulation of the Scherrer

equation (Patterson, 1939a,b) and compare its predictions of

particle size with those of the Fourier analysis of line shapes

(even though most of this material is available in the literature,

it is scattered across many publications which are, mostly,

somewhat terse treatments).

The Patterson formulation considers only kinematic

diffraction which neglects multi-wave scattering and assumes

that the energy diverted into the diffracted beam is negligible.

Under these assumptions, for a plane wave expð�i2�k0 � rÞ

incident on a crystal, the wave kd scattered by an atom at

position rA will have a phase difference 2�ðk0 � kdÞ � rA from

the wave (with the same wavevector) scattered by an atom at

the origin. The total diffracted wave amplitude in the direction

of kd is the sum of the waves scattered by all the atoms in the

crystal. Since X-rays are scattered by the core electrons

surrounding the atoms, it is more accurate to consider the

electron-density distribution �ðrÞ in the crystal rather than the

atomic positions,

�ðrÞ ¼ �1ðrÞ yðrÞ: ð1Þ

Here, yðrÞ is the envelope function of the sample crystal, which

is equal to 1 inside the crystal boundary and zero outside, and

�1ðrÞ is the electron-density distribution of a triply periodic

infinite crystal,

�1ðrÞ ¼ v�1
P
hkl

Fhkl exp ð�i2�h � rÞ: ð2Þ

v and Fhkl are the volume and structure factor, respectively, of

the unit cell of the crystal, and h is the reciprocal-space vector.

The total diffracted wave amplitude is the sum of diffracted

waves from all electrons over the entire crystal, taking into

account the proper phase differences. This can be written as

AðkÞ ¼
RRR
�ðrÞ exp ½i2�ðk � rÞ� d3r ¼ v�1

P
hkl

FhklYðk� hÞ: ð3Þ

Here, k ¼ kd � k0 is the wavevector, and Yðk� h), termed the

shape function, Yðk� hÞ ¼ Yð�kÞ, is the Fourier transform of

the sample envelope function yðrÞ,

Yð�kÞ ¼
RRR

yðrÞ exp ½i2�ð�kÞ � r� d3r: ð4Þ

Equation (3) indicates that the shape of the Bragg peak in

angular space is determined only by the real-space shape of

the diffracting crystal. The type and chemistry of the unit cell

modulate the amplitude at a given reciprocal-space position

(or diffraction angle) mainly through the structure factor Fhkl.
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1 Some publications (Matyi et al., 1987; Leoni, 2019) identify this dimension as
a ‘reciprocal-space length’. This issue is discussed later in the article.



If the crystal is infinitely large in all directions, equation (3)

yields Bragg’s law; in this case Yð�kÞ ! �ð�kÞ and finite

amplitude (and thus intensity) will only be observed at the

exact Bragg condition where k ¼ h.

For finite-sized crystals the shape of the diffraction peak, i.e.

the angular distribution of scattered intensity around the

Bragg angle, must be obtained by evaluating the triple integral

in equation (4). Patterson and many others have computed

Yð�kÞ for many regular geometric shapes. In this study we will

only consider three simple cases where the diffracting crystal

is (i) a thin film, (ii) a cylinder and (iii) a sphere, respectively.

The corresponding geometries are sketched in Fig. 1.

2.1. Diffraction from a single-crystal thin-film slab

We consider a radial scan from a perfect single-crystal slab

of (real-space) thickness tf and infinite in-plane area, where

the diffracting (hkl) planes are parallel to the surface of the

film with their normal [hkl] coincident with the normal to the

film surface [Figs. 1(a) and 1(b)]. In this case evaluation of

equation (4) yields the normalized cardinal sine (sinc) func-

tion,

Yðk� hÞ ¼
Rtf=2

�tf=2

dx
R1
�1

dy
R1
�1

exp i2�ðk� hÞ � r½ � dz

’V
sin½�ðk� hÞ tf�

�ðk� hÞ tf

¼ Vsinc½�ð�kÞ tf�; ð5Þ

where V is the volume within the single-crystal thin film illu-

minated by the X-ray beam. By substituting this expression

into equation (3) we obtain the amplitude at a given �k. The

corresponding diffracted intensity along �k is obtained by

multiplying the amplitude by its conjugate. Expressing �k in

terms of deviation from the Bragg angle, �2� ¼ 2ð� � �BÞ, we

obtain

Ið�2�Þ ¼ N2 F2
hkl

�� �� sin2
ðtf#Þ

tf#ð Þ
2 ; # ¼ �k�2� cos �B: ð6Þ

Here, N is the number of unit cells along k and k = 1/�.

Equation (6) shows that the shape of the (kinematic)

diffraction peak from a perfect single-crystal thin film illumi-

nated by a plane wave is described by the squared normalized

sinc function2 sinc2
�ðt#Þ = sin2

ðt#Þ=ðt#Þ2. When the thickness tf
approaches infinity, the intensity will be zero at all �2� except

�2� = 0. For a finite thickness, the sinc2
� function will have a

primary peak with its maximum intensity (Imax = 1) at �2� = 0,

which is bracketed by symmetric subsidiary peaks (thickness

fringes) of diminishing intensity with increasing |�2�|. An

example pattern computed for a 5 nm thick Au film using Cr

K� radiation is shown in Fig. 2. One can use three techniques

to obtain the film thickness from this peak profile using

equation (6):

(i) The periodicity of the thickness fringe zeroes, T, is

related to the film thickness3 by

T ¼
�

tf;z cos �B

: ð7aÞ

(ii) The half-maximum intensities of the diffraction peak

will be reached when t# = �1.39. Thus, the FWHM � of the

primary peak will given by
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Figure 1
(a) The symmetric radial scan geometry for kinematically diffracting
single crystals, with extra definitions for (b) a semi-infinite thin film, (c) a
cylindrical shape and (d) a spherical shape.

Figure 2
The variation in diffracted intensity with angular position around the
Bragg position, �2� = 0, for a radial scan of the 111 reflection from a
hypothetical single-crystal Au thin film, 5 nm thick, illuminated with Cr
K� radiation [blue line, equation (6)]. A Gaussian function fitted to the
central peak is also shown (red dashed line).

2 In what follows we neglect the multiplier terms N2jF2
hklj in the Patterson

intensity equations for brevity. Consequently, the unit cell of the particular
crystal will be represented in the peak shape only by the Bragg angle �B of the
particular reflection being simulated.
3 In equations (7a)–(7c) we differentiate between the thicknesses obtained by
these techniques using subscripts. In the absence of errors all of these terms
must be equal to the real-space film thickness: tf,z = tf,� = tf,IB � tf .



� ffi
0:885�

tf;� cos �B

: ð7bÞ

This is the Scherrer equation for FWHM, with the Scherrer

constant C = 0.885.

(iii) The integral breadth �I of the sinc2
� function is related

to the film thickness by

�I ¼
�

tf;IB cos �B

: ð7cÞ

This is the integral-breadth form of the Scherrer equation with

a Scherrer constant of unity.

While the forms of equations (7a)–(7c) are very similar,

their efficacies in computing the film thickness are not. As we

showed previously using high-resolution diffraction from

silicon-on-insulator films (Ying et al., 2009), equation (7a) is

the easiest to use, and the most accurate, for single-crystal thin

films since it does not utilize a ‘shape-dependent’ constant and

the zeroes of the thickness fringes can be determined very

precisely when high-resolution XRD systems on high-intensity

sources are utilized. The FWHM form of the Scherrer equa-

tion requires the Scherrer constant for the particular

geometry. Also, the FWHM obtained from an approximate

function, such as a Gaussian, fitted to sinc2
�ðt#Þ introduces a

small error in � and hence in tf,� .

Equation (7c) also does not require a Scherrer constant.

However, computation of the integral breadth �I is non-trivial.

Fitting only a portion of the sinc2
�ðt#Þ profile with an

approximate function, such as a Gaussian (dashed line in

Fig. 2), will cause errors in the computed film thickness tf, IB

since (i) the tails of the Gaussian function do not fit the tails of

the central peak of the sinc2
� function and (ii) fitting only the

central peak underestimates the integrated intensity of the

radial scan; this would result in a film thickness tf, IB larger than

its actual value.

To investigate this effect we computed �I by evaluating the

integral

IINT ¼
R�2�H

�2�L

sinc2
�ðt#Þ d�2� ð8Þ

over various �2�H–�2�L ranges in Fig. 2. For ease of inter-

pretation we chose these ranges to include the central peak

plus identical numbers of satellite peaks, bounded by their

respective zeroes, on each side. In Fig. 3 we plot the tf, IB values

corresponding to these different integration ranges, starting

with the range for just the central peak and ending with the

range with the central peak plus eight satellite peaks on each

side. In this figure we also include the fractional excluded peak

area �PA for each such range,

�PA �
�PA

PA1

¼

R �2�H

�2�L
sinc2

�ðtf#Þ d�2� �
R1
�1

sinc2
�ðtf#Þ d�2�R1

�1
sinc2

�ðtf#Þ d�2�
:

ð9Þ

If just the integral breadth of the central peak is used to

compute the film thickness, tf, IB is	10% larger than the actual

film thickness, since the area of the central peak is 	10%

smaller than the true total integrated intensity,R1
�1

sinc2
�ðtf#Þ d�2�. As the angular range of integration

increases, IINT and tf, IB asymptotically approach their ideal

values; analysis of the range containing the central peak plus

four satellites at each side (sixth point from the left) yields

	2% deviation.

To investigate this issue further we fitted multiple Gaussians

to the profile shown in Fig. 2. An example with seven peaks

(central peak plus three satellites on each side) is shown in

Fig. 4. The tf, IB values obtained using the sum of the integral

intensities of all fitted peaks are summarized in Table 1. For

ease of comparison the corresponding tf, IB values from the

integration of equivalent ranges of the sinc2
�ðt#Þ profile are
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Figure 3
The variation in tIB values with the angular integration range used for
determining the integral breadth �I in Fig. 2. The fractional excluded
peak area, �PA [equation (9)], for each such range is also shown. For
convenience the integration ranges are expressed as ratios of the FWHM
� of the central peak, (�2�H � �2�L) /�.

Figure 4
Seven Gaussian peaks fitted simultaneously to the diffraction peak shown
in Fig. 2. The FWHM is insensitive to the number of satellites included in
the fit.



also listed. We observe reasonable agreement between the two

approaches.

Table 1 also shows that the film thickness values obtained

from the FWHM form of the Scherrer equation, equation

(7b), do not change significantly with increasing number of

fringe peaks fitted simultaneously with the central peak. All of

these values are within 5% of the actual (ideal4) thickness. As

shown in the last row of Table 1, one obtains the best accuracy

when using the zeroes of the thickness fringes [equation (7a)]

to compute the film thickness tf.

To check the generality of these observations, we computed

the Patterson profiles for the 111 peaks of single-crystal thin

films of various thicknesses and repeated the computations

described above for each profile. The results are summarized

in Fig. 5, where the fractional thickness error �t = (tf, IB� tf) / tf
and the corresponding �PA values [equation (9)] are plotted

versus the normalized integration range for all cases. Both of

these parameters are independent of size. In all cases the

fractional error obtained from using the integral breadth

obtained by fitting a single Gaussian to the central peak

yielded an identical fractional error corresponding to the first

�tf, IB datum (integration of the central peak). For all films,

when tf, IB was computed using the definite integralR1
�1

sinc2
�ðtf#Þ d�2�, the result had zero fractional error.

We conclude that it is challenging to obtain the true integral

breadth from fitting a single function of any approximate form

to the central peak of a radial scan. Numerical integration of

an experimental profile over the largest possible angular range

might yield better results. However, given the asymptotic

approach of the integrated intensities to the definite integral

values in Fig. 5, errors of several percent would be expected in

the computed thickness values, since the presence of neigh-

bouring peaks or experimental issues might limit the angular

scan range.

2.2. Diffraction from single-crystal cylinders and spheres

In the case of a cylinder of height Lcy and base radius Rcy,

where h is along the radial direction, equation (4) becomes

Yð�khÞ ¼
RLcy=2

�Lcy=2

dz
RRcy

0

dr
R2�
0

exp ½i2�ð�khÞ r cos 	� d	

¼V
J1½2��khRcy�

��khRcy

: ð10Þ

The corresponding diffracted intensity in terms of deviation

from the Bragg angle �2� is

Ið�2�Þ ¼ N2 Fhkl

�� ��2 J2
1 ½2#�

#2
; # ¼ �kRcy cos �B�2�: ð11Þ

The half-maximum intensity is reached when # = �0.808. The

FWHM (�) value can be expressed in terms of the base

diameter Dcy of the cylinder as

� ffi
1:028�

Dcy cos �B

: ð12Þ

Likewise, for diffraction from a single-crystal sphere of radius

Rsp (diameter Dsp), we obtain

Ið�2�Þ ¼ N2 F2
hkl

�� �� 3
sin#� # cos#

#3

� �2

;

# ¼ �kDsp cos �B�2�; ð13Þ

� ffi
1:16�

Dsp cos �B

: ð14Þ

Equations (11) and (13) yield radial scan profiles similar to

the thin-film profiles [equation (6)]. In Fig. 6 we plot the 220

radial scans computed with � = 2.2909 Å for a cylinder and a

sphere, with Dcy = Dsp = 5 nm, and for a thin film, with tf =

5 nm. All three profiles have a central (primary) peak of unit

amplitude bracketed with symmetric thickness fringes. The

FWHMs of the central peaks are slightly different for the

three sample geometries, commensurate with the differences

in the Scherrer coefficients in equations (7b), (12) and (14).

The rates of decay of the thickness fringes are significantly
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Table 1
Film thickness values computed from the integral breadth tI for the profile
shown in Fig. 2 (tf = 50 Å, � = 2.2909 Å) using either integration or
Gaussian fits over various angular ranges.

The thickness values t� obtained from the Scherrer equation using the FWHM
of the central peak for the various fits are also shown.

No. of fringe peaks each side

Central peak One Two Three Infinity

tf, IB (Å), integration 55.4 52.6 51.7 51.3 50.00
tf, IB (Å), Gaussian fit 55.4 53.0 52.2 51.5 N/A
tf,� (Å), Gaussian fit 52.4 52.3 52.3 52.2 N/A

tf, z (Å), fringe zero period 50.0

Figure 5
The variation in the fractional errors in tIB, and the corresponding
excluded peak areas with normalized integration range for various film
thicknesses tf .

4 The Patterson formulations are based on ideal geometric particle shapes with
smooth surfaces. The presence of surface roughness will exacerbate such
errors and increase the uncertainty associated with the trueness of such values.



different, with those belonging to the sphere profile extin-

guishing fastest. The periods of the zeroes of the thickness

fringes are equal for all three cases, i.e. the thickness-fringe

zeroes are independent of shape. Consequently, equation (7a)

can be used directly for computing Dcy and Dsp.

In contrast to the thin-film case [equation (6)], the integral

breadths of the peaks described by equations (11) and (13)

cannot be used directly in equation (7c) to calculate Dcy and

Dsp since these equations are not normalized (while the

intensities generated by both functions are in the range

between 0 and 1, their norms are not unity). In the case of a

cylinder, the integrated intensity of the rocking curve is given

by

Iint;cy ¼

Z1

�1

J2
1 ½2#

0�2��

ð#0�2�Þ2
d�2� ¼

16

3�#0
; ð15Þ

#0 ¼
�Dcy cos �B

2�
; <½#0� 
 0; Im½#0� � 0:

Thus, the integral breadth obtained from the rocking curve

of the cylindrical sample is related to the base diameter of the

cylinder by

�I;cy ¼
32�

3�2DIB;cy cos �B

ffi
1:081�

DIB;cy cos �B

: ð16Þ

For the case of a spherical sample, a similar treatment yields

Iint;sp ¼

Z1

�1

3
sin#��2� � #��2� cos#��2�

ð#��2�Þ3

� �2

d�2�;

ð17Þ

#� ¼�kDsp cos �B; <½#� 
 0; Im½#� � 0;

Iint;sp ¼
6�

5Dsp cos �B

; �I;sp ffi
1:2�

DIB;sp cos �B

: ð18Þ

Consequently, when the Patterson equations are used to

simulate radial scan profiles from spherical or cylindrical

single-crystal samples, a ‘Scherrer-like’ proportionality

constant (shape constant) must be included when linking the

integral breadth of these profiles to the diameters of such

samples, DIB,cy and DIB,sp, even when the radial scans are

integrated over infinite angular ranges, �2� 2 ½�1;1�.
Integration over a narrower angular range5 will introduce a

truncation error in the diameters DIB even when such a

proportionality constant is used (Table 2). For a given

normalized integration range this error will be smaller for

cylindrical and spherical single crystals than single-crystal thin

films, since the central peak of these patterns contains a larger

fraction of the diffracted intensity (Fig. 7). For both of these

geometries, evaluating the diameter from a Gaussian fit with

the theoretical Scherrer constants to the central peak only

yielded 	2% error (Table 2). This small error is due to the

Gaussian peak approximation. If we calculate the Scherrer

coefficients by correlating the FWHMs of the simulated peaks

fitted with Gaussians to the actual sphere diameters used in

the simulations, we obtain C = 1.12 and 0.99 for the sphere and

cylinder coefficients, respectively. The corresponding theore-

tical values for these geometries obtained from the exact

functional forms are C = 1.16 and 1.03 (Patterson, 1939a,b).

3. Fourier analysis

Fourier decomposition is also widely used to obtain crystallite

size, lattice strain and stacking fault distributions from

diffraction peak profiles. The fundamental theory and its

extensions are widely discussed in textbooks (Taylor, 1961;

Warren, 1969; Klug & Alexander, 1974; Schwartz & Cohen,

1987; Guinier, 1994) and in journal articles (Warren & Aver-

bach, 1950, 1952; Langford et al., 2000; Ida et al., 2003; Lucks et

al., 2004; Scardi & Leoni, 2006; Mittemeijer & Welzel, 2008;

Cline et al., 2020). The basic approach consists of correcting

the measured diffraction profiles of one or more diffraction

peaks for background, peak overlap and instrumental effects.

These corrected profiles are then decomposed into their

Fourier components, from which the relevant parameters are
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Table 2
Cylinder and sphere diameters obtained from the FWHM (C = 1.028 and
1.16, respectively) and integral breadths of Gaussians fitted to the central
peaks of the Patterson profiles.

D model (nm)

5 10 15 20 30 40

Cylinder Dcy FWHM 5.2 10.4 15.6 20.8 31.1 41.5
Dcy IB 5.1 10.3 15.4 20.5 31.2 41.0

Sphere Dsp FWHM 5.1 10.3 15.4 20.6 30.9 41.2
Dsp IB 5.0 10.1 15.1 20.2 30.6 40.4

Figure 6
Computed radial scan profiles of the 220 reflections for single-crystal film,
cylinder and sphere geometries (tf = Dcy = Dsp = 5 nm). �= 2.2909 Å in all
cases.

5 Since equation (17) is not well behaved in the vicinity of �2� = 0, numerical
integration of the function in this range requires care.



computed. In the absence of strain (or other sample-related)

broadening, the Fourier cosine coefficients of any reflection

can be used to determine either the distribution of crystallite

sizes or an average crystallite size for a polycrystalline powder.

For a powder sample with unimodal size and shape distribu-

tion, or for a kinematically scattering single crystal, the

average crystallite size determined from Fourier decomposi-

tion is the average chord size along the diffraction vector k,

which depends on the real-space shape of the crystallite, the

diffraction geometry and the Miller indices of the reflection

used in the analysis (Guinier, 1994). In what follows we apply

the basic Fourier analysis directly to synthetic peak profiles

generated using the Patterson equations for thin-film, sphe-

rical and cylindrical samples. Rather than reprising the theory,

which is readily accessible in the literature, we will provide a

comprehensive discussion of the actual steps of the basic

analysis which yields the average dimension along k, with

further details about the use of the Fourier transform provided

in Appendix A.

The discrete peak profiles used in the analysis were

computed using a simple Mathematica notebook (Wolfram,

2021), which output the simulated diffraction peak intensities

as [Ij , �2�j] data sets with M equidistant �2� points. Here, Ij is

the j th intensity point at angular position �2�j = j*�2�, where

j 2 ½1;M�. We then used a discrete Fourier transform (DFT)

formulation restricted to real numbers, Ið�2�jÞ 2 <, to express

each peak as a periodic function IF(�2�) in the angular range

(0, M�2�),

IFð�2�jÞ ¼
Xn<M=2

n¼0

A0n cos
2�n�2�j

M�2�

� �
þ B0n sin

2�n�2�j

M�2�

� �� �
:

ð19Þ

Here, A0n and B0n are, respectively, the Fourier cosine and sine

coefficients of order n 2 ½0;M=2�, and IF(�2�j) is the (Fourier)

synthesized intensity at angular position �2�j . While the

profiles generated by the Patterson equations are centred at

�2� = 0, the peak profiles obtained from equation (19) are

shifted by half of the angular range and have peak maxima at

�2� = (M�2�) /2. This shift does not affect the analysis results.

In Fig. 8(a), the cosine and sine coefficients A0n and B0n
computed for the 111 reflection of a hypothetical 5 nm thick

Au thin film using Cr K� radiation are shown for n � 452. The

111 peak profile was sampled at 905 steps (M = 905), 131 of

which were in the central peak. For all n, B0n ’ 0, reflecting the

symmetry of the Bragg peak. The function IF(�2�) computed

using these coefficients showed good fidelity to the actual [I,

�2�] data set [Fig. 8(b)]. The maximum residual normalized

intensity difference between the actual and re-calculated

intensity data sets was 5  10�7.
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Figure 7
The fractional error in the crystal size (film thickness, cylinder diameter,
sphere diameter) computed from the integral breadth of the corre-
sponding radial scan as a function of the normalized integration range.

Figure 8
(a) The cosine and sine coefficients A0n and B0n computed for the 111
reflection of a hypothetical 5 nm thick Au thin film. (b) The intensity
distribution IF(�2�), computed using the coefficients shown in panel (a),
superimposed on the original (simulated) data set.



To obtain the thin-film thickness, we computed the column

length L (the length of the columns of the unit cells in the

direction of the diffraction vector; Guinier, 1994) as

Ln ¼ �n=2#M for each Fourier order n, and the corresponding

absolute values of the normalized cosine coefficients,6

jALn
j � jAnj ¼ jA

0
n=A01j. Here, 2#M is the full range for #

[equation (6)] over which the Patterson intensities were

computed. In what follows we will omit the order subscript on

the column length for brevity, following the common usage in

the literature. Fig. 9 depicts the variation in |AL| versus L for

the full set of thin-film simulations. We observe that

(i) for all film thicknesses, |AL| versus L varies linearly for

L < tf, and

(ii) least-squares lines fitted to |AL| versus L data over the

entire 0 < L < tf range, or any of its subsets, intersect the

abscissa at L = tf.

These observations agree with our experimental results

obtained from single-crystal silicon-on-insulator thin films

(Ying et al., 2009).

In contrast to the thin-film plots shown in Fig. 9, |AL| versus

L plots for spheres and cylinders exhibit sigmoid-like profiles

(Fig. 10) with quasi-linear central regions. For a cylinder

simulation with Dcy = 40 nm, the linear |AL| versus L range is

approximately 46% of the linear range for the 40 nm film. For

a sphere simulation with Dsp = 40 nm, the linear range drops to

30%. Thus, the geometry of the scattering volume (or, more

precisely, the form of the distribution of chord lengths along

the diffraction vector within the crystallite volume) introduces

nonlinearities into the initial and final ranges of the |AL| versus

L plots. Consequently, the curvature in the initial part of such

plots cannot be ascribed solely to the traditional ‘hook effect’

(Warren, 1969) caused by background subtraction issues or

incomplete measurement ranges.

The presence of these nonlinear regions requires the use of

a consistent technique for defining the linear least-squares fit

range to ensure precise determination of the desired crystal

dimension. For this purpose we computed the (local) slope of

the line segments for each adjacent pair of normalized cosine

coefficients (|AL|j , |AL|j�1), and in the regression analysis we

included only those pairs yielding local slopes within 10% of

the mean slope of the line fitted to the middle ‘linear’ region.

These regions are highlighted in Fig. 10. The lines fitted to

these regions intersected the abscissa at L values quite close to

the average chord lengths of the cylinder and sphere shapes

along the diffraction vector (Guinier, 1994),

Lcy ¼

R R

�R 2ðR2 � u2Þ
1=2 du

2R
ffi 0:79Dcy; ð20aÞ

Lsp ¼
4V

S
ffi 0:67Dsp: ð20bÞ

For symmetric radial scans obtained from single-crystal thin

films, the average cord length is identically equal to the film

thickness,

Lf � tf: ð20cÞ

To obtain better statistics we applied the Fourier formalism

to spheres and cylinders with diameters ranging from 5 to

40 nm and obtained the Fourier-averaged cylinder and sphere

diameters, DF
cy and DF

sp, respectively, from the intercepts of the

linear regression lines. As shown in Figs. 11(a) and 11(b), both
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Figure 9
The normalized Fourier cosine coefficients, |AL|, of Au thin films of
various thicknesses, computed from their 111 reflections and plotted
versus column length L. The intercepts with the abscissa yield the film
thicknesses.

Figure 10
|AL| versus L plots for the 220 reflections of the single-crystal samples
shown in Fig. 6. The intercepts of the linear region with the abscissa
(dashed arrows) yield the volume-averaged chord length along the
scattering vector k. The outer and inner dashed line pairs show the
boundaries of the linear fit regions for the cylindrical and spherical
samples, respectively. The AL terms for L = 0 are not included in the plot
due to the DFT formulation used [Appendix A, equation (24)].

6 In general, An (the normalized cosine coefficient of order n) is not equal to
the (raw) cosine coefficient A0n. In our calculations we used A01 for
normalization (instead of the zeroth-order coefficient A00 normally employed
for this purpose in the literature) due to the form of equation (19). Further
details are supplied in the Appendix.



DF
cy and DF

sp depend linearly on the respective (geometric)

diameters, with DF
cy ¼ 0:82Dcy and DF

sp ¼ 0:70Dsp. In both

cases there is a 	4% deviation from the theoretical values

predicted by equations (20a) and (20b) for the ranges

analysed. This error is larger than the ‘fit’ errors assigned to

the slopes by regression analysis.

We were not able to obtain satisfactory diameter values

when we used the initial regions of the |AL| versus L plots for

these geometries as suggested in the literature. We note that

selection or exclusion of a few points at the start and/or end of

the linear range could change the slope by an additional 5% or

more, with concomitant changes in the DF
cy and DF

sp values.

Consequently, for these specimen geometries, even if all other

broadening sources were successfully eliminated and there

was no surface roughness, experimentally determined particle

sizes could have uncertainties in the region of �5%.

3.1. Multiple peak comparison

As a final test of the Fourier analysis formalism we inves-

tigated the effect of the curved |AL| versus L regions in two

orders of the same reflection, postulating that, if our approach

to determining the ‘linear region’ is correct, both reflections

should yield the same average chord length within the ‘fit’

error since there is no strain broadening. Fig. 12(a) shows the
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Figure 12
(a) Computed 111 and 222 radial scans of a hypothetical single-crystal Au
sphere 40 nm in diameter (� = 2.2909 Å). (b) The cosine and sine
coefficients, A0n and B0n, computed for the 111 and 222 reflections depicted
in panel (a).

Figure 11
Plots showing the variation in the (average) dimension along the
scattering vector of (a) single-crystal cylinders and (b) single-crystal
spheres obtained from diffraction analysis, plotted versus input diameter.
The Scherrer and thickness-fringe analyses yield the maximum real-space
dimension. Fourier analysis yields the volume-averaged chord length.

Table 3
Effective diameters (standard deviations) computed from simulated 111
and 222 radial scans from a 40 nm diameter Au single-crystal sphere
using the FWHM (D�, sp), thickness fringe period (Dz, sp) and
Fourier single-peak analysis, DF

sp.

Reflection D�, sp (Å) Dz, sp (Å) DF
sp (Å)

111 413 (1) 399 (1) 283 (1)
222 413 (1) 399 (1) 283 (1)



111 and 222 reflections of a 40 nm Au single-crystal sphere

computed using equation (13) with � = 2.2909 Å. Due to the

cos�B term, the FWHMs of the primary peaks and the period

T of the fringe minima are different. These differences are

reflected in the (raw) cosine and sine coefficients, A0n and B0n,

of the Fourier series corresponding to these peaks [Fig. 12(b)].

In contrast to Fig. 12(b), the normalized cosine parameters

|AL| for the two reflections are very close in value and exhibit

similar L dependencies (Fig. 13). Also, the local slopes of the

two curves are almost identical. Consequently, the effective

sphere diameters [equal to the mean chord length of the

sphere, equation (20b)] obtained from extrapolation of the

linear portions of these An versus L plots are very close for the

two reflections (Table 3), reflecting the absence of (order-

dependent) strain broadening in our model.

4. Summary

In this study we first simulated stand-alone diffraction peaks

from kinematically scattering strain-free single crystals in the

shape of thin films, cylinders and spheres using their Patterson

equations. These simulated peak profiles were centred at the

exact Bragg angle, with tails extending to �1, and were free

from other sample-based broadening effects such as dis-

locations, stacking faults, strain, instrumental broadening or

background profiles. We then computed the relevant crystal

dimension, thickness or diameter, along the scattering vector k

for these crystals using (i) the FWHM (�) and integral-breadth

forms of the Scherrer equation, (ii) the period of the thickness

fringes, and (iii) single-peak Fourier analysis. The difference

between the dimension input into the simulation and that

obtained from a given technique was taken as a measure of the

minimum uncertainty (error) associated with the results from

the particular technique. To obtain better statistics this

analysis was conducted for a range of crystal sizes. We

observed the following:

(i) The best accuracy was achieved when the zeroes of the

thickness fringes were used to compute the crystal dimension

along k. For well defined fringes, sub-ångström precision in the

relevant dimension could be achieved. This observation agrees

with our previous experimental work on silicon-on-insulator

single-crystal thin films.

(ii) The use of a Gaussian function to approximate the

central peak of the diffraction profile introduced errors into

the crystal dimensions obtained from both forms, FWHM and

IB, of the Scherrer equation.

(a) Use of the Gaussian FWHM in the Scherrer equation

yielded approximately 5% error in the computed crystal size.

This error was independent of shape.

(b) A shape constant, not equal to one, was needed in the

computation of the diameters of cylindrical and spherical

crystals using integral-breadth values, since the Patterson

equations describing the peak profiles for these shapes are not

normalized functions, even though the computed intensities

range between zero and unity.

(c) Even when such a shape constant was used, if the

relevant crystal size was computed from the integral breadth

of a Gaussian function fitted to the central peak, errors in the

range of 10% (for thin films) to 2% (for spheres) were

observed. These errors are due to the approximation of the

diffraction line shape with the Gaussian function and depend

on the shape of the crystal. Similar errors are possible when

other approximation functions (such as pseudo-Voigt, Pearson

VII or Lorentzian formulations) are employed.

(iii) Single-peak Fourier techniques also yielded shape-

dependent crystal size errors.

(a) For perfect thin films, the variation in |AL| versus L was

linear for all thin-film dimensions used in the study (Fig. 9).

Average thickness values computed from the intercepts of

these plots on the abscissa had negligible errors.

(b) |AL| versus L plots computed for cylindrical and sphe-

rical specimens had sigmoid-like |AL| versus L profiles

(Fig. 10).

(1) The initial concave-down curvature in these plots was

caused by the shape of the crystal. It is not due to the tradi-

tional ‘hook’ effect and could not be corrected using tradi-

tional approaches. The Fourier transform of a diffraction peak

from a crystallite yields the auto-correlation function of the

crystallite along the scattering vector. This is analogous to the

distribution of signal energy across frequencies in signal

processing and is proportional to the average number of unit

cells across the crystallite cross section participating in

diffraction for the particular scattering angle (expressed as the

deviation from the exact Bragg angle �2�). This number is

constant when the crystal is a thin film. For spherical or

cylindrical samples, the variation in this number with �2� is

never truly linear. Thus, the shape of the |AL| versus L plots

will depend on the shape of the crystal; if the shape of the

crystal is non-symmetric along the scattering vector with �2�,

the |AL| versus L plot will also be non-symmetric.
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Figure 13
Normalized Fourier cosine coefficients, |AL|, for the 111 and 222
reflections shown in Fig. 12(b) plotted versus column length L. The right
ordinate corresponds to the local slope values. The inset shows an
expanded view of |AL| in the linear region (shaded box).



(2) The presence of these nonlinear regions necessitated

fitting the central region of these plots with a line to obtain the

relevant crystal diameters. Since the definition of these linear

regions was somewhat arbitrary, selection or omission of a few

points could contribute errors of about 5% in the extrapolated

average crystal diameter.

(iv) As shown in Appendix A, when Fourier-decomposition

programs which are optimized to treat real number data are

applied to a peak profile with M intensity points, the cosine

and sine coefficients for 1 � n < M/2 will be twice the

magnitude of the coefficients obtained from standard

programs, while the coefficients for the zeroth order and the

Nyquist frequency (n = 0, n = M/2) will be identical. For such

codes the zeroth-order (raw) cosine coefficient A00 must be

corrected if it is to be included in the analysis.

(v) For Fourier analysis, all other considerations being

equal, it was much better to use a broad angular range with

fewer steps, rather than a narrow angular range with finer

steps. If a narrow range is used, using ‘padding’ might enable

the recovery of useful data from the analysis (Appendix A).

5. Conclusions

Even for the best case, where all confounding issues have been

eliminated, classical diffraction-based particle size values, with

the exception of those from thickness zeroes, have fractional

errors of around 5% for the coherent domain size along the

scattering direction. This value is a lower bound; the presence

of other line-broadening sources, instrumental effects or

emergent scattering artefacts such as the nanoparticle size

error (Xiong et al., 2018, 2019; Kaszkur, 2019) will cause larger

uncertainties. On the basis of our results we recommend that,

once a diffraction pattern has been corrected for instrumental

broadening, all domain size formalisms, i.e. thickness fringe

zeroes,7 FWHM and IB formulations of the Scherrer equation,

and Fourier decomposition, should be applied to all available

reflections; these results should then be evaluated together. If

all values agree within experimental error, then the sample

probably exhibits a uniform chord length distribution along

the scattering vectors. If there is significant divergence among

these results, the ‘average particle size(s)’ obtained might not

be reliable. In such cases, if other sources of broadening can be

eliminated, more sophisticated approaches involving domain

size distributions such as those described by Scardi & Leoni

(2006) might be undertaken.

APPENDIX A
Fourier decomposition of Bragg peaks

This analysis starts with the measurement (or computation) of

a given peak profile spanning an angular range �2�FR. In most

literature treating Fourier analysis of signals, this is termed a

‘frame’. We assume that the scattered intensities in this frame

are sampled at M equidistant angular positions, yielding an

array of intensity versus angular positions, [Ij , �2�j], where

�2�j = j�2�, j 2 ½1;M�, and �2�FR = M�2�. This intensity

profile is corrected for instrumental effects and background as

needed, and then the intensity values are normalized such that

Ij 2 ½0; 1�. The first goal of the analysis is the determination of

a Fourier interpolation function IF(�2�), which matches the

(normalized) intensities for all �2�j ,

IFð�2�jÞ ¼
X1
n¼0

A0n cos
2�n�2�j

M�2�

� �
þ B0n sin

2�n�2�j

M�2�

� �� �

ð21aÞ

¼
X1

n¼�1

Yn exp �
i2�n�2�j

M�2�

� �
; ð21bÞ

where n is the order of the Fourier coefficients. Since at least

two data points are required per period to resolve a wave, the

highest unique ‘frequency’ component resolvable in the

Fourier transform of the diffraction pattern is at nNL = M/2,

which is termed the Nyquist limit (Smith, 1999; Avillez et al.,

2018).8

The cosine and sine Fourier coefficients are related to the

complex coefficients through

A0n ¼ Yj þ Y�j; B0n ¼ Yj � Y�j: ð22Þ

The complex Fourier coefficients can be computed from

Yn ¼
1

M

XM�1

j¼0

Ij exp
i2�nj

M

� �
: ð23Þ

The corresponding cosine and sine coefficients can then be

computed from equation (22). In the literature, equations (21)

and (23) are termed the discrete Fourier transform (DFT) and

the inverse discrete Fourier transform, respectively.

A1. Decomposition algorithms

In practice, freely available or commercial programs are

used to compute cosine and sine coefficients. Most of these

programs have several options for data conditioning and use

different algorithms. Consequently, the number and magni-

tude of coefficients obtained from different programs may not

agree. We compared three programs for this purpose.

In the first case, since Ij 2 < for all j, we utilized a DFT code

(Project Nayuki, https://www.nayuki.io/page/free-small-fft-in-

multiple-languages) limited to data in the real-number

domain. For such data both cosine and sine coefficients are

real and Yj ¼ Y��j. Consequently, A0n = 2<ðYnÞ and B0n =

2ImðYnÞ for 1 � n < M/2, and all coefficients are scaled by the

number of sampled intensities M. Using these coefficients one

can compute the original Bragg peak from the inverse DFT

equation:
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7 This would be possible for single-crystal samples or polycrystalline samples
with large coherently scattering domains (Saenger & Noyan, 2001).

8 The textbook by Smith is publicly available at https://www.analog.com/en/
education/education-library/scientist_engineers_guide.html. There are several
typos in the text. Caveat emptor.



IFð�2�jÞ ¼
Xn<M=2

n¼0

A0n cos
2�n�2�j

M�2�

� �
þ B0n sin

2�n�2�j

M�2�

� �� �
:

ð24Þ

Here the summation is up to the Nyquist limit, nNL = M/2.

In Fig. 14 the 111 peak profile obtained from the Patterson

equation for a hypothetical 50 Å thick Au thin film using Cr

K� radiation is shown, with �2�FR = 0.725 rad (approximately

�8�) and �2� = 0.0008 rad; this yields M = 905 intensity values

for the DFT analysis.

Computing the Fourier coefficients up to the Nyquist

frequency nNL , we obtain 453 cosine and sine coefficients,

which are plotted in Fig. 15(a). The sine coefficients B0n are

negligible for all n, reflecting the symmetry of the peak profile.

The cosine coefficients A0n vary linearly with n for 1 � n � 13

and decay to negligible values for n 
 14 [Fig. 15(b)]. The

magnitude of the zeroth-order coefficient A00 , reflecting the

integrated intensity of the peak profile over the measurement

interval, is smaller than the absolute magnitudes of A0n for 7 �

n. As we mentioned above, this is a direct result of a DFT

program limited to data in the real-number domain; when such

programs are utilized in the analysis of experimental diffrac-

tion data for size and root-mean-square strain analysis, one

can either exclude A00 from the set of Fourier cosine coeffi-

cients or multiply this value by two. In our work we exclude

A00 . If we substitute all cosine and sine coefficients shown in

Fig. 15(a) in the inverse DFT equation [equation (24)] to re-

synthesize the 111 peak, we obtain an excellent fit with the

peak profile computed using the Patterson equation (Fig. 14,

red dots). In this frame the maximum intensity difference

between the two traces is 4  10�7.

In our second approach we coded the following fast Fourier

transform (FFT) equations in MATLAB (MathWorks, 2019):

(i) For Fourier decomposition,

A0n ¼
1

M

XM�1

j¼0

Ið2�jÞ cos
2n�j

M

� �
; ð25aÞ

B0n ¼
1

M

XM�1

j¼0

Ið2�jÞ sin
2n�j

M

� �
: ð25bÞ

(ii) For Fourier synthesis,

Ið2�jÞ ¼
XM�1

n¼0

A0n cos
2n�j

M

� �
þ
XN�1

n¼0

B0n sin
2n�j

M

� �
: ð26Þ
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Figure 15
(a) The raw Fourier coefficients obtained from the decomposition of the
profile in Fig. 14 using an algorithm optimized for real numbers only. (b)
The raw Fourier coefficients in the shaded area of panel (a). The zeroth-
order cosine coefficient is much lower in magnitude than would be
expected solely from the missing peak area.

Figure 14
The 111 peak profile computed from the Patterson equation for a
hypothetical 50 Å thick Au thin film using Cr K� radiation. There are M =
905 points in this plot, and the profile contains 98.6% of the integrated
intensity of the theoretical peak. The red dotted line depicts the profile
obtained from the inverse Fourier transform.



Equations (25a) and (25b) yield M cosine and sine coeffi-

cients, M/2 of which are independent. Thus, when applied to

the Bragg peak shown in Fig. 14, we obtain 905 coefficients

each for A0n and B0n [Fig. 16(a)]. As expected, with the

exception of n = 0 and n = M/2, the magnitudes of the cosine

coefficients obtained from equation (25a) are one half of those

obtained from equation (23) [Fig. (16b)]. This figure also

intimates that jA0nj obtained from equation (25a) will exhibit

the traditional monotonic decline (linear decline in the case of

thin-film single crystals) from n = 0.

For this approach, all M coefficients computed from equa-

tions (25a) and (25b) are required to resynthesize the

diffraction profile. Such general-purpose programs consume

more resources than programs optimized for real numbers.

Finally, we tested the FFT algorithms in the MATLAB and

OriginPro (OriginLab, 2021) software packages. Both

programs use algorithms based on the FFTW subroutines

(http://www.fftw.org) and yield ‘un-scaled’ Fourier coefficients.

These must be scaled (normalized) by the number of data

points (i.e. multiplied by 1/M) before they can be used in

resynthesizing the Bragg peak profile. (While scaled coeffi-

cients must be used for synthesizing peak profiles, coefficients

from all programs can be used directly as input for Fourier-

based average size analysis, since jA0nj must be normalized

(divided) by jA00j or jA01j for this purpose.)

A2. Specification of frame range and number of data points

Equations (21a)–(26) show that, since �2�FR = M�2�, only

two parameters of the DFT/FFT analysis can be independently

specified to analyse Bragg peak profiles. In a recent article, de

Avillez et al. (2018) investigated the optimization of these

parameters for determining crystallite size distributions when
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Figure 17
(a) |AL| versus L plots for the simulations described in Table 4. (b) An
enlargement of the shaded area in panel (a).

Figure 16
(a) The raw Fourier cosine coefficients obtained from the decomposition
of the profile in Fig. 14 using a general FFT algorithm (solid dots). All
coefficients obtained from the DFT code (open diamonds) are overlaid
for comparison. (b) An expanded plot of the shaded box in panel (a). In
this range, with the exception of the zeroth-order coefficient A00, the A0n
from the DFT code are twice those obtained from the FFT code.



confounding instrumental effects were present. Those authors

did not extend the treatment to the simple Fourier-averaged

sizes when instrumental effects were absent. Here, we use

numerical analysis of the Bragg peak shown in Fig. 14 to

investigate the influence of �2�FR and �2� on the accuracy of

the average crystal dimension along the diffraction vector k.

To determine the optimum �2�FR , �2� combination at

minimum experiment and/or processing time, one can fix the

frame range �2�FR and vary �2�, and then fix the optimum �2�
obtained in the first step and change the frame range. We

started by setting �2�FR = �8�, as shown in Fig. 14, and

changing the step size. Relevant parameters are listed in

Table 4. The average Fourier film thickness for each case

(tabulated in the last column) was obtained from the inter-

section of the line fitted to its |AL| versus L data. These are

shown in Figs. 17(a) and 17(b). For all reasonable step sizes the

average film thickness is within 5% of the true film thickness.

Even when the step size was not reasonable – there were only

five points in the central peak for M = 33 – the average Fourier

thickness of the film was within 5% of its true real-space value.

The only effect of increasing the step size is the introduction of
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Figure 18
The Fourier coefficients A0n and B0n for the Bragg profiles described in
rows 2 and 3 of Table 5. These profiles contain (a) the central peak only
with 66 intensity data points and (b) the central peak plus a pair of
thickness fringes with 132 discrete data points, respectively. For the first
case the number of useful cosine coefficients is inadequate for further
analysis.

Figure 19
‘Padded’ profiles containing (a) the top 75% and (b) 100% of the primary
peak, with 40 and 66 original intensity values (Mo = 40 and 60). The actual
data points are shown as triangles. The dashed lines indicate the ranges
padded with zero intensity values.

Table 4
The effect of the step size at fixed angular range (full range 0.73 rad =
16.5�) on the film thickness values obtained from Fourier analysis of the
111 Bragg profiles of a 50 Å thick Au film sampled with 906 to 33 steps.

�2� [rad, (�)] �2� /� M tf (Å)

0.0008 (0.046) 0.028 906 50.2
0.0016 (0.092) 0.036 458 50.9
0.0032 (0.183) 0.072 231 51.3
0.0064 (0.367) 0.144 118 52.0
0.0128 (0.733) 0.289 61 53.8
0.0144 (0.825) 0.325 55 53.2
0.0256 (1.467) 0.577 33 52.3



some nonlinearity for large L, L < tf. We conclude that 458

steps, corresponding to a step size 3.6% of the FWHM of the

primary peak, are good enough for this ideal analysis.

For the second step of the optimization analysis we fixed the

step size at 0.90� (0.00160 rad) and investigated the effect of

frame range on tf . Relevant details for this analysis are

summarized in Table 5. We observe that decreasing the frame

range dramatically curtails the number of Fourier coefficients

N�L which yield column lengths in the linear range for the |AL|

versus L plots (for n
 1). Even when the entire central peak is

sampled with 66 steps (second row of Table 5) we cannot

perform the analysis. On the other hand, if the range includes

just the central peak plus one pair of (bracketing) thickness

fringes, the extrapolated tf value is very accurate, even though

the number of Fourier coefficients is quite small [Figs. 18(a)

and 18(b)]. These observations imply that capturing most of

the Bragg peak is quite important: for the same experimental

duration it is better to use a larger step size (with appropriate

counting time) over a broader frame range than to perform a

fine-step scan over a narrower angular frame.
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Figure 20
(a), (b) The variation in the (raw) Fourier coefficients A0n and B0n with coefficient order n, and (c), (d) the variation in the normalized cosine coefficient
|AL| with column length L, for the padded profiles containing (a) the top 75% and (b) 100% of the primary peak, with 40 and 66 original intensity values,
respectively.

Table 5
The effect of the angular frame range at fixed step size (�2� = 0.90� =
0.00160 rad) on the film thickness values obtained from Fourier analysis
of the 111 Bragg profiles of a 50 Å thick Au film.

The frame ranges studied ranged from 1.4 to 16.5�.

Frame range
( �) M

NL�

(n 
 1) tf (Å) Notes

1.4 40 1 N.A. Top 75% of central peak (CP)
2.4 66 1 N.A. CP
4.7 132 3 50.1 CP + pair of fringe peaks (FP)
7.1 198 6 50.6 CP+ two pairs of FP
9.5 264 8 50.4 CP + three pairs of FP
16.5 458 14 50.9 Full range (Fig. 14)



Finally, we investigated the effect of ‘zero padding’ on the

analysis. In this procedure the frame range is artificially

broadened by adding zero intensities to equidistant angular

positions outside the measurement range. In our analyses we

chose to extend the frames of simulations described by rows 1–

4 in Table 5 to the full range shown in Fig. 14. Consequently,

the Fourier transformation (DFT) acted on 458 intensity

points in all cases. However, only a fraction of these intensity

points centred on the primary peak were finite and ‘real’. The

rest were ‘padding’.

‘Padded’ profiles containing the top 75 and 100% of the

primary peak, with 40 and 66 original intensity values, Mo = 40

and 66, respectively, are shown in Figs. 19(a) and 19(b). The

corresponding Fourier coefficients and the |AL| versus L plots

(for n 
 1) obtained from these coefficients are shown in

Fig. 20. For both cases, artificially expanding the frame range

by tacking on zero intensities resulted in the recovery of 14

finite |AL| values for L � tf. However, Figs. 20(a) and 20(b)

show that padding introduces oscillations in the B0n values.

These oscillations decay with increasing ‘real’ frame range and

are due to the artefacts introduced into the peak profiles by

the padding. We also observe both oscillations and curvature

in the |AL| versus L plots (for n 
 1). These also diminished

with increasing true frame range, vanishing completely for

adequate sampling: for Mo 
 264, the |AL| versus L plots with

454 real intensity points, and with 264 or more real intensity

points padded to 454 total points, were coincident.

In Table 6 we list the average film thicknesses tf obtained

from the |AL| versus L plots (for n 
 1) by fitting the linear

central ranges. The computed values are sufficiently accurate

for most structural characterization applications. We conclude

that Fourier analysis, properly implemented, is quite robust

for the determination of average domain size in single-crystal

(or mono-disperse) polycrystalline samples with no strain

broadening effects, even when padding is used. On the other

hand, ascribing nonlinearities in Fourier coefficient plots and

their extension to structural features of the sample appears to

be non-trivial. Such effects can also be caused by the type of

algorithm used for computing the raw Fourier coefficients, A0n
and B0n, or be due to asymmetries in the peak shape caused by

frame range selection, padding or other non-sample-related

reasons.
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Xiong, S., Öztürk, H., Lee, S.-Y., Mooney, P. M. & Noyan, I. C. (2019).

J. Appl. Cryst. 52, 695–696.
Ying, A. J., Murray, C. E. & Noyan, I. C. (2009). J. Appl. Cryst. 42,

401–410.
Young, R. A., Gerdes, R. J. & Wilson, A. J. C. (1967). Acta Cryst. 22,

155–162.

research papers
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Table 6
The effect of padding on the film thickness values obtained from Fourier
analysis of the 111 Bragg profiles of a 50 Å thick Au film.

Mo Real frame range ( �) tf (Å)

40 1.4 51.7
66 2.4 47.1
132 4.7 49.7
198 7.1 49.9
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