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X-ray coherent diffractive imaging (CDI) techniques have been applied with

widespread impact to study nanoscale material properties. New fast framing

detectors may reveal dynamics that occur at millisecond timescales. This work

demonstrates by simulation that kilohertz synchrotron CDI is possible, by

making use of redundant information from static parts of the image field.

Reconstruction ambiguities are strongly suppressed by applying a spatio-

temporal constraint, obviating the need for slower methods of introducing

diversity such as ptychography. The relationship between image fidelity and time

resolution is investigated and shows that dynamics an order of magnitude faster

can be reconstructed, compared with conventional CDI.

1. Introduction

Coherent diffractive imaging (CDI) with X-rays [see e.g. Miao

et al. (2015), and references therein] has attracted recent

interest for its potential to achieve high-resolution imaging of

nanoscale dynamic behaviour (Lo et al., 2018; Takayama et al.,

2021), by taking advantage of new developments in fast hybrid

pixel photon-counting detectors (Brönnimann & Trüb, 2020)

such as the currently available EIGER (Dinapoli et al., 2011)

and diffraction-limited sources (Eriksson et al., 2014).

However, the robustness of CDI is limited by inherent ambi-

guities such as twin images in the image reconstruction

(Fienup & Wackerman, 1986; Guizar-Sicairos & Fienup, 2012)

and dependence on prior knowledge of the object or illumi-

nation. Ptychography overcomes these issues by introducing a

high degree of information redundancy in the spatial domain

from transverse translations of the object (Rodenburg &

Faulkner, 2004) through a spatially limited illuminating probe

with a high degree (typically >60%; Bunk et al., 2008) of areal

overlap between adjacent positions. This has been shown to

allow constraints on the illumination and other experimental

factors to be relaxed (Thibault et al., 2008; Maiden &

Rodenburg, 2009; Maiden et al., 2012; Thibault & Menzel,

2013) and underpins developments such as fly scanning (Pelz

et al., 2014; Clark et al., 2014; Jones et al., 2021). Despite

impressive advances in robustness and imaging rates, the

achievable temporal resolution of dynamic ptychography is

limited by interrelated factors of detector performance, the

mechanical limitations to object scanning and the degree of

redundancy in the diffraction data that is needed to reliably

reconstruct real-space images. Objects which are unstable or

which exhibit a high degree of dynamic behaviour introduce

artefacts into the reconstruction. This forces in situ ptycho-

graphy to be used in applications where objects undergo
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step-wise modification but can remain stable during relatively

slow measurement (Kourousias et al., 2016; Baier et al., 2016).

Using redundancy in the time domain for the introduction

of a constraint has recently been proposed in CDI (Lo et al.,

2018; Tao et al., 2018), exploiting ‘overlap’ between successive

images to achieve similar advantages to ptychography. An

algorithm that exploits redundancy in time-series CDI by

exploiting intentional or incidental spatiotemporal diversity

in the diffraction data was recently reported (Hinsley et al.,

2020). This approach generates a spatiotemporal real-

space constraint by segmenting time-dependent and time-

independent regions of an object by iteratively refining an

estimate of the dynamic behaviour in the object over a time

series. It does not rely on the inclusion of static reference

structures in either the object or illumination. This algorithm

uses all of the diffraction information obtained from a

dynamic object undergoing a transformation to suppress

artefacts in the reconstructions (Hinsley et al., 2020). This has

important implications for studying systems that exhibit

morphological changes in response to external stimuli

(Kourousias et al., 2016; Baier et al., 2016; Auernhammer et al.,

2009; Kuo et al., 2011; Sun & Wang, 2011; Zhao et al., 2017)

which are intrinsically unstable, or which cannot be con-

strained to be mechanically stable during image acquisition.

Here we demonstrate the application of a spatiotemporal

constraint in dynamic CDI, through simulations of imaging an

object in motion using realistic experiment parameters rele-

vant to a synchrotron microprobe beamline. The novel aspect

of the current work shows that spatiotemporal data redun-

dancy can be used to resolve the twin-image problem. We also

explore the relationship between detector frame rate and the

observable dynamic behaviour, and how the interplay

between signal-to-noise ratio and the amount of spatio-

temporal diversity within the system affects the reconstructed

image quality. We show that, with sufficient redundancy, it will

be possible to observe nanoscale dynamic behaviour at kHz

frame rates using existing light sources.

1.1. Method

In order to demonstrate this capability, we simulated a

synchrotron time-series CDI experiment, with realistic beam

intensity and detector parameters. A toy model sample

composed of asymmetric moving and stationary objects was

chosen, to (a) demonstrate the ability of our algorithm to

automatically identify dynamic regions of the image

throughout time-series CDI; (b) highlight the effect of

detector frame rate on the observable dynamics and recon-

struction quality; and (c) make obvious the occurrence of twin

images in the reconstructions. A dynamic L-shaped object

slides across the field of view with translational speed vL and

rotational speed vR nearby a stationary T-shaped object. The

simulated motion of the L is illustrated in Fig. 1(a). The side

length of the L and T is d = 0.5 mm and the thickness along the

beam direction is t = 1.0 mm. The photon energy was chosen to

be 7.374 keV and the material of the object Fe, for which the

complex X-ray refractive index n ¼ 1� �þ i� components

are � ¼ 2:5114� 10�5 and � ¼ 3:9387� 10�6 (Henke et al.,

1993). A flat symmetrical probe beam with dimensions

3.5 � 3.5 mm was used to improve the chance of the twin

image being reconstructed. For each object frame, the

complex exit surface wave  was generated under the

projection approximation, i.e. the projected refractive index

distribution represents the amplitude and phase effect of the

object on the incident wave. The simulated data are diffraction

patterns of the object, obtained by propagating  to the

detector plane 3.8 m downstream using a far-field (Fraun-

hofer) propagator and obtaining the intensity with Poisson

noise added. Using a detector area of 256 � 256 pixels of size

75 � 75 mm, the diffraction patterns were ‘oversampled’

relative to the smallest speckle size by a factor of approxi-

mately 2.4. The pixel size in the reconstructed complex object

function was 33 nm. The intensity of the beam was

8:2� 107 photons s�1, which resulted in 8:2� 103 photons per

diffraction pattern at a detector frame rate of f0 = 10 kHz. A

time-series data set of n = 4800 frames was produced, corre-

sponding to an interval of 0.48 s, during which the L rotates at
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Figure 1
Phase images of a dynamic object: (a) indicates the different rotational
(vR) and translational (vL) behaviour of the L object; (b) shows the
reconstructed map of dynamic behaviour identifying time-dependent
(white) and time-independent (black) areas; phase images for four
different time points at a detector frame rate of 0.8 kHz reconstructed (c)
using a spatiotemporal constraint and (d) using the standard CDI
algorithm; (e) the SSIM compares the reconstruction quality of standard
CDI (dashed line) with the spatiotemporal constraint method (solid line),
where the point of convergence for both approaches is indicated by a
black cross; ( f ) the NRMSE shows the relative error between the
reconstructed object (solid) and its twin image (dashed) from the
simulated object.



vR ¼ 2:09� 103 rad s�1 and moves across the image field at a

speed of vL ¼ 5:75 mm s�1.

The effect of various frame rates, f, on the observable

dynamics was investigated by integrating over successive

blocks of n ¼ f0=f frames, at which point Poisson noise was

included. For example, to simulate f = 0.4 kHz, the data were

integrated in blocks of n ¼ 25 frames, each corresponding to a

time interval tn ¼ n=f0 seconds. The signal-to-noise ratio

(SNR) within an integrated diffraction frame was then

calculated as SNR = If=ðIf Þ
1=2, where If is the mean intensity

within an integrated diffraction pattern for a given frame rate.

Twelve different frame rates were investigated, from f =

0.042 kHz to f = 5 kHz.

The vL and vR motion of the L can be represented as signals

in order to define a critical sampling rate, fc, which is required

to resolve the dynamic behaviour according to Nyquist–

Shannon theory. To resolve the translational dynamics we

must therefore image at a rate fi greater than twice the critical

frequency, i.e. fiðvLÞ � 2fcðvLÞ ¼ 2vL=d ¼ 0:023 kHz. To re-

solve the rotational dynamics, fiðvRÞ � 2fcðvRÞ ¼ 0:667 kHz.

The reconstruction of each frame was carried out using the

procedure presented by Hinsley et al. (2020), with both

spatiotemporally constrained and standard CDI algorithms.

The probe profile was assumed to be known, and the number

of photons for each f was scaled from the photon count within

the integrated diffraction patterns. As the ground-truth

complex object is known for each frame in the time series, the

structural similarity index measure (SSIM) (Wang et al., 2004),

averaged over the time series, was used to track the progress

of the reconstructions. Index values between 0 and 1 indicate

the similarity of the reconstructed object to the known object,

with 1 representing perfect reconstruction. Reconstructions

were considered to be converged when the difference between

the time-series-averaged SSIM remained below 1� 10�5 for

five consecutive iterations. The normalized root-mean-square

error (NRMSE) in real space (Guizar-Sicairos & Fienup,

2012), averaged over the time series, was used to track the

relative weighting between the original ground-truth object

and the twin; this measure is invariant to constant and linear

phase offsets which can occur within a CDI reconstruction. An

NRMSE value of 0 indicates perfect agreement between the

image and the ground-truth object. To compare the standard

and spatiotemporally constrained CDI reconstructions, the

time-series averages of SSIM and NRMSE at convergence

were used as error metrics.

2. Results and discussion

Fig. 1 shows reconstructed phase images at four representative

time points for f = 0.8 kHz. Reconstructions using a spatio-

temporal constraint are shown in Fig. 1(c) and using a stan-

dard CDI reconstruction approach in Fig. 1(d). Fig. 1(e)

indicates that the reconstruction quality is improved when

using a spatiotemporal constraint, compared with the standard

reconstruction approach. A map of dynamic regions was

formed during the reconstruction process by 3D Gaussian

smoothing the phase of the current iterate over the spatial and

temporal dimensions, shifting the mean phase to be zero,

calculating the standard deviation at each position in the

object plane over time, and segmenting the result using Otsu’s

method (Otsu, 1979) within the FWHM defined by the probe.

This result was then dilated to ensure encapsulation of the

entire dynamic region. The map of dynamic regions was

updated every ten iterations thereafter using the same process,

but the standard deviation through time was segmented using

a threshold value of 25% of the maximum value. The

threshold value was empirically determined and is able to

accurately segment the dynamic behaviour of the object from

noise. The map of dynamic regions [Fig. 1(b)] was then used to

apply a spatiotemporal constraint within the time-indepen-

dent region (black), enforcing consistency and using redun-

dant information to improve the image reconstruction across

the time series. During the early iterations the map of dynamic

regions identified the dynamics of the twin image along with

that of the original, but the spatiotemporal constraint caused

the twin to be slowly suppressed over subsequent iterations.

The final refined map of dynamic regions contains only the

dynamic information of the original object. This is also

reflected in the NRMSE in Fig. 1( f), which shows the twin and

original start with a similar weighting in real space. With

application of the spatiotemporal constraint, the NRMSE for

the twin increases while the original decreases.
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Figure 2
Phase images for detector frame rates from f = 0.08 kHz to f = 5 kHz: reconstructions (a) using a spatiotemporal constraint and (b) using the standard
CDI algorithm; (c) the SSIM compares the reconstruction quality of standard CDI (dashed line) with the spatiotemporal constraint method (solid line),
where the shaded region indicates the optimal range of experimental imaging rates fi, delimited by twice the rotational critical sampling frequency 2fcðvRÞ

= 0.667 kHz (lower axis intercept) and SNR = 1 (upper axis).



Fig. 2 shows the effect of detector frame rate, f, on the

ability to capture dynamics. Phase images for the first time

point for different f values reconstructed using a spatio-

temporal constraint are shown in Fig. 2(a) and using a stan-

dard CDI approach in Fig. 2(b). The spatiotemporal constraint

refined during the reconstruction process was identical to that

shown in Fig. 1(b) for all values of f. That is, for each detector

frame rate the dynamic behaviour of the original object was

correctly identified, and the twin image was suppressed.

At slower detector frame rates f < fiðvRÞ ¼ 0:667 kHz

(marked as a vertical dashed line) the rotational dynamics of

the L are not temporally resolved and each image in the time

series represents the object dynamics averaged over a time

interval t ¼ nf=f . Consequently, the shape of the L is unrec-

ognizable and it appears as a blurred oval. Where f � fiðvRÞ

the orientation of the object can be accurately determined for

each image in the time series.

Fig. 2(c) shows that the image fidelity is improved for all

values of f when using a spatiotemporal constraint. The

reconstructed image fidelity slowly deteriorates at higher

values of f. For this simulated object and incident beam

intensity the SNR in the diffraction intensity falls below 1 for

detector frame rates f � 1:25 kHz (marked with a dashed

line). This coincides with a significant loss of reconstructed

image quality and can be taken as an upper limit to fi. Taking

fi ¼ 2fcðvRÞ as the lower limit, we can therefore define an

optimal experimental range for fi, shown as a shaded region in

Fig. 2(c). This rationale can be applied to imaging any dynamic

system using an estimate of the critical sampling interval and

empirical determination of the value of f that corresponds to

SNR = 1 in the diffraction intensity.

The effect of the amount of dynamic behaviour on recon-

struction quality was investigated by introducing one to five

additional dynamic L objects into the simulation. The frame-

to-frame behaviour of each L was varied, while the overall

dynamic behaviour (vR and vL values) across all 4800 frames

was kept the same. The simulated map of dynamic behaviour

for each test is shown in Fig. 3(a). Reconstructions were

carried out using the spatiotemporally constrained approach,

with identical parameters in each trial.

The SSIM was used to track the convergence, shown in

Fig. 3(b) as a function of f and SNR. When the simulated

spatiotemporal diversity in the system becomes too high, the

time-independent region is reduced to the point where the

redundant information is insufficient to resolve the twin-image

problem. This can be seen more clearly in the transition

between three and four simulated L objects, which corre-

sponds to a change from 59 to 45% static region, respectively.

The trend in SSIM as a function of f remains identical in each

trial, showing that the effectiveness of the incorporation of a

spatiotemporal constraint is insensitive to the observed frame-

to-frame behaviour and only depends on the overall dynamic

behaviour across the time-series data set. The limit on the

effectiveness is therefore dependent on the degree of spatio-

temporal diversity within the data set and is most effective

when there is less than 50% diversity within the image field of

view. This is compatible with the characteristics of a wide

range of in situ studies, including nucleation growth/dissolu-

tion of nanostructures (Sun & Wang, 2011; Kuo et al., 2011),

soft-matter dynamics (Auernhammer et al., 2009) and real-

time monitoring of additive manufacturing (Zhao et al., 2017).

Applying this method to systems with higher spatio-

temporal diversity requires future work: designing an

improved approach to segmenting dynamic regions from time-

independent regions, or division of the data into subsets that

each contain less spatiotemporal diversity. Note that in a

realistic experiment the probe profile may not be symmetrical

as has been simulated in this work and may break the twin-

image ambiguity. In such cases, the ability to image dynamic

systems at kHz frame rates is only limited by the SNR within a

diffraction pattern and the effectiveness of the approach in

mapping the spatiotemporal dynamics.

3. Conclusion

We have demonstrated that the spatiotemporally redundant

information obtained over a series of measurements of

diffraction intensity using fast detectors can be exploited to

reliably overcome image reconstruction ambiguities across the

time-series image reconstruction. By taking advantage of

developments in detector technology which offer high frame

rates, and the development of brighter light sources, our

approach can be applied to overcome issues of stability and be

used for the investigation of dynamic phenomena which would

be unobtainable through methods such as ptychography. For

systems in which the spatiotemporal diversity is sufficiently
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Figure 3
Result of increasing the simulated dynamic behaviour: (a) shows simulated spatiotemporal constraint maps illustrating the increase in dynamic
behaviour through the addition of independent L objects into the simulation; (b) the SSIM compares the reconstruction quality using the spatiotemporal
constraint at each level of simulated dynamics, as a function of frame rate and SNR, where the colour of each line corresponds to the borders of the
spatiotemporal constraint maps in (a).



low, the application of this constraint could be used to reliably

reconstruct CDI data collected at kHz frame rates.
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