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A description is given of the program pdCIFplotter. This program is used for

visualizing powder diffraction data and models published in powder CIF format

(pdCIF). In particular, support for the visualization of multi-pattern data sets,

such as in situ diffraction experiments, is provided by means of stack and surface

plots. pdCIFplotter is written in Python 3 and can run wherever a compatible

runtime is available. TOPAS macros for the production of pdCIF files are also

presented.

1. Introduction

The Crystallographic Information Framework (CIF) (Bern-

stein et al., 2016; Hall et al., 1991) is a human- and machine-

readable text-based file format for the exchange of crystal-

lographic information. Originally constructed for single-

crystal data, the core CIF dictionary has been extended to

include powder diffraction data (Toby, 2006a,b) – pdCIF –

amongst others. All current CIF dictionary definitions are

available from the International Union of Crystallography

(IUCr, 2021a).

There are a variety of tools available for the creation,

viewing and editing of CIF files, many of which are listed

online (IUCr, 2021b). However, there is a dearth of end-user

tools that work well with pdCIF, and as a result, the adoption

of pdCIF is not as widespread as it should be. Common

powder diffraction analysis software packages are often

capable of outputting diffraction data and model results, most

often Rietveld refinements (Loopstra & Rietveld, 1969;

Rietveld, 1969), in pdCIF format but are then not able to read

in those same files. This lack of interoperability makes

studying the data and models by a third party a difficult

process without access to the original software and analysis

files. One previous software package, pdCIFplot (Toby, 2003),

was written to perform this task but is no longer maintained.

The IUCr maintain an online tool, plotCIF (IUCr, 2021c),

which provides largely the same capability. Both are limited to

showing a single diffraction pattern at a time.

To expand the available pdCIF software tools for the end-

user, pdCIFplotter has been written to provide an easy-to-use

interface for visualizing powder diffraction data and models

published in pdCIF format. In particular, support for the

visualization of multi-pattern data sets, such as in situ data, is

provided by means of stack and surface plots.

2. pdCIFplotter

2.1. Overview

The key concept on visualizing data with pdCIFplotter is

that all diffraction patterns that are related by some key
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feature should be contained in a single CIF file. For example,

in an in situ experiment, powder diffraction data are included

in the CIF file in the order in which they were collected, with

information about temperature, pressure and collection time,

as well as the calculated patterns, R factors (Toby, 2006c) and

refined crystal structures as a result of any Rietveld modelling.

The key pdCIF data names of interest relating to the

diffraction intensities are outlined in Table 1. Other data

names of interest are given in Table 2. In general, the

_pd_meas items are directly measured, _pd_proc items are

processed in some manner to obtain their values and

_pd_calc are calculated by some modelling process. There

may be one or more loops in a data block containing

diffraction information; for example, one loop may contain the

as-collected data and a second may contain the processed and

calculated data. The as-collected data may sometimes need to

be scaled to take into account, for example, variations in

collection time. The intensity values between _pd_proc and

_pd_calc data items should be directly comparable.

The correct linking of data blocks is required. Each

diffraction pattern and crystal structure is contained in its own

data block and must be identified with a _pd_block_id data

item. Those containing crystal structure information should be

linked to their respective diffraction data with a

_pd_block_diffractogram_id data item. Those

containing diffraction data must link to the relevant structure

information, if any, using the _pd_phase_block_id data

name. Example data sets (Section 4) are given in the supple-

mentary information. In pdCIFplotter, the order in which

diffraction data appear in the CIF file is considered to have

meaning; i.e. data are assumed to have been measured in the

order in which they appear in the CIF file.

When pdCIFplotter is first opened, the window appears as

shown in Fig. 1. A CIF file can be loaded by pressing the ‘Load

file’ button in the top left. The type of data visualization can be

chosen by clicking on one of the three tabs, ‘Single’, ‘Stack’ or

‘Surface’, with each visualization displayed in the white-space

below the tab. Each visualization can be altered by the

controls present in the right panel of the corresponding tab.

When a CIF file is loaded, its contents are parsed with

PyCIFRW (Hester, 2006, 2021), and a dictionary is

constructed containing all diffraction data in the order they

appeared in the original CIF file, along with relevant meta-

data. Depending on the x coordinates given, and the presence

of a valid wavelength, other x coordinates are calculated, such

as q and d from 2�.1 If there are multiple diffraction data loops

in a single data block, then they are copied into a single data

block of their own, along with their relevant metadata,

maintaining their relative ordering. Quantitative phase

analysis results are collated from all phases and diffraction

patterns, predicated on the _pd_phase_name uniquely

identifying each phase present in all patterns. The various

plotting menus are populated with values based on the CIF file
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Table 1
pdCIF data names associated with diffraction intensities and their position.

X coordinates Observed intensities Y(obs) Intensity uncertainty Y(err) Calculated intensities Y(calc) Background intensities Y(bkg)

_pd_meas_2theta_scan _pd_meas_counts_total _pd_meas_counts_total† _pd_calc_intensity_total _pd_meas_counts_background

_pd_proc_2theta_corrected _pd_meas_intensity_total _pd_meas_intensity_total‡ _pd_calc_intensity_net _pd_meas_counts_container

_pd_meas_time_of_flight _pd_proc_intensity_total _pd_proc_intensity_total‡ _pd_meas_intensity_background

_pd_meas_position _pd_proc_intensity_net _pd_proc_intensity_net‡ _pd_meas_intensity_container

_pd_proc_energy_incident _pd_proc_ls_weight§ _pd_proc_intensity_bkg_calc

_pd_proc_d_spacing _pd_proc_intensity_bkg_fix

_pd_proc_recip_len_Q

_pd_meas_2theta_range_}
_pd_proc_2theta_range_}

† The uncertainty is given as the square root of the intensity. ‡ The uncertainty must be explicitly given, or given as _pd_proc_ls_weight . § The uncertainty is the inverse
square root of this value. } These correspond to three different data items: ###_min, ###_max and ###_inc, denoting the minimum and maximum diffraction angle and the
equidistant step size between them.

Figure 1
pdCIFplotter appearance on first opening.

Table 2
Other pdCIF and CIF data names that provide useful metadata for
pdCIFplotter.

_pd_phase_name

_diffrn_radiation_wavelength

_diffrn_ambient_temperature

_diffrn_ambient_pressure

_pd_phase_mass_%

_pd_meas_datetime_initiated

_refine_ls_goodness_of_fit_all

_pd_proc_ls_prof_wR_factor

1 This conversion simply calculates the new x coordinate in terms of the old.
No attempt is made to resolve multiple peaks caused by multiple wavelengths.



contents, and sensible default plotting attributes are applied.

The user is then free to interactively visualize their data.

pdCIFplotter relies on Matplotlib (Hunter, 2007; Hunter &

Droettboom, 2021), NumPy (Harris et al., 2020; Oliphant,

2021), PySimpleGui (Driscoll, 2021) and mplcursor (Lee,

2021) and uses PyInstaller (Mandeljc et al., 2021).

2.2. Single plot

The single plot is designed for visualizing a single diffraction

pattern at a time, most often in conjunction with the results of

a Rietveld model (see Fig. 2 for an example use-case). Fig. 3

shows the options for controlling the data to be plotted. The

block ids of the available data are shown in the first drop-down

box. The x and y coordinates to be plotted can be chosen via

the next four drop-down boxes (see Table 1 for the complete

options). The contents of these boxes are dynamically updated

from the available data as different source data are chosen. If

the user does not wish to plot a certain data name, then ‘None’

can be chosen in the drop-down. If a certain data name is not

available, then ‘None’ is displayed.

A difference plot, defined as Y(obs) � Y(calc), can be

displayed. The difference plot is dynamically calculated and is

automatically offset from the main diffraction pattern so as

not to clash with the other displayed data. HKL ticks, or

reflection markers, indicate the position of each reflection of

each crystalline phase, as long as the phases have

_refln_d_spacing defined and as long as it is possible to

convert d spacing into the x ordinate of choice. By default, the

tick marks are displayed below the diffraction pattern, with

phases vertically offset from each other. The phase name and

HKL information for a reflection are displayed when hovering

the mouse cursor over the tick mark.

Cumulative �2 is a function showing how the goodness of fit

(Young, 1995) evolves across the diffraction pattern (David,

2004). Ideally, the function should be a smooth curve, with the

presence of steps indicating regions of misfit between the

model and data. To give an indication of the uncertainty

associated with each data point, ‘Normalise all intensities to

counts’ should be used. This calculates a normalization

constant – Y(norm) = Y(obs)/Y(err)2 – to scale all displayed

intensities, which has the effect of converting the given

intensities to counts such that y/sqrt(y) = Y(obs)/Y(err). The

end result is that the uncertainty of each data point is the

square root of its displayed value.

The x and y axes can both be independently scaled to show

data in linear, square root or log10 scales of the respective

coordinate. If the chosen x coordinate is related to 2�, the

wavelength, if given, will be shown in the axis label.

The ‘Options’ buttons provide the ability to set the line/

marker style, colour and size of the individual plot compo-

nents.

The plot automatically shows a legend denoting each of the

constituent parts. The colours for the HKL ticks are auto-

matically assigned. The view in the plot window can be

manipulated with the navigation toolbar (Matplotlib, 2020)

shown in Fig. 4. The ‘Home’ button resets the view to the

complete pattern, and the arrows move between previously

defined views. The crossed arrows button activates pan. With

this button activated, place the mouse cursor in the plot, click

the left mouse button and drag the plot to a new position. The

magnifying glass activates the zoom rectangle. With this

button activated, place the mouse cursor in the plot, click the
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Figure 2
An example of a single diffraction pattern plot. The plot title is the block
id. The subtitle summarizes the date/time, temperature, pressure,
goodness of fit (GoF) and Rwp values, if given. If it is possible, the GoF
and Rwp values are calculated and given in brackets. Quantitative phase
results are displayed for each phase if given. Information about each
HKL tick mark is given by hover text. Example data taken from Evans
(2021a).

Figure 3
Single plot options. Different diffraction data can be chosen from the first
drop-down box. The next or previous data set can be chosen with the
arrows. The data to be plotted can be chosen with the next four drop-
down boxes. Other plot options can be chosen with the checkmarks. The
scale of each axis can be controlled independently. The colour and styling
of each line can be set using the ‘Options’ button.

Figure 4
Plot navigation toolbar, showing the coordinates of the cursor on the plot.



left mouse button and drag a rectangle to define a region to

zoom into. After the mouse button is released, the region

defined by the rectangle will be expanded to fill the plot. The

pan and zoom behaviour can be modified by pressing the x, y

or control keys. The (x, y) coordinates of the cursor in the plot

are also shown dynamically in the toolbar.

2.3. Stack plot

Stack plots are used to display multiple diffraction patterns

where each pattern is vertically offset from the others (see

Fig. 5 for an example). The first pattern to appear in the CIF

file is the lowest pattern in the plot. The options available in

the stack plot are shown in Fig. 6. The stack plot will show all

patterns which have the combination of x and y coordinates

given. The ‘X axis’ drop-down contains all possible x coordi-

nates, and the ‘Y axis’ drop-down contains all possible y

coordinates which also have the given x coordinate. The

vertical offset can be altered using the given offset parameter.

Individual patterns can be identified by hover text appearing

when the mouse pointer hovers over the pattern. The colours

of individual patterns are chosen automatically. HKL ticks can

be shown, intensities can be normalized and axes scaled, as

outlined in Section 2.2

2.4. Surface

Surface plots show a series of diffraction patterns where the

intensity of each point is represented by a colour (see Fig. 7 for

an example). This type of plot is an alternative to stack plots

and can highlight changes in unit-cell parameters or phase

composition. Each diffraction pattern is linearly interpolated

onto a common grid to allow for dissimilar patterns to be

displayed together. Fig. 8 shows the plotting options. The ‘X

axis’ drop-down contains all possible x coordinates, and the ‘Z

axis’ drop-down contains all possible intensity data names

which also have the given x coordinate. The ‘Y axis’ drop-

down is fixed on pattern number. Changing the z-axis scale

alters the colours assigned to each data point. HKL ticks can
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Figure 7
Example of a surface plot with the optional plot showing the temperature
at which the diffraction data were collected. Note the common y axis
between the two plots. Example data taken from Evans (2021a).

Figure 5
Example of a stack plot. Hover text for each diffraction pattern displays
the block id, date/time, temperature, pressure, goodness of fit and Rwp

values, if given. Example data taken from Evans (2021a).

Figure 6
Stack plot options. The coordinates to plot can be chosen from the drop-
down boxes. Other plot options can be chosen via the checkboxes and
radio buttons. The scale of each axis can be controlled independently.

Figure 8
Surface plot options. The x and z coordinates can be chosen from the
drop-down boxes, and the temperature, pressure, quantitative phase
analysis, Rwp or GoF can be optionally shown in a secondary plot. The
scale of each main plot axis can be controlled independently.



be shown, intensities can be normalized and axes scaled, as

outlined in Section 2.2

3. Example data

Four example data sets are provided in the supplementary

information to showcase pdCIFplotter’s capabilities. All CIF

output is from the method outlined in Appendix A using

TOPAS v7.

(1) A CIF file compiled from Rietveld refinement of

synchrotron temperature calibration data (Evans, 2021a).

(2) A CIF file compiled from Rietveld refinement of a

laboratory variable-temperature data set (Billing, 2022).

(3) A CIF file compiled from Rietveld refinement of

multiple-detector-bank time-of-flight (TOF) neutron data

(Ainsworth et al., 2015; Evans, 2021b).

(4) A CIF file compiled from Rietveld refinement of an in

situ multi-phase synchrotron data set.

4. Program availability

pdCIFplotter is written in Python 3 and is available for

download and installation from github (https://github.com/

rowlesmr/pdCIFplotter) and PyPI (https://pypi.org/project/

pdCIFplotter/). The program is made available under the

Apache 2.0 licence. For ease of use, pdCIFplotter can be

downloaded as a zip file containing all necessary Windows files

(https://www.iucr.org/__data/iucr/powder/pdcif_apps/pdCIFplotter.

zip; https://www.iucr.org/resources/commissions/powder-diffraction/

projects/pdcif/pdcifplotter). If you do wish to install from

source, installation instructions are available on the github

page. Installation via pip (> pip install pdcifplotter)

will automatically download and install all required depen-

dencies. After installation, the program can be started from

the command line with the command pdcifplotter, or a

shortcut can be made in your desktop environment. Currently,

Windows installation of the key

dependency PyCifRW requires

Microsoft Visual C++ 14.0 or greater;

Linux and Mac operating systems

should already have the required

compiler. If you do not have the

compiler or do not wish to install it,

third-party precompiled files are

available (Gohlke, 2021).

APPENDIX A
In testing pdCIFplotter, a series of

macros were developed for the

production of CIF files from Rietveld

refinements in TOPAS (Coelho,

2018). These macros are available in

the supplementary information and

on the TOPAS wiki (Evans, 2010;

http://topas.dur.ac.uk/topaswiki/doku.

php?id=out_pdcif). They have been tested in TOPAS v5–7,

and have been designed to work with constant-wavelength

X-ray and neutron diffraction data, TOF neutron diffraction

data, and energy-dispersive X-ray diffraction (EDXRD) data.

Two main user-facing macros have been developed, each

representing a different refinement use-case:

(1) Each diffraction pattern in a single input file is inde-

pendent of the other patterns. Each diffraction pattern can be

modelled with a different number of structures. For example, a

single laboratory diffraction pattern, or an in situ temperature

series where a single temperature is represented by a single

diffraction pattern. These are ‘single’ refinements.

(2) Diffraction patterns in a single input file form groups,

where each diffraction pattern in each group is modelled by a

common set of structures. For example, multiple-detector-

bank TOF diffraction data, or a combined refinement of X-ray

and neutron data. These are ‘multi’ refinements.

The key macros are (i) Out_pdCIF(ciffile, data_

type, bkg_eqn) and (ii) Out_pdCIF_multi(ciffile,

data_type, bkg_eqn), which write both crystal structure

and powder diffraction data to file. ciffile is the name of

the file to which the information is appended. data_type is

either "proc" or "meas" and represents data that have been

processed, for example, combination of diffraction patterns,

corrections for background, detector dead time etc., or

represents data that are as-measured and have had no

alterations made, respectively. bkg_eqn is the equation

describing the background so that it can be given in the CIF

file. Helper macros are provided which give sensible defaults

for the second and third macro arguments if only the first or

first and second arguments are given. See the mini examples

and cif.inc in the supplementary information for further

information and implementation details.

Depending on the analysis being undertaken, certain vari-

ables must, should or could be set using pre-defined names

(see Table 3). Each xdd or group of xdds must be given a
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Table 3
Predefined parameter names for the Out_pdCIF and Out_pdCIF_multi macros.

Parameter name Scope† Description

CIF_ID‡ xdd Unique identifier for each diffraction pattern
CIF_PHASE_ID‡ str Unique identifier for each structure
CIF_SCAN_METHOD§ xdd How intensities were scanned when collected
CIF_DATETIME xdd Date/time when data collection was initiated
CIF_TEMP xdd The temperature (K) at which the data were collected
CIF_PRES xdd The pressure (kPa) at which the data were collected
CIF_Z str Formula units per unit cell
CIF_SUM_FORMULA str Chemical formula of the unit cell
CIF_CRYSTAL_SYSTEM str Crystal system of the structure
CIF_t0, CIF_t1, CIF_t2‡ xdd Time-of-flight calibration constants
CIF_TH2_FIXED‡ xdd Detector angle for energy-dispersive data
CIF_DIFFRACTOGRAM_BLOCK_ID} xdd Fully specified block ID for a diffraction pattern
CIF_PHASE_BLOCK_ID} str Fully specified block ID for a crystal structure
CIF_DIFFRACTOGRAM_TEXT xdd Free-text entry in the data block containing diffraction data
CIF_PHASE_TEXT str Free-text entry in the data block containing structure data

† ‘xdd’ is the TOPAS keyword meaning X-ray diffraction data. In an input file, the xdd scope contains the diffraction data
and all crystal structures relating to that diffraction data. ‘str’ is the TOPAS keyword meaning ‘crystal structure’. In an input
file, the str scope contains all crystal and micro-structural parameters for a single crystallographic phase. ‡ Must have
values set. § Takes the values "step", "cont" or "fixed" for step scan, continuous scan or stationary detector,
respectively. Should be set for constant-wavelength data. } Will override any automatically generated block IDs.
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Figure 9
Example uses of the CIF output macros. (a) Out_pdCIF: (i) Simple, single diffraction pattern refinement with one crystal structure of interest and an
impurity. (ii) Fitting data from two different synthesis methods, with each containing a different number of structures. (iii) Sequential refinement of in
situ diffraction data. (b) Out_pdCIF_multi: (i) Combined refinement of two crystal structures using X-ray and neutron data. (ii) Sequential
refinement of in situ diffraction data with two crystal structures across three diffraction patterns.



different identifier which is used as part of the block ID of

each constituent structure and diffraction pattern to ensure

that it is unique.2 Each structure must also be given a unique

identifier to assist in the generation of a block ID and to

number each phase in the HKL lists. The method by which the

detector was scanned when collecting data should be given:

"step", "cont" or "fixed" for step scan, continuous scan

or stationary detector, respectively (this is automatically set

for TOF or EDXRD data). The date and time at which data

collection was initiated should be specified. If the diffraction

data were collected under non-ambient conditions, then the

temperature (in K) and/or pressure (in kPa) must be defined

in each xdd. The number of formula units per unit cell can be

set in each structure if the user wishes to output the molecular

weight. The sum formula and crystal system of each structure

can also be specified. If time-of-flight neutron data are being

analysed, then the three calibration constants, such that TOF =

t0 + t1d + t2d2, must be given. If energy-dispersive data are

being analysed, the 2� angle, in degrees, of the detector must

be given. It is also possible to fully specify the block ID for

diffraction patterns and structures if you do not wish to use the

automatically generated IDs.

Some examples of how these macros could be used are

given in Fig. 9. The filename should have no spaces, each

structure must have a phase name and space group defined

with no spaces. In each case, underscores can be used in lieu of

spaces. If the same phase appears in more than one diffraction

pattern then the same phase name should be used.
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2 This identifier should be a unique numeral which changes with each
diffraction pattern, group of diffraction patterns or structure. CIF_ID is
automatically set in the cases of a single xdd refinement, a single multi-
refinement, a sequential refinement using the #list directive, and
refinements using Bruker RAW files and the range keyword. CIF_ID must
be manually set in each xdd, or group of xdds, in input files containing many
xdds, such as parametric refinements. See the Out_pdCIF_xdd_setup

macro for implementation details.
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