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In the analysis of neutron scattering measurements of condensed matter

structure, it normally suffices to treat the incident and scattered neutron beams

as if composed of incoherent distributions of plane waves with wavevectors of

different magnitudes and directions that are taken to define an instrumental

resolution. However, despite the wide-ranging applicability of this conventional

treatment, there are cases, such as specular neutron reflectometry, in which the

structural length scales of the scattering object require that the wavefunction of

an individual neutron in the beam be described by a spatially localized packet –

in particular with respect to the transverse extent of its wavefronts (i.e. normal

to the packet’s mean direction of propagation). It is shown in the present work

that neutron diffraction patterns observed for periodic transmission phase

gratings, as well as specular reflection measurements from patterned thin films

with repeat units of the order of micrometres, can be accurately described by

associating an individual neutron with a wave packet and treating a beam as a

collection of independent packets. In these cases, accurate analysis requires that

the transverse spatial extent of a neutron packet wavefront be accounted for in

addition to the angular divergence of the beam that is characterized by a

distribution of packet mean wavevector directions. It is shown how a measure of

the effective transverse spatial extent of the neutron packet – over which its

wavefronts are of sufficient uniformity to produce coherent scattering – can be

determined by employing reference diffraction gratings and patterned thin films

of known structure and composition.

1. Introduction

Information about the compositional depth profile of a

layered thin-film structure can be obtained by measuring the

specular reflection of neutrons for which the momentum

transfer is normal to the surface or interfaces. Such

measurements have proven to be valuable in structural studies

of both hard and soft condensed matter, including materials of

interest in physics, chemistry and biology. Nonetheless, in the

specular condition this profile represents, as a function of

depth, a material density averaged across a certain area in a

plane perpendicular to the surface normal. If an inhomoge-

neous density distribution exists in plane, not only will off-

specular scattering occur concurrently but a full analysis of the

specularly reflected component will require a knowledge of

(1) the degree to which the phase across a given area of an

incident neutron wavefront is uniform and (2) the nature of

the in-plane inhomogeneous density distribution – including

the different types and sizes of material regions or domains in

comparison to the size of the projected neutron wavefront. As

a consequence, the treatment of an incident neutron wave-

function as a plane wave possessing constant phase over an

infinite lateral extent is not necessarily a valid approximation.

ISSN 1600-5767

Published under a CC BY 4.0 licence

https://creativecommons.org/licences/by/4.0/legalcode
http://crossmark.crossref.org/dialog/?doi=10.1107/S160057672200440X&domain=pdf&date_stamp=2022-06-23


The purpose of this paper is to clarify the distinct roles that

the transverse spatial extent of an individual neutron wave-

function and the angular divergence of a beam composed of

such independent neutrons play in neutron reflectometry. In

the following sections, we characterize the neutron in a wave

packet picture. We consider how, for example, instrument

components such as apertures can simultaneously define the

angular distribution of neutron packet mean wavevectors in a

beam (geometrical collimation) and shape individual neutron

wavefunctions (in particular the transverse coherent extent of

a packet wavefront). The problem of determining and

accounting for the effective transverse coherent extent of a

neutron wavefront – specifically the area over which the

wavefront is of sufficient uniformity to give rise to coherent

reflected waves – is then addressed. (The role of longitudinal

coherence, as defined by the fractional uncertainty in the

magnitudes of packet wavevectors, is of secondary importance

to the specular reflectivity processes considered herein and

will only be mentioned peripherally.)

We acknowledge at the outset the pioneering work of

Zeilinger, Treimer and others (e.g. Zeilinger et al., 1988;

Treimer et al., 2006), which clearly demonstrated the impor-

tance of the coherent transverse extent of a neutron wavefront

in diffraction measurements. For example, in single- and

double-slit measurements performed by Zeilinger et al. (1988),

a special instrumental design employed a prism and slit

apertures at sufficient distance to prepare a relatively planar

wavefront simultaneously with the creation of an extra-

ordinarily narrow beam angular divergence – equivalent to

contracting an extended source width almost to a point. In

these experiments, coherent transverse wavefront widths of

100 mm or more were obtained. One of the principal objectives

of the work we report here is to show how packet wavefront

widths can be empirically determined for more general

instrumental configurations: that is, for those instrumental

arrangements in which the incoherent distribution or collec-

tion of packet mean wavevectors present in a beam – asso-

ciated with a geometrical angular divergence – is comparable

in size to and coexists with each of the coherent distributions

of basis wavevectors contained in every individual neutron

wave packet in that beam. We treat the effects of the distri-

bution of packet mean wavevectors in a beam composed of a

collection of independent packets separately from those which

depend on the size and shape of an individual packet.

However, the shaping of a wave packet is a relatively

complicated process. Instrumental components such as

mirrors, slit apertures and monochromating crystals all

contribute in unison to the form of the packet incident on a

sample being probed. Moreover, the original form of the

packet at its initial point of emission from a source is not

necessarily known. Thus, determining the detailed shape and

extent of a packet wavefront over which the phase is suffi-

ciently uniform to a specified degree can be difficult if not

practically impossible. Nonetheless, it is possible to obtain a

reasonable picture of the extent of packet spatial localization

to be expected through calculations that model the effect of

various instrumental elements, such as a slit aperture or a

crystal. Moreover, a practically useful measure of an effective

coherent transverse extent of a wavefront – over which the

phase is of sufficient uniformity to give rise to a coherently

scattered wave from a particular volume of a scattering object

– can be obtained empirically, through measurements that

employ known reference objects such as periodic diffraction

gratings or other patterned film structures.

In this approach, to directly measure the effective trans-

verse width of a neutron wave packet through the use of

reference gratings or patterned structures, the aim is not

necessarily to characterize a particular piece of graphite or

other specific instrumental component. Rather, the objective

is to demonstrate and develop a general procedure for

determining the transverse spatial extent of a packet produced

by the collective action of all of the components of any given

instrument.

We begin in Section 2 with a brief description of those

aspects of specular reflection which are pertinent to discus-

sions of packet transverse width in subsequent sections.

Section 3 gives a basic definition of a ‘free’ incident neutron

wave packet, introducing the notion of a beam of such indi-

vidual packets, and then a simple two-dimensional model for a

single wave packet. In Section 4, model calculations are

described which predict the packet width created in the

process of a neutron interacting with a typical slit aperture or a

microcrystalline block of a monochromator such as pyrolytic

graphite.

In Section 5, a measurement is described which demon-

strates the combined effects of an actual mosaic crystal

monochromator and a pair of slits in defining both geometrical

beam angular divergence and packet transverse width.

In Section 6, experimental approaches for determining the

transverse extent of a packet wavefront are examined. For one

method in particular, involving specular reflection from

patterned films, the effect of transverse wavefront width is

shown to be largely decoupled from beam angular resolution.

In Section 7, we consider a well known theory of partial

coherence developed for light optics, with references to well

known textbook treatments, with the aim of clarifying the

sometimes confusing issue regarding the differences between

plane-wave beams and beams of wave packets.

Section 8 very briefly places the earlier sections in a wider

space of standard quantum mechanics and is followed by the

Conclusion. Finally, there are two appendices. Appendix A

provides a description of the configuration of the neutron

reflectometer at the NIST Center for Neutron Research

(NCNR) on which measurements described in other sections

were performed. Appendix B provides a detailed working out

of the mathematics appropriate to the different source types

discussed in Section 7.

2. Specular reflection

The elastic, coherent, specular reflection of neutrons from

layered thin-film systems provides information about the

scattering length density (SLD) depth profile along the

mean surface normal, parallel to the wavevector transfer
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Q = kI � kF, where kI and kF are the mean wavevectors of the

incident and reflected neutrons, respectively. In principle, the

reflected neutron wave amplitude is related to the SLD

distribution normal to the surface by a Fourier transform if the

scattering is sufficiently weak (Born approximation) or

through the solution of the Schrödinger equation if the

interaction is stronger. In either case, the relationship is taken

to be one dimensional insofar as the SLD can be treated as

varying only along the surface normal. This condition natu-

rally applies to any system that is perfectly homogeneous

along any direction perpendicular to Q – designated as being

‘in plane’ – but can also be well approximated by systems

possessing in-plane density variations which are sufficiently

small that any non-specular reflection is negligible. In the

latter case for which in-plane SLD variations do exist, the SLD

obtained at a given position along the normal through spec-

ular reflection measurements corresponds to the in-plane

average at that point.

In the Born approximation for specular reflection, where

both the incident and reflected neutron wavefunctions are

taken to be plane waves, the reflection amplitude rBA(Q) [the

measurable reflectivity is given by |rBA(Q)|2] can be written as

rBA ¼ ½4�=ðiQÞ�
Rþ1

�1

h�ðx; y; zÞixy expðiQzÞ dz: ð1Þ

� is the SLD, Q is the wavevector transfer along the sample

normal (which is taken to be parallel to the z axis) and

h�ðx; y; zÞixy ¼ ð1=AÞ
RþX=2

�X=2

RþY=2

�Y=2

�ðx; y; zÞ dx dy ¼ �ðzÞ; ð2Þ

where A = XY is the area over which an incident neutron

wavefront interacts. It can be rigorously shown that this

coherent averaging applies to scattering described by exact

solutions of the one-dimensional Schrödinger wave equation

as well. (As a related example, it is also straightforward to

show that, for a given hkl reflection from a periodic crystal

structure, each of the atomic planes contributing to that

reflection – all of which are perpendicular to the corre-

sponding reciprocal lattice vector and wavevector transfer –

has an effective scattering density proportional to the average

scattering amplitude of all the atoms lying in that particular

atomic plane.) Note that, in both the Born approximation and

the Schrödinger wave equation formalism, the neutron

wavefunctions are typically taken to be plane waves of infinite

spatial extent.

In practice, the theoretical representation of a single

neutron wavefunction as an ideal plane wave does not allow

for a satisfactory treatment of specular reflection in all

instances. One problematic case in particular involves specular

reflection from certain types of surfaces or interfaces posses-

sing in-plane inhomogeneities. A more accurate description of

a freely propagating neutron is that of a quantum particle

associated with a spatially localized wave packet possessing

wavefronts of finite transverse extent, as will be considered in

subsequent sections below. Consequently, a full analysis of

specular reflection crucially depends on the length scale of any

in-plane material SLD variations which might exist in relation

to the actual transverse coherent extent of the neutron

wavefront.

As a simple example, consider an inhomogeneous in-plane

density distribution that is made up of only two distinct types

of homogeneous regions or domains, each type having one of

two different values of in-plane SLD, say �A1 and �A2. We

assume that the reflecting material surfaces as well as the

neutron wavefronts are perfectly flat. Then the finite trans-

verse area of an incident neutron wavefront may or may not

be projected onto both types of material regions simulta-

neously, depending on the relative sizes of wavefront and

domains – as is schematically illustrated in Fig. 1. If the

projected wavefront area over which the phase is sufficiently

uniform to give rise to a coherently reflected wave is smaller

than one of the two different types of regions and is incident

entirely within that region, then the contribution to the

reflected wave amplitude will be determined by the corre-

sponding value of SLD, i.e. either �A1 or �A2. In the limiting

case where the projected transverse area of the incident

neutron wavefront is much smaller than the area of either

material region ‘A1’ or ‘A2’, the resultant specular reflectivity

|r(Q)|2 is given by

jrðQÞj2 ¼ fA1jrA1ðQÞj
2
þ fA2jrA2ðQÞj

2; ð3Þ

where fA1 and fA2 are the fractional material areas with

associated reflectivities |rA1(Q)|2 and |rA2(Q)|2, respectively.

On the other hand, if the neutron wavefront is projected over

two or more material regions, the contribution to the spec-

ularly reflected wave amplitude will correspond to the

weighted-area average (as covered by the projected wave-

front) of the two different in-plane values of SLD,

h�ðx; yÞixy ¼ fA1�A1 þ fA2�A2; ð4Þ

from which the specular reflectivity would then be computed.

Clearly, these two different limiting cases correspond to

completely different relationships between reflectivity and the

scattering length density distribution of the material system. In
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Figure 1
A simple example of an inhomogeneous in-plane density distribution that
is made up of only two distinct types of homogeneous region or domain,
each type having one of two different values of average in-plane SLD,
either �A1 or �A2, as discussed in the main body of text. Incident neutron
wavefronts of two different transverse sizes projected onto the material
surface are shown.



intermediate cases, depending upon how much is known about

the in-plane density distribution, it may not be possible to

interpret the specular reflection data accurately. It is therefore

essential to know the relevant length scales of neutron

wavefront and domain sizes of any inhomogeneous in-plane

material density distributions in order to analyze reflectivity

data properly. [Another specific instance in which the spatial

size of the neutron wave packet matters pertains to the

formation of orbital angular momentum (OAM) states of the

neutron. The transverse extent over which the phase of a

neutron packet wavefront is of the requisite uniformity

determines whether or not a suitably structured material

object of a given size can impart OAM to a neutron

(Cappelletti et al., 2018).]

3. A more general description of a neutron beam

For the analysis of a broad range of neutron scattering data

involving studies of condensed matter structure, it suffices to

treat the incident and scattered neutron beams as if composed

of non-interfering incoherent distributions of plane waves

with wavevectors of different magnitudes and directions.

These distributions (typically assumed to be Gaussian) are

conventionally taken to correspond to an instrumental reso-

lution. Nonetheless, in certain circumstances – in particular

that of specular reflection from surfaces or interfaces posses-

sing in-plane density distributions as described in the

preceding section – a description that accounts for neutron

wavefronts of finite width is necessary.

In reality, an incident neutron beam employed in a typical

reflectometer is more accurately described as an ensemble of

independent, non-interacting and freely propagating quantum

particles, each of which can be associated with a spatially

localized wavefunction or ‘packet’. This spatial localization is,

in general, in directions both transverse and parallel to the

packet’s mean propagation direction. (The packet also

possesses a temporal localization, although this is not of direct

relevance in the present work.) The packet contains wave-

fronts of finite transverse extent even though mathematically

it can be constructed, for example, from a coherent super-

position of planar basis states. The wave packet description for

freely propagating fermions is supported by observation,

perhaps most convincingly by slit diffraction measurements

with electrons at exceedingly low intensities (Tonomura et al.,

1989). Even when a single diffracted electron is detected at a

time, the characteristic interference pattern emerges after a

statistically meaningful number of events are recorded. [For

the diffraction grating measurements performed with highly

collimated and monochromatic neutrons reported in this work

(described in Section 6), at a nominal wavelength of 5 Å, a

free neutron travels 791 m in 1 s. Thus, at a typical detection

rate of one per second, the average spacing between conse-

cutive neutrons in the beam is 791 m. Since the path length

within the instrument is only approximately 2 m, there is most

often only a single neutron within the instrument at a time.

But even if that were not the case, the cold neutrons in the

beam are independent and non-interacting with one another

to an exceedingly good approximation.] Moreover, according

to standard quantum theory, there is rigorous justification for

describing a single neutron packet wavefunction as a pure

state, whereas a beam would then be composed of an

ensemble of individual neutron packets as a mixed state (e.g.

Cohen-Tannoudji et al., 1977; Merzbacher, 1961; Berk, 2014,

2018). The subsequent interaction of each neutron in the beam

with a condensed matter structure is then described by the

evolution of its associated wave packet according to the time-

dependent Schrödinger equation of motion. Each neutron in

the beam is treated separately, one at a time, in a manner first

emphasized by Dirac (1958). (On the other hand, for light

scattering, Maxwell’s equations for both electric and magnetic

fields need to be solved, requiring the introduction of many-

body photon states to describe the light produced, for

example, by a laser source.)

In summary, the wave packet describing the state of an

isolated neutron can be represented by a coherent super-

position of weighted plane wavefunctions. Moreover, a beam

of non-interacting neutrons can, in most practical cases, be

associated with a corresponding set of isolated wave packets.

In other words, a beam is formed from an incoherent (non-

interfering) ensemble of such isolated packets and is char-

acterized by a distribution of the directions (and, in general,

also magnitudes) of the individual packet mean wavevectors.

In this particular description, the ‘system’ is represented by a

single neutron interacting with a material object. Employing a

beam, on the other hand, corresponds to the repetition of such

single-neutron scattering experiments over a range of

different incident directions a statistically significant number

of times.

A schematic representation of such a neutron beam is

provided in Fig. 2(a), and Fig. 2(b) illustrates how such a beam

might be realized in a typical reflectometer consisting of a

mosaic monochromating crystal and a pair of slits. In practice,

this monochromating crystal (e.g. pyrolytic graphite or PG)

redirects incident neutrons (by energy-selective Bragg reflec-

tion) arriving from a temporally and spatially extended inco-

herent source on through a pair of slits, thereby creating a

nearly monochromatic, collimated beam. The mosaic crystal is

composed of perfect micro-crystal blocks which are randomly

oriented about a mean according to a Gaussian distribution

and which also possess an amount of translational disorder

relative to one another. The collection of blocks therefore acts

as a secondary incoherent, extended source wherein each

individual block effectively produces directed, individually

coherent, neutron packets. As will be discussed later, the

monochromating crystal affects the transverse and long-

itudinal coherence of individual packets considerably.

(After emanating from the primary source and subsequent

transport by a typical guide tube, neutrons incident on the

monochromator may have already acquired wavefunctions

with a similarly localized packet form owing to mirror reflec-

tion from the wavy surfaces of the guides – as discussed in

Section 6.2.1. But even if a neutron packet incident on the

monochromator were spatially extended enough to interact

with more than one mosaic block at a time, the disordered
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spatial relationship between the blocks makes it less likely to

result in a significant coherent interaction analogous to

double- or multiple-slit interference. To our knowledge, no

evidence for such interference exists.)

3.1. A general description of a wave packet

Consider next a more explicit description of a wave packet

associated with one of the constituent neutrons in a beam.

One mathematical representation of a free neutron wave

packet that is widely adopted is a function �(r, t) made up of a

weighted distribution of plane waves which may be written as

�ðr; tÞ ¼
R

�ðkÞ exp½iðk � r� !ktÞ� dk; ð5Þ

where r is the spatial coordinate, k is the basis-state wave-

vector, !k is the corresponding angular frequency, t is the time

and �(k) describes the distribution of the basis states. This

real-space representation and its momentum-space counter-

part are, as is well known, related by a Fourier transform. The

effective size and shape (in real space) of an individual

neutron wave packet – including the extent over which a given

wavefront has a uniform phase – is related to the coherent

superposition of momentum basis states forming the packet

through that Fourier transform. This connection can be

expressed (famously) as an uncertainty relation which applies

along each Cartesian direction, including the orthogonal

directions perpendicular (transverse) and parallel (long-

itudinal) to the mean packet wavevector. The intrinsic

uncertainties in position and momentum, corresponding to the

widths of the distributions in momentum �kj and coordinate

�rj for each rectangular component ( j = x, y, z), are related.

For the case of Gaussian wave packets (minimum uncertainty)

this well known relation is

�kj�rj � 1=2: ð6Þ

Although a single plane-wave basis state is a solution of both

the time-dependent and time-independent Schrödinger

equations of motion, in general the 3D wave packet of

equation (5) satisfies only the explicitly time-dependent

version.

Wave packets are shaped by the instrumental elements

through which they travel, which modify the Fourier compo-

nents of the packet. A wave packet, whether it be a photon or

a massive particle, is characterized by a longitudinal coherence

and a transverse coherence, parallel and perpendicular to the

packet’s direction of motion, respectively. The longitudinal

coherence depends on the length of the wave packet along its

direction of propagation and the energy spread involved in its

formation. This is determined primarily by the mono-

chromator. However, it is the transverse component that is the

principal subject of interest in the work reported here. The

transverse coherence is defined as the width over which the

wavefronts of the packet do not fall out of phase by more than

a certain specified amount. In general, we will label this

transverse coherence as �rT. As a specific example, for a wave

packet composed of a superposition of plane waves possessing

a Gaussian distribution of transverse wavevector components,

the transverse coherence is related to the corresponding

spatial distribution width. However, plane wavefronts that go

through a narrow aperture, for instance, will take on a sphe-

rical form as a result of diffraction that can be described by the

Huygens construction. In that idealized case, a simple defini-

tion of the transverse coherence can be derived as �/��
(Kaganer et al., 2001), where �� is the angular divergence

imposed by the slit. In general, an aperture will reduce the

transverse coherence, whereas diffraction from a crystal, as a

result of the phase requirements of the Bragg condition,

increases transverse coherence. Thus, an oriented micro-

crystalline monochromator, like highly oriented pyrolytic

graphite (HOPG), can generate a neutron beam which has a

certain degree of angular spread, but, by virtue of the

diffraction of individual neutron wave packets, each neutron

can possess a relatively large transverse coherence, as will be

discussed in following sections.
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Figure 2
(b) A schematic representation of the essential elements of a rudimentary
neutron diffractometer, upstream of the sample position (which would be
located to the right of the beam exit slit of width W defined by a pair of
opaque masks as indicated by the black rectangular blocks). A mosaic
crystal (e.g. pyrolytic graphite) directs incident neutrons (by energy-
selective Bragg reflection), originating from a temporally and spatially
extended incoherent source, through a pair of slits, resulting in a quasi-
monochromatic beam being incident on a sample. This beam is a
collection of individual neutrons, each with an associated wave packet (in
the drawing, �rT indicates a measure of the packet transverse spatial
width). The jth individual wave packet corresponds to one specific
neutron that is a member of a collection of N similar neutrons. Each
packet has a mean wavevector kM. (a) Another schematic illustrating how
the beam is characterized by a distribution of packet mean wavevectors
that define a geometrical angular divergence related to W / L =
tan(��BEAM). As is also shown, each packet is itself composed of a
coherent distribution of basis states with corresponding eigenvector
directions associated with a distribution characterized by a width ��WP

(where the subscript ‘WP’ indicates wave packet). The resultant picture is
one in which both coherent and incoherent distributions of wavevectors
corresponding to the individual neutron packets and beam, respectively,
coexist. The monochromator and pair of apertures together define both
the individual and collective properties of the packets and beam,
respectively, as described in the main text.



In addition to the contributions that instrumental elements

make to the preparation of a neutron state, however, the

ultimate form of the wavefunction also depends on other

fundamental quantum theoretical considerations pertaining to

how the packet is initially created and subsequently evolves in

space and time when associated with a freely propagating

quantum particle. At present, the actual shape, size and

composition of the packet embodied by �(k) for a neutron

immediately upon emission from a temporally and spatially

extended incoherent source (presumably formed in the

process) or exactly how it changes thereafter is not definitively

known. A considerable body of work on fundamental

concepts in quantum theory exists regarding possible theore-

tical descriptions of spatially localized wavefunctions and the

wave equations which govern them (e.g. Ghirardi et al., 1986;

Bassi et al., 2013). This work introduces stochastic and

nonlinear elements to a new dynamics that addresses the

measurement problem and collapse of the wavefunction,

which the Schrödinger equation does not, yet approaches the

latter description in some limit. [Other discussions of possible

neutron wave packet forms have been given (e.g. Utsuro &

Ignatovich, 2010).]

Nonetheless, even if the exact form of the function

describing the neutron packet were known, the solution of

scattering problems involving wave packets in more than one

dimension is significantly more complicated. Relatively few

wave packet treatments of neutron scattering have been

applied other than for theoretical work involving one-

dimensional models (e.g. Berk, 2014, 2018; Dimeo, 2014). So,

for practical reasons, it is necessary to adopt a simpler

description of a packet wavefunction that preserves the spatial

localization with wavefronts of limited transverse width and is

also a reasonably good stationary-state solution of the time-

independent Schrödinger equation of motion.

3.2. A simple model wave packet

To describe the effect that the neutron wave packet’s finite

transverse spatial extent has on diffraction from material

objects, a model can be adopted that is simpler than a full

three-dimensional packet yet nonetheless preserves the

essential consequences of a finite transverse spatial size. Short

of describing the neutron wavefunction as a more realistic –

but far more complicated – wave packet localized in all three

dimensions, it is possible to obtain a wavefunction that is

partially localized in the two orthogonal transverse directions

(perpendicular to the mean propagation wavevector) but

which is also a stationary-state solution of the time-indepen-

dent Schröoedinger equation. (Explicit time dependence is

not of direct significance since only elastic scattering from

static systems is being considered, i.e. no time-dependent

potentials or fluctuations are involved. Such a wavefunction

can be constructed by a suitable superposition of wavevector

directions about the x axis of propagation (i.e. a distribution of

y and z components) such that the magnitudes k of all the

component wavevectors are equal – that is, k2 ¼ k2
x þ k2

y þ

k2
z ¼ a constant value. For appropriate distributions, say

Gaussian, of y and z components of the wavevector (with the

propagation direction along the x axis), the resultant wave-

form resembles a tubular-like wave localized in the y and z

directions but extended along the x axis. This simplified

waveform is similar (though not exactly identical) to the

‘quasi-monochromatic wave train’ solution of the approximate

paraxial wave equation employed in elementary treatments of

the diffraction of light (e.g. Hecht, 1998) and electrons. [A

similar approximation has been adopted in the description of

initial electron wavefunctions where orbital angular

momentum is consecutively imparted by an appropriate

device (Bliokh et al., 2017).]

The form of this wavefunction in two dimensions (which

suffices to illustrate the essential behavior of a packet in the

material to follow) – one transverse along the y axis and the

other longitudinal along the x axis – is given by

�ðx; yÞ ¼ CWP exp½�y2=ð2�2
yWP?Þ� expðikMxxÞ expðikMyyÞ: ð7Þ

Here, the factor CWP incorporates normalization constants

associated with the wavefunction and the Gaussian distribu-

tion of the transverse components of the wavevector. �yWP? is

the standard deviation of the width of the packet in real space

and may be related to a measure of �rT as defined in the

previous section. kMx and kMy are the x and y components of

the mean packet wavevector kM, respectively. (The inclusion

of the z axis is straightforward and similar in nature to the

treatment of the other transverse direction along y.)

In a typical example, an elongated packet waveform of this

type for an individual neutron might have a distribution of

plane-wave basis states corresponding to an angular range of

wavevector orientations of the order of " = 500 (2.424 �

10�5 rad) about the mean wavevector direction. In this case,

the constraint that k2 be a constant value (e.g. k = 2�/5 Å)

results in a magnitude variation of the longitudinal wavevector

component of approximately k(1 � cos") = 2.94 � 10�10 k,

whereas the transverse (perpendicular) component variation

is ksin" = 2.424� 10�5 k (or 8.25� 104 times larger). Another

way of expressing the condition for the formation of such an

elongated wave packet is to require that the magnitude of the

width of the distribution of transverse wavevector components

�k? � |k|, where k is along the longitudinal direction (the

distribution of the magnitudes of the wavevectors in a

‘monochromatic’ neutron reflectometer beam, �k/k, is typi-

cally 0.01). (Moreover, since the extent of longitudinal or

parallel localization of the packet, i.e. along the direction of

propagation, depends upon the details of the interaction time

with the moderator nucleus and any subsequent mono-

chromation such as may be caused by crystal diffraction or a

physical shutter device, the longitudinal packet dimension is

not of particular import for elastic interactions. Therefore, an

elongated packet function along the direction of propagation

is acceptable.)

For present purposes, we will assume that neutron wave-

functions possessing nearly flat wavefronts of truncated lateral

extent suffice to account for the essential effect of averaging

over a finite in-plane area of a specularly reflecting material.

That this is a reasonable assumption in practice is supported

by the types of waveforms typically produced by slits and
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perfect micro-crystal blocks as examined in Section 4. It will

also be assumed that the coherent superposition of the basis

wavevectors composing an individual neutron wave packet is

the same for all packets in the beam except that each packet

has its own mean wavevector, indicating the direction of the

neutron it describes.

4. Shaping a neutron wave packet within an instrument

Since the neutron optical elements of the instrument contri-

bute to the formation of a neutron packet wavefunction in

practice, it can be asked whether the type of simplified

wavefunction introduced in equation (7) is a reasonable

approximation. We therefore consider the form of the wave-

function that results from an interaction with a slit aperture

and a micro-crystal block.

4.1. Single-slit aperture diffraction

Consider first the waveform generated by a single-slit

aperture in two dimensions. We begin with an incident plane

wave generating a scattered intensity as observed in the far

field at a large distance S from the slit with S > W2/�, where W

is the width of the aperture. In this Fraunhofer limit, the

measured intensity at an angle �, relative to the incident

direction, is given by

Ið�Þ ¼ Ið0Þðsin �=�Þ2; ð8Þ

where � = (�W /�)sin� and � is the angle from the bisecting

perpendicular to the aperture at the center of the opening to a

line connecting the slit center to a point on a detecting plane

[I(0) represents the incident wave intensity; e.g. Hecht, 1998].

The square of the sinc function on the right-hand side of

equation (8) has a central maximum with an FWHM ��SSD

(the subscript SSD indicates single-slit diffraction) approxi-

mately equal to the first zero of sinc�, which is given by � =

arcsin(�/W).

However, it is of more practical interest to be able to

determine the single-slit diffraction pattern over a broader

range of distances and aperture widths. Neglecting higher-

order multiple scattering effects, a simple Huygens–Fresnel
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Figure 3
Intensity patterns (left-hand column) and the real parts of the diffraction amplitudes (right-hand column) from slit apertures corresponding to two of the
examples listed in Table 1. The neutron wavelength is taken to be 5 Å. The intensity patterns are plotted at a point of observation a distance S (0.5 m)
away from the aperture along the y axis, perpendicular to the direction of propagation of the wave incident on the slit. For the amplitude plots, the y axis
is also perpendicular to the incident beam direction, whereas the x axis extends a distance of five neutron wavelengths along the direction of propagation
back from the farthest observation point at a distance S (0.5 m). One measure of the distance �rT over which a given wavefront is uniform in phase to
within one wavelength can be determined by examining two consecutive wavefronts propagating along the x axis, as pictured in the upper right-hand
plot. Choose an arbitrary leading wavefront. Draw a curve (shown as blue) along that wavefront’s ridge of relative maximum amplitude. Next, construct
a straight line (shown as red) parallel to the transverse y axis through the central maximum (at y = 0.0) of the wavefront immediately following (to the
left). The x coordinates of either of the intersections of the blue curve and red line differ from that of the central maximum of the leading wavefront by
one wavelength. For the 10 mm slit, this measure corresponds roughly to that obtained from the first minimum of the intensity on either side of the central
maximum. The 10 mm-wide slit produces a pattern at 0.5 m that is in the far-field limit, while that of the 100 mm aperture is well within the near-field
region.



wavelet construction can provide a relatively accurate picture

of both the amplitude and intensity distribution of the wave-

form emanating from this single aperture over a significant

range of distances from the near-field Fresnel region out to the

far-field Fraunhofer limit. The results of such a Huygens–

Fresnel construction for a variety of pertinent aperture widths

and distances to a plane of observation are represented in

Fig. 3 and Table 1. [The diffraction of neutrons by slit widths of

the order of 100 mm was first conclusively demonstrated by

Zeilinger et al. (1988).] Considering the amplitude waveforms

on the right of the figure it is clear that the widths of the

wavefronts propagating outward from the aperture possess a

finite lateral extent over which the probability amplitude is of

significant magnitude and of uniform phase within one

wavelength. One measure of the lateral distance over which a

given wavefront is uniform in phase to

within one wavelength can be deter-

mined by examining two consecutive

wavefronts propagating along the x axis

as described in the caption for Fig. 3.

Note that the Huygens construction

of the wave diffracted through the

narrower 10 mm slit shown at the top of

Fig. 3 produces the curved surface of a

Gauss–Laguerre wave packet. On the

other hand, for the 100 mm aperture, the

wavefront is more planar over a certain

width. This difference corresponds to

being in the Fraunhofer as opposed to

the Fresnel zone. Consequently, the

criteria for defining the transverse

coherent extent �rT of the wavefront can be different to some

degree for the two cases.

Thus, even if the neutron wavefunction approaching the slit

is represented by a single plane wave, the interaction with any

aperture of finite size transforms the wavefunction into one

that is localized in space to a finite extent in a transverse

direction. And although the transverse width continues to

increase with distance from the aperture, as described by the

Fraunhofer diffraction formula, it remains of finite size at a

finite distance away from the aperture.

Unless the incident wavefront spans the width of a given

aperture, the standard single-slit diffraction pattern will not be

formed, although in some cases diffraction from one of the

edges of the masks defining the aperture may occur. But in

general, if the wavefront has a transverse extent less than the

width of the aperture, the aperture acts

primarily in the geometrical optics limit

to define the spatial and/or angular

range through which the mean wave-

vectors of individual neutron packets

emanating from an upstream source (be

it a point or extended) can pass. A pair

of slits in series can therefore also

define the angular divergence of a beam

of individual neutrons, each with its own

corresponding packet, as will be

discussed further in Section 5.

4.2. Diffraction by a perfect micro-
crystal mosaic block

The other basic neutron optical

element of the reflectometer consists of

a perfect micro-crystal block. The

monochromator device as it is drawn in

Fig. 2 is intended to represent a mosaic

crystal composed of an angular distri-

bution of perfect single-crystalline

blocks of finite dimensions (e.g. pyro-

lytic graphite) which selects and redir-

ects [via Bragg diffraction from the
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Table 1
Results of a Huygens–Fresnel (HF) construction for a variety of pertinent aperture widths and
distances to a plane of observation for diffraction of an incident plane wave of 5 Å wavelength by a
two-dimensional slit aperture.

The real part of the reflection amplitude as well as the intensity distribution at a plane of observation a
distance S from the aperture are plotted in Fig. 3 for two of the cases listed in the table.

W (Å) S (Å) �FWHM (Å) (intensity distribution) �rT (Å) �� (rad)

Slit width
Slit-to-detector
distance

Via HF
construction

Fraunhofer limit
(analytic)† HF amplitude ’ �/S

104 (1 mm) 0.5 � 1010 2.48 � 106 2.50 � 106 2.19 � 105 (21.9 mm) 5.0 � 10�4

105 (10 mm) 0.5 � 1010 2.53 � 105 2.50 � 105 2.18 � 105 (21.8 mm) 5.0 � 10�5

106 (100 mm) 0.5 � 1010 8.92 � 105 – 9.26 � 105 (92.6 mm) 1.8 � 10�4

105 (10 mm) 2.5 � 1010 1.25 � 106 1.25 � 106 4.63 � 105 (46.3 mm) 5.0 � 10�5

106 (100 mm) 2.5 � 1010 7.74 � 105 – 7.41 � 105 (74.1 mm) 3.1 � 10�5

† For the Fraunhofer limit, analytic yMIN ’ S�/W, which is approximately �FWHM.

Figure 4
Results of a Huygens–Fresnel calculation assuming a generic crystal 10 mm wide with 100 reflecting
atomic planes spaced 5 Å apart from each other, and with 1000 atomic source points per plane. The
wavelength of the radiation was taken to be 5 Å as well, and the distance between crystal face and
point of observation of the reflected wave was 0.5 m. This two-dimensional block of source points
was taken to be illuminated by plane waves in phase as though the Bragg diffraction condition was
effectively satisfied. As in the case of an aperture of the same width, the reflected wave has a well
defined lateral dimension which at 0.5 m from its source has a uniform wavefront (to within one
wavelength) over a lateral extent of approximately 22 mm – similar to that produced by the single
aperture of the same width. On the left is a plot of intensity versus position on a perpendicular
detection plane a distance 0.5 m away from the crystal. The horizontal axis of the wave amplitude
plot on the right is along the mean direction of propagation, covering a distance of approximately
five wavelengths up to the detection plane at 0.5 m at the right terminus. The vertical axis is along a
perpendicular direction, and the degree of shading indicates the relative amplitude of the reflected
wave.



(002) atomic planes] a fraction of the neutrons incident upon it

through the pair of downstream apertures. Consider the

limiting case where the transverse spatial extent of an indivi-

dual neutron wave packet that is incident on such a mono-

chromator is sufficiently small that it can only interact with

one perfect single-crystal mosaic block at a time. [The mosaic

blocks composing the monochromator are essentially inde-

pendent of one another because of their random orientations,

translations and sizes (this applies to both horizontal and

vertical directions in the nominal reflecting plane of the

monochromator). Although a relatively small degree of order

may exist between two or more individual blocks, resulting in

constructive interference if they are illuminated simulta-

neously by the same incident wavefront, this is not observed to

be a predominant effect in practice. To a good approximation,

each block scatters coherently, whereas the collection acts as

an incoherent source.]

Each mosaic block (with dimensions typically of the order

of several micrometres; Gerlach et al., 2015) can then be

treated as a miniature monochromating device which – by the

coherent Bragg reflection process – helps to define the

transverse and longitudinal distributions of wavevector

components corresponding to the set of basis wavefunctions

that compose an individual neutron wave packet. In this case,

the mosaic blocks, which are not necessarily all of exactly the

same size or uniformly spaced from one another, are randomly

oriented according to a Gaussian distribution of angles about

a mean normal direction. Although each separate block is a

coherent reflector of single neutrons, collectively the ensemble

of blocks can be considered to be a spatially incoherent

secondary source of a beam of neutrons. This distribution of

mosaic blocks is analogous to a spatially incoherent distribu-

tion of apertures. But in contrast to the spherical waves that

emanate from point sources isotropically, the blocks radiate

over a limited range of preferred directions and with a quasi-

monochromatic bandwidth.

The finite in-plane dimensions of the stack of reflecting

atomic planes affects the distribution of basis-state functions

composing the reflected neutron wave packet and thereby the

area over which a component wavefront of the packet is of

uniform phase. As will be shown below, at sufficiently large

distances, in the far-field or Fraunhofer limit, and under

appropriate initial conditions, the packet wavefronts gener-

ated by a mosaic block are comparable to those of truncated

plane waves or the elongated monochromatic wave trains

discussed in Section 3.2.

A semi-quantitative picture of the scattering produced by a

single-crystalline mosaic block of given dimensions can be

obtained by performing the same type of Huygens–Fressnel

wavelet construction as was applied to the aperture in

Section 4.1. Wavelets are taken to emanate from each atomic

source point isotropically (multiple scattering processes are

neglected). For this simple model calculation, the single two-

dimensional block of atomic source points was taken to be

illuminated by plane waves in phase such that the Bragg

diffraction condition was effectively satisfied. Shown in Fig. 4

is the result of such a calculation assuming a generic crystal,

10 mm wide with 100 reflecting atomic planes (lines in two

dimensions) spaced 5 Å apart from each other, and with 1000

atomic source points per plane (or line in two dimensions). A

single wavelength of 5 Å was assumed, and the distance

between crystal face and point of observation of the reflected

wave was 0.5 m. The reflected wave has a well defined lateral

dimension, which at 0.5 m from its source has a uniform

wavefront (to within one wavelength) over a lateral extent of

approximately 22 mm – similar to that produced by a single

aperture of the same width. So it is expected that for typical

PG monochromators, the reflected neutrons have wavefunc-

tions with transverse dimensions of the order of tens of

micrometres at a distance of a metre or so away (this is

consistent with the diffraction measurements described below

and elsewhere; e.g. Treimer et al., 2006).

The reflected neutron wave amplitude from a given block is

a result of the constructive interference that occurs because of

the periodic structure of parallel atomic planes in that block.

Thus, the number of contributing reflecting planes can also

affect the transverse width of the wavefronts of the reflected

neutron packets. This effect can be examined by applying the

traditional methods employed to analyze the diffraction from

perfect and mosaic crystals where primary and secondary

extinction of an incident wave play a significant role. Such

considerations are beyond the scope of this article (further

discussion can be found elsewhere; e.g. Majkrzak et al., 2019;

Zachariasen, 1945).

Given the results of the calculations described above, a

reasonable practical approximation of a neutron wave packet

can be made on the basis of the 2D wave train function

introduced earlier, in which the wavevector magnitudes for all

plane-wave components are nearly the same, with wavefronts

that are nearly planar truncated sheets. The dimensions of

these finite-sized wavefronts can be empirically determined by

the two methods to be described in Section 6. Once an esti-

mate of the extent of the wavefront is made, analysis of

specular reflection data can be performed accordingly by

taking the finite transverse extent of the wavefront into

account.

5. Defining the beam angular divergence by a
collimating pair of slit apertures in series

The combination of a collimating pair of slit apertures and a

perfect crystal mosaic block can be regarded as the basic

components typically employed to prepare an incident beam

on a neutron reflectometer at a steady-state source.

In addition to the packet-shaping action of a slit via

diffraction, a pair of apertures in series can act in unison to

define the distribution of wave-packet directions within a

beam. If the aperture widths are sufficiently large that

diffraction effects are negligible, then the primary effect of the

apertures is to define a collective beam contribution to angular

divergence with an approximate FWHM �, where tan� = W /

L, W is the slit width and L is the distance between the pair.

As an example, for W = 1 mm, the diffraction width

predicted by the far-field Fraunhofer expression of equation
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(8) for � = 5 Å is ��SSD = 5.0 � 10�7 rad (2.865 � 10�5	),

whereas a 0.1 mm slit width would give 5.0� 10�6 rad (2.865�

10�4	). On the other hand, the geometrical angular widths

�� = arctan(W /L) as defined by a pair of apertures of the

same width W a typical distance L = 1500 mm apart are 6.67�

10�4 rad (3.82� 10�2	) and 6.67� 10�5 rad (3.82� 10�3	) for

W = 1 and 0.1 mm, respectively. Thus the fractional increase in

angular divergence caused by diffraction over that due to the

geometrical width is only approximately 0.075 and 7.5%,

respectively.

Note that there is no unique combination of W and L that

defines a particular geometrical angular divergence ��. In the

absence of appreciable diffraction broadening from the slits,

this geometrical angular divergence is constant with increasing

distance downstream at any point of observation. It can only

be meaningfully associated with the beam divergence arising

from a distribution of mean wavevectors of the individual

neutron packets composing a beam. Given the physical

description of the instrumental components that define the

beam and individual neutron wavefunctions presented above,

an accurate representation of the beam profile for an actual

instrument can be calculated.

According to the Huygens–Fresnel numerical calculation

discussed in the previous section, diffraction by a slit of width

0.025 mm for 5 Å-wavelength neutrons produces a wave train

with a transverse dimension that is roughly the same as the slit

width at a distance of 1 m away, assuming of course that the

wavefront of the incident packet was of sufficient planarity

and width to span the aperture in the first place. The diffrac-

tion broadening by such a slit is only several arcseconds

(
3.4400). This is negligible compared with the angular diver-

gence (more than 1	) defined by the width of the mono-

chromator source (approximately 25 mm) that illuminates the

first downstream slit roughly a metre away. Thus, we can, to a

good approximation, view the first (upstream) slit of the

collimating pair of slits in series as a uniform (in space and

angle) source which subsequently illuminates the second

(downstream) slit.

However, given the widths and distance between the slits

for the actual instrumental configuration used in the phase-

grating measurements to be described in Section 6 (and in

Appendix A), the geometrical angular divergence of a beam

defined by and emanating from the pair is 2.89 � 10�5 rad

(1.66� 10�3	 = 0.09950 = 5.9700). Thus the beam defined by this

pair of slits together has a geometrical angular divergence that

is comparable (roughly twice as large) to the diffraction

broadening associated with the downstream slit.

For the specific values described immediately above (and in

Appendix A), a numerical calculation of the beam profile

expected to be projected onto the detector line of the

instrument can be performed and compared with an actual

measurement. The results are shown in Fig. 5. In the calcula-

tion, the geometrical angular limits defined by the pair of slits

were taken into account and intensities – as given by the

standard Fraunhofer diffraction formula – from source points

across the width of the first (upstream) slit were summed.

In Fig. 5, the measured data are compared with the results

of two calculations, one that included both geometrical and

diffraction effects and another corresponding to what would

be expected for geometrical ray optics alone. The computed

curves are not fits but only scaled to the measured intensity. A

slightly larger slit width of 0.030 mm was found to be in better

agreement than the nominal value of 0.025 mm of the shim

stock spacer used to define the gap. This is likely to be due to

non-perfect alignment of the slits with respect to the vertical

axis and to imperfections in the machined edges of the 1 mm-

thick Cd masks, and possibly also due in part to mirror

reflection and refraction as well as diffraction from the mask

edges by packet wavefronts of insufficient lateral extent to

span both mask edges simultaneously.

To summarize, the width of the distribution of transverse

wavevector components of the basis states constituting an

individual neutron packet is related to the spatial transverse

width of the packet through the uncertainty principle of

equation (6). The angular divergence associated with the

collection of packets composing a beam, on the other hand, is

related to the width of the distribution of the corresponding

mean packet wavevector directions as defined by geometrical

constraints, e.g. by a pair of slits in series.

6. Measurement of coherent wavefront width

From the preceding discussion, it follows that it is natural to

distinguish between two different characteristics of a neutron

beam – one pertaining to a collective angular beam resolution

and the other to the transverse extent of each individual

constituent neutron packet’s wavefronts. But to do so in
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Figure 5
Numerical calculation (purple curve) of the beam profile expected to be
projected onto the detector line on an instrument as compared with an
actual measurement (points with error bars which represent � one
standard deviation and a corresponding confidence interval of approxi-
mately 68%). The computed curve is not a fit but only scaled to the
measured intensity. This calculation takes into account the affect of the
geometrical angular divergence (defined by the pair of slits) on a
summation of diffracted intensity patterns from the second slit down-
stream – as predicted by the standard Fraunhofer diffraction formula for
multiple source points across the width of the first (upstream) slit.
Another calculation, corresponding to what would be expected based on
a consideration of geometrical ray optics alone (blue curve), is also
plotted. The agreement in the case in which both geometrical and
diffraction effects are included is markedly better.



practice can be problematic since both the collective aspects of

the beam and the individual properties of each constituent

packet are defined to some degree by the very same instru-

mental devices such as slit apertures and single-crystal

monochromators.

Nonetheless, two ways to determine the effective transverse

spatial extent of the neutron packet are described here. One

method involves diffraction from gratings for which the

correlation length of the periodic structure has been inde-

pendently determined. In the other method, originally

suggested in earlier work (Majkrzak et al., 2014), the trans-

verse extent of a wavefront can be experimentally determined

through specular reflection measurements at glancing angles

from patterned thin films of known composition and structure.

New experimental data and analyses are presented here which

more precisely quantify both the advantages and limitations of

this method. Although this glancing-angle reflection method is

found to be largely independent of the distribution of packet

mean wavevector directions of individual neutrons in a beam

(geometrical angular divergence), it is susceptible to waviness

or deviations from perfect flatness of the surface of the

substrate (figure error) on which the film structure is depos-

ited, as will be discussed below.

6.1. Diffraction from phase gratings in near-normal trans-
mission

Consider a beam made up of neutrons with the 2D long-

itudinally elongated packet wavefunctions described above,

illuminating a phase grating at normal incidence (in trans-

mission geometry). For neutrons with a 5 Å nominal wave-

length, single-crystal silicon has a scattering length density

(2.1 � 10�6 Å�2) that produces a � phase shift over a distance

of about 30 mm. By etching a parallel set of grooves of this

depth with a uniform width and spacing and of rectangular

cross section into a plate of perfect single-crystal silicon, a

transmission phase grating can be fabricated. The number of

grating periods that simultaneously interact (i.e. coherently)

with an individual incident neutron depends on the transverse

extent of a neutron packet wavefront over which the phase is

sufficiently uniform. For example, if the wavefront uniformly

spans a width on a �-phase-shift grating equivalent to N

periods, the diffracted intensity IPG in the far-field or Fraun-

hofer regime depends upon N directly as given by

IPG ¼ 2I0ðsin �=�Þ2½sinðN�Þ= sin ��2ð1� cos�Þ: ð9Þ

Here I0 is the incident intensity, and � = (ka/2)sin� and � =

(kb/2)sin�, in which b is the groove width, a is the grating

spacing or period, and k = 2� /� (k and � are the nominal

neutron wavevector and wavelength, respectively). The angle

� is defined similarly to the angle of diffraction for the case of a

single slit. Note that equation (9) is explicitly for the case

where the neutron wavevector is exactly perpendicular to the

plane of the grating. For a beam composed of packets with a

distribution of mean wavevector directions, i.e. with a

geometrical angular divergence, the intensity contributions,

properly weighted according to the particular distribution (e.g.

Gaussian), must be summed over the range of incident angles

in that distribution. For relatively narrow angular distribu-

tions, the center of the diffraction pattern corresponding to a

given incident angle is, in the small-angle approximation,

effectively shifted from that for normal incidence by an

amount approximately equal to the difference in the given

angle of incidence from the normal, thereby causing a

smearing of the observed diffraction pattern. Fig. 6 shows

diffraction patterns calculated for a model �-phase-shift

grating with equal column and trough widths at a 5 Å neutron

wavelength. (Although not shown in Fig. 6, a plot of IPG versus
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Figure 6
Diffraction patterns calculated for a model �-phase-shift grating with
equal column and trough thicknesses at a 5 Å neutron wavelength. One
set of patterns corresponds to coherent contributions from two grating
periods (top) and the other set to contributions from four (bottom). The
period of the grating is 2.4 mm. Assuming that the grating itself is
perfectly uniform, the number of coherently contributing periods then
depends on the transverse width of the neutron wavefront over which the
phase is of the requisite uniformity. The geometrical angular divergence
of the incident neutron beam – which corresponds to a distribution of
transverse components of packet mean wavevectors – determines how
well the features of the pattern are resolved. Both figures include cases
for zero-beam angular divergence (red lines) and two other finite values
(3.6 and 7.20 0, green and blue lines, respectively) convoluted with the
natural pattern. Note that the general shape of the pattern is preserved,
while the widths and magnitudes of the principle and subsidiary
reflections are affected by the degree of the geometrical angular
divergence of the incident beam. This description in which a distinction
can be made between the effect of the intrinsic transverse width of an
individual neutron packet and that of the beam geometrical angular
divergence is supported by measurements reported here (which are to
follow) and those of others (Treimer et al., 2006).



� for N = 1 reveals that the positions of the

principal maxima on either side of the origin

are markedly shifted compared with those

for N > 1.) Table 2 compares the width of

the transverse wavevector component

distribution �kT WP associated with an

individual wave packet – possessing a

corresponding spatial transverse width

�rT WP – with that of the packet mean

wavevectors �kMT(BEAM) contained within

the beam [hereafter the subscript (BEAM)

will be abbreviated to (B), as, for example, in

�kBMT].

Fig. 7 shows a diffraction pattern

measured on the MAGIK (formerly AND/

R; Dura et al., 2006) reflectometer at the

NCNR from an 8 mm-period �-phase-shift

grating with equal-thickness rectangular

troughs and columns etched in single-crystal

silicon (Lee et al., 2009) at a nominal

neutron wavelength of 5 Å. The MAGIK

reflectometer was configured for typical

reflection measurements except for the special modifications

described in Appendix A. However, the grating diffraction

measurements were performed in transmission with the inci-

dent beam perpendicular to the nominal plane of the grating

(which was located at the sample position). Also plotted in this

figure is a calculated model diffraction pattern based on the

phase-grating formula of equation (9) for comparison. The

best agreement between the data and model was obtained for

a pattern with N = 3 – which is markedly different from that

for a pattern with N equal to either 2 or 4 (as can be seen by

comparing Figs. 6 and 7). The fit to N = 3 indicates that the

transverse coherent extent of an incident neutron wave packet

is approximately 24 mm for this instrumental configuration.

(We also considered other potential contributions, including

diffraction and mirror reflection from a single edge, but

concluded that they would produce relatively small effects. We

believed that we could not adequately distinguish between

such separate contributions at this level and, therefore, did not

take them into account in the final analysis to avoid the

possibility of over-interpreting the data.)

In related work by Treimer et al. (2006), diffraction patterns

were measured for single slits of various widths (including

100 mm) as well as for multiple-groove gratings (periods of 16

and 32 mm) with neutrons prepared on an ultra-small-angle

neutron scattering (USANS) instrument [nominal wavelength

of 5.248 Å using an HOPG(002) pre-monochromator and a

pair of seven-bounce channel-cut Si(111) crystals as mono-

chromator and analyzer]. The definition of the beam angular

divergence by channel-cut Si crystals instead of a simple pair

of slits results in a significantly cleaner beam, free from

spurious artifacts potentially caused by edge effects of the

masks used in our instrumental setup discussed above. In

Treimer et al.’s grating diffraction experiments, measurements

were performed at two different values of the incident beam

angular divergence – 1.4 and 5.700 FWHM. The diffraction
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Table 2
Comparison of the differences between the magnitudes of the widths of the transverse
wavevector component distributions associated with an individual wave packet and that of the
packet mean wavevectors contained in the beam.

N is the number of periods that a wavefront of width �rT WP would cover for a grating having a
2.4 mm repeat distance. The last column on the right gives the ratios of the FWHM of the packet
mean wavevector distribution �kMT(BEAM) divided by an individual packet’s component basis
wavevector distribution �kT WP. (The nominal neutron wavelength is 5 Å.)

Incident beam angular
divergence �� �kMT(BEAM) N �rT WP �kT WP �kMT(BEAM) /�kT WP

(rad) (	) (0) (0 0) (Å�1) (mm) (Å�1)

1.75 � 10�5 0.001 0.06 3.6 2.19 � 10�5 2 4.8 1.04 � 10�5 –
3.50 � 10�5 0.002 0.12 7.2 4.38 � 10�5 2 4.8 1.04 � 10�5 4.21

1.75 � 10�5 0.001 0.06 3.6 2.19 � 10�5 4 9.6 5.20 � 10�6 –
3.50 � 10�5 0.002 0.12 7.2 4.38 � 10�5 4 9.6 5.20 � 10�6 8.42

1.75 � 10�5 0.001 0.06 3.6 2.19 � 10�5 30 72.0 6.90 � 10�7 –
3.50 � 10�5 0.002 0.12 7.2 4.38 � 10�5 30 72.0 6.90 � 10�7 63.5

�rT WP �kT WP = 1/2 or �kT WP = 1 / (2 �rT WP), �kMT(BEAM) = kM sin(��), and �� is the FWHM of the angular
divergence distribution of the incident beam.

Figure 7
Diffraction pattern measured (symbols with error bars which represent �
one standard deviation and a corresponding confidence interval of
approximately 68%) from an 8 mm-period �-phase-shift grating with
equal-thickness rectangular troughs and columns etched in single-crystal
silicon at a neutron nominal wavelength of 5 Å. Also plotted in this figure
is a calculated diffraction pattern based on the phase-grating formula of
equation (9) and assuming an incident illuminating beam exactly as
described in the preceding section for the pair of slits which resulted in
the profile of Fig. 5 (the phase grating was located 495 mm away from the
second downstream slit) – that is, both geometrical and diffraction effects
in forming the beam of wave packets incident on the grating by the pair of
slits were taken into account. In the computed phase-grating diffraction
pattern, both the distribution of geometrical angles in the incident beam
and the transverse dimension of an individual neutron packet wavefront
were included. The model calculation was not a fit to the data but only
scaled to the measured intensity. The best agreement between the data
and model was obtained for N = 3 and for a slight curvature of the grating
substrate amounting to about 2.65 � 10�5 rad (5.470 0). (This bending
might alternatively be attributed to a curvature of a neutron packet
wavefront – which was originally taken to be perfectly flat but limited to a
24 mm finite lateral extent.) The general agreement between measure-
ment and model calculation is good, although details in the wings are not
resolved. This is likely to be due to relatively small effects involving
mirror reflection, refraction and diffraction from the mask edges of the
slits defining the incident beam.



pattern features were found to be better resolved at the tighter

angular resolution of the beam, as would be expected from the

description of a beam of neutrons that we have presented

above. Moreover, it was observed that the diffraction patterns

obtained in their experiments could be fitted to a high degree

of accuracy assuming a transverse extent of the neutron

packet wavefront of 80 mm FWHM, irrespective of whether

the angular spread of the beam was 1.400 (2.33� 10�20 = 3.89�

10�4	 = 6.79 � 10�6 rad) or about four times larger at 5.700

(2.76 � 10�5 rad). If the distribution in the transverse wave-

vector components of an individual neutron wave packet were

to be attributed to these beam geometrical angular diver-

gences ��, a transverse wavevector distribution subsequently

computed from �kT = k�� would predict transverse wave

packet widths only of the order of �rT = 6.15 and 1.51 mm,

respectively, via the uncertainty relation �kT�rT = 1/2

[equation (6)]. This would clearly be at odds with the

experimental finding of 80 mm for the transverse extent of the

neutron packet wavefront. The evidence is consistent with

there being two distinct distributions – one being that of the

mean wavevector directions of all of the neutron packets

composing the incident beam and the other a distribution of

transverse wavevector components associated with the

coherent superposition of momentum basis states that form a

single neutron packet wavefunction.

The difference between the transverse coherent extent of

the packet determined by our experiment and that in the work

of Treimer et al. (2006) is presumably due to the details of the

manner in which the incident neutron packets were prepared

in the respective instruments on which the measurements were

performed.

6.2. Specular reflection from a patterned film structure at
glancing angles of incidence

Normally, in scattering studies of ordered systems, knowing

the resolution of the instrument establishes limits on the scale

over which the correlations between structural features in a

given material can be assessed. Conversely, a known correla-

tion in a periodic sample can be used as a measuring tool to

infer the transverse coherence extent of a neutron packet

wavefront as described, for instance, in Section 6.1. However,

there is another type of measurement that can be sensitive to

the extent over which the phase of a wavefront is uniform

(Majkrzak et al., 2014). Through specular reflection at glancing

angles of incidence, the structure and composition of a

material object such as a patterned thin film on a flat surface

can be tailored to serve as a probe of an individual wave

packet’s transverse spatial extent.

As already discussed, the spatial extent over which the

wavefront is sufficiently uniform is a fundamental quantity in

determining the nature and degree of the coherent scattering

that is possible from a given object. Fig. 8 schematically

represents a wave packet similar in form to the elongated

wave train described earlier but of rectangular cross section

(conceptually useful as a simple image of successive wave-

fronts of constant phase), interacting with a planar sample of

inhomogeneous SLD (two values, �A and �B). This image

shows that, for elastic coherent specular scattering, the

distance on the scattering surface that a wavefront of constant

phase successively interacts with (i.e. along the horizontal axis

in Fig. 8) is proportional to its transverse dimension �rT

projected onto a length L across the surface. For a mean

wavevector kI making a glancing angle �,

�rT ¼ L sin �: ð10Þ

The other, orthogonal, width of the wavefront (along an axis

perpendicular to the plane of the figure itself) intersecting the

scattering surface is not geometrically enhanced but is equal to

whatever the packet width is in that direction.

Recalling equation (2) and earlier discussion, the effective

SLD for the area of the sample seen by the packet with a

transverse dimension �rT is the average density within the

projected in-plane area, i.e. a weighted area average of �A and

�B (pictorially, some combination of blue and red ) some

shade of purple). Note that this average SLD pertains only to

any resultant specular scattering [i.e. where the wavevector

(and momentum) transfer is strictly perpendicular to the mean

surface normal]. (Non-specular scattering can also occur at

other angles but is not of relevance to the present discussion.)

Conversely, if the projected length L were sufficiently less than

the dimensions of the areas corresponding to a single scat-

tering length density, either �A or �B, then the specular scat-

tering would be observed to be a weighted incoherent sum of

two independent reflected intensities, each associated with one

or the other separate homogeneous region of SLD.

It has been previously demonstrated that patterned thin

films of known structure (e.g. stripes) can be used to infer

�rT for neutron wave packets (Majkrzak et al., 2014, and
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Figure 8
Schematic representation of a wave packet of rectangular form
interacting with a planar sample of inhomogeneous SLD in plane (two
values, �A and �B). This picture illustrates how, for elastic, coherent,
specular scattering, the area of the scattering surface that a wavefront of
constant phase interacts with along the horizontal axis in the figure is
actually its transverse dimension �rT projected a length L across the
surface. The other, orthogonal width (along an axis perpendicular to the
plane of the figure itself) in the plane seen by the wavefront is not
amplified but equal to whatever the packet width is in that direction. The
lower edge of the jth wavefront intersects the sample surface first, on the
left, and then the upper edge a distance L further along. Note that the
distances a to d and b to c are equal – applying the Huygens–Fresnel
wavelet construction shows that in the specular condition the incident
planar wavefront ab is exactly in phase with the reflected wavefront cd
(assuming a perfectly flat material reflecting surface).



references therein). Referring again to Fig. 8, suppose that the

materials of two different SLDs, �A and �B, are rearranged to

be of uniform (and equal) width and spacing along the hori-

zontal x axis to form an alternating periodic grating structure

(with continuous bars of material along the y axis perpendi-

cular to the plane of the figure). For the analysis to follow

involving specular reflection, the structure’s periodicity is not

essential. However, selection of a set of samples with regular

patterns of various periods does facilitate experimental

control of the sizes of the in-plane areas of different SLD

which are covered by the projection of an incident wavefront.

For elastic specular reflection at glancing angles of incidence

(typically a fraction of a degree for neutrons of 5 Å wave-

length), the wavevector transfer Q = 2kMsin�M = Qz is along

the z axis, perpendicular to the xy plane of the surface. The

mean wavevector of a neutron packet, kM, has an incident (I)

and final (F) direction, prior to and after scattering, respec-

tively, whereas the magnitudes of the two wavevectors are

equal since the scattering is elastic.

Now consider how the position of the critical edge at the

angle for total external reflection can be used as an indicator

of the projected coherent extent of neutron packet wavefronts.

As represented schematically in Fig. 9, if the projected

wavefront is of sufficient extent to effectively average over the

two SLD values, one associated with the grating bars and the

other with the troughs, then the specular reflection corre-

sponds to a coherent scattering process for a material with a

uniform SLD that is the average of that of the bar and trough.

In this case a single critical edge will be observed. If, on the

other hand, the widths of the bar and trough are each suffi-

ciently larger than the neutron wavefront’s projected dimen-

sion, then the observed specular reflectivity will represent the

area-weighted incoherent sum of the reflected intensities for

the bar and trough separately. In these circumstances, two

distinct critical edges are manifest. Also shown in Fig. 9 are the

principal experimental results summarizing earlier work

(Majkrzak et al., 2014). Relevant critical Qc values are given in

Table 3.

Nonetheless, an ensemble of similarly shaped packets

composing the beam can have different mean wavevector

directions relative to an average value, as characterized by the

angular range ��BM (which can be defined as the FWHM of

such a distribution). As originally depicted in Fig. 2 as

��BEAM , this instrumental beam

angular divergence ��BM is distinct

from ��WP which corresponds to the

intrinsic transverse wavevector uncer-

tainty �kT WP associated with an indi-

vidual packet. The instrumental beam

angular divergence corresponds to a

directional distribution of N mean

packet wavevectors kM, each of which

has a one-to-one correspondence to a

specific one of the N individual

neutrons and their associated state or

packet wavefunctions within the en-

semble composing the beam. Although

there exist two angular distibutions,

��BM and ��WP, only ��WP is directly

connected with the transverse coherent

extent of a neutron packet wavefront

�rT through the uncertainty relation

�kT WP�rT � 1/2. So how then might

the geometrical angular divergence of a

beam affect the determination of the

transverse wavefront width through the

analysis of specular reflection in the

vicinity of the critical angle as discussed

above?

Let us first briefly review what the

conventional measure of the instru-

mental resolution – in terms of wave-

vector transfer Q – is for a typical

neutron reflectometer along the z axis
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Figure 9
Summary of one of the principal results of previous work (Majkrzak et al., 2014) in which it was
originally demonstrated that the specular reflectivity about the critical edge for external mirror
reflection is a sensitive measure of the projected length of a neutron wavefront [after Figs. 7 and 15
of Majkrzak et al. (2014); reprinted with permission; copyright (2014) American Physical Society.]
(The quantity along the horizontal axes is Q = Qz, corresponding to the specular condition.) (a)
Model specular reflectivity curve corresponding to an effective coherent averaging of two different
SLDs. In the real-space schematic of the patterned thin-film structure in the inset, the material for
the periodic rectangular film structure is the same as that of the substrate and is taken to have the
SLD of Si; the troughs in between, on the other hand, are filled with material having the SLD of
ordinary Ni (bar and trough widths are equal). Only a single critical Q is observed. (b) Model
specular reflectivity curve corresponding to an incoherent sum of two independently scattering
areas of in-plane SLD in the film. Two distinct critical Q values appear in this case. Both of the
model reflectivity curves plotted in (a) and (b) were calculated for the case of perfect instrumental
resolution – i.e. a monochromatic beam with no angular divergence. On the right-hand side of the
figure are shown experimental specular reflectivity data for the two limiting cases (in addition to an
intermediate case) (Majkrzak et al., 2014).

Table 3
Values of the critical wavevector Qc for relevant materials – Qc

2 = 16��.

Material Qc (Å�1)

Ni (unmagnetized) 0.0217
Si 0.0102
50% Ni + 50% Si (by volume) 0.0170
50% Ni + 50% vacuum (by volume) 0.0154



normal to the plane of the grating structure. The fractional

uncertainty in Q is given by

�Qz=Qz ’ ½ð��BM=�BMÞ
2
þ ð��BM=�BMÞ

2
�
1=2; ð11Þ

where ��BM /�BM = �kBM / kBM, the subscript BM indicating a

beam mean or average of the individual �M or kM mean packet

values. The first term on the right-hand side of equation (11)

represents the spread in wavelength or wavevector magnitude

in the beam (��BM/�BM ’ 0.01 for a typical reflectometer),

and the second term describes the degree of geometrical

angular divergence in the beam. As discussed in the preceding

sections, it is the latter term that is of interest here. For a given

magnitude of kM, the range of Qz due to the beam angular

divergence, is, in the small-angle approximation, given by

�Qz ’ 2kBM��BM; ð12Þ

where ��BM is the geometrical angular

divergence of the monochromated

beam defined by a pair of slit apertures

of appropriate width and separation

distance such that ��BM is of the order

of a few minutes or seconds of arc (and

for glancing angles of incidence � of the

order of a few degrees at most). In

practice, the instrumental resolution at

the critical edge for total external

reflection as well as at the positions of

the first few Kiessig fringes (due to the

finite thickness of the film bars along

the surface normal) is well approxi-

mated by equation (11).

As will be demonstrated below, the

primary effect of increasing geometrical

angular beam divergence is to smear

out features of the reflectivity as a

function of Qz (e.g. the Kiessig fringes),

whereas the observation of either a

single or a double critical angle and

corresponding plateaus depends upon

the transverse coherent extent of an

individual neutron wave packet.

To better illustrate the different roles

that the angular resolution of the beam

and the finite transverse extent of an

individual neutron packet wavefront

have on the observed specular reflec-

tivity, model calculations were

performed for different instrumental

beam resolutions in the two limiting

cases: (1) the transverse dimension of

the wavefront is of sufficient extent to

completely average over a large enough

number of the bars and troughs of the

structure; and (2) the widths of the bar

and trough are each significantly larger

than the projected transverse extent of

the neutron wavefront (bar and trough

widths are equal). The substrate was taken to be silicon with

approximately 950 Å-thick nickel bars deposited on top, with

neutrons incident from vacuum. Fig. 10 shows plots for both

cases, the coherent average and incoherent sum, at two

extremes of instrumental angular beam divergence. These

plots clearly demonstrate that the beam angular divergence

and associated instrumental resolution along the z axis normal

to the film surface can be measured separately from the

transverse extent of the wavefronts within an individual

neutron wave packet. Fig. 11 shows in more detail the

reduction in the Kiessig fringe visibility with broadening beam

angular divergence.

It was found in earlier work (Majkrzak et al., 2014), by

measuring the specular reflectivity from a set of repeated-
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Figure 10
Model calculations of the specular neutron reflectivity as a function of Q for different beam angular
resolutions in the two limiting cases. In the left-hand plot the transverse dimension of the wavefront
is of sufficient extent to completely average over a large enough number of the bars and troughs of
the patterned film structure. Conversely, in the right-hand plot the transverse dimension of the
wavefront was significantly less than the width of a bar or trough (bar width = trough width). The
substrate was taken to be silicon with approximately 950 Å-thick nickel bars deposited on top.
Neutrons were taken to be incident from vacuum. Both plots show specular reflectivity curves at two
extremes of instrumental angular beam divergence, approximately 3.5� 10�5 and 1.5� 10�3 rad, at
a fractional wavelength resolution of 0.01. Despite a difference of a factor of over 40 in the angular
divergence of the beam and the consequential rounding of the critical edge and smearing of the film
thickness fringes at the broader angular divergences, an unambiguous distinction between the cases
for coherent averaging and incoherent sum can be made.

Figure 11
(Left) Model calculation showing a reduction in the Kiessig fringe visibility with broadening beam
angular divergence as predicted for the instrumental Qz resolution perpendicular to the patterned
film surface. (Right) Detail of the first two fringes. The geometrical beam angular divergence ranges
from 3.5 � 10�5 to 1.48 � 10�3 rad.



stripe film patterns over a range of different periods, that the

transverse dimension of a packet wavefront is of the order of

1 mm. In the present work reported here, more precise

measurements of the specular reflectivity were performed on

the 10 mm Ni bar width + 10 mm trough width = 20 mm period

grating as a function of beam angular divergence (the Ni bars

were 950 Å thick). The standard neutron reflectometer

configuration was employed, the essential components of

which are depicted in Fig. 2, except that a polycrystalline Be

filter was inserted between the HOPG(002) monochromator

and neighboring slit (to remove higher-order neutron wave-

lengths). A guide tube emanating from the liquid hydrogen

moderator cold source at the NCNR illuminated the PG. In

addition, however, the exit slit prior to the grating sample

(which would be located just to the right in Fig. 2) was posi-

tioned in close proximity to the sample to ensure that the

beam footprint was fully intercepted by the 75 mm-diameter

Si substrate upon which the patterned thin-film structure was

deposited, even at the largest beam divergences. A detector

was positioned downstream at a scattering angle equal to twice

the glancing angle of incidence.

Fig. 12 is a composite plot of the measured specular

reflectivities as a function of beam angular divergence (in all

cases ��BM /�BM ’ 0.01) for the 10 + 10 = 20 mm pattern with

the mean beam wavevector perpendicular to the grating bars.

Geometrical beam footprint corrections have not been made.

The slight downturn in reflected intensity below Q ’

0.0075 Å�1 approaching the origin is due to the substrate not

intercepting the entire footprint of the beam width (which

would require an infinitely long substrate at zero Q). Ideally,

the specular reflectivity for a homogeneous film layer should

plateau at nearly unit reflectivity below the critical angle.

However, for the patterned film structure here it dips to about

85% approaching the critical Qc because of competing non-

specular scattering from the periodic (but inhomogeneous) in-

plane patterned film structure. The presence of non-specular

scattering was confirmed in scans along the Qx axis as well as

in detector 2� (or scattering angle) scans at fixed sample or �
angles. This effect is essentially irrelevant to the specular

measurements regarding either beam angular resolution or

transverse packet dimensions. Moreover, as the angular

divergence of the beam increases, the location of the critical

angle becomes less well defined. (The values of the angular

beam divergence and the corresponding aperture widths are

given in Table 4.)

Although the angular divergence of the incident beam was

varied by more than a factor of 40, the individual neutron

wave packets in each of those different beams had a transverse

extent sufficient to effectively average over a significant

number of Ni stripes and intervening troughs, thereby

resulting in a single critical value of Qc corresponding to the

mean value of SLD. On the other hand, it is found that even

for the narrowest angular beam divergence the bars and

troughs of a stripe pattern with a 20 + 20 = 40 mm period (only

twice as long) are not averaged over.

Table 4 lists typical reflectometer slit widths and beam

angular divergences corresponding to the data shown in

Fig. 12, along with the geometrical angular resolution for the

incident beam. The geometrical angular widths (FWHM)

calculated from the slit widths and their separation distance

are typically consistent with measured values to within a few

(2–3) per cent accuracy for slit widths of approximately

0.1 mm or greater. Note that if the coarsest instrumental

(geometrical) beam resolution listed in Table 4 had been used

in the uncertainty relation [equation (2)] – which would not be

appropriate – it would predict the transverse coherent

dimension of an incident neutron wavefront �rT to be 1/

2�kBMT = 0.0269 mm [where �kBMT represents the distribu-

tion of transverse (subscript T) components of mean
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Figure 12
Composite plot of the measured specular reflectivites as a function of
beam angular divergence for the 10 + 10 = 20 mm patterned film structure
with the mean beam wavevector perpendicular to the grating bars. The
values of the angular beam divergence and the corresponding aperture
widths are given in Table 4. Geometrical beam footprint corrections have
not been made and the effect of non-specular scattering and other details
are discussed in the main text. Also, for clarity, error bars have not been
plotted: however, for the data collected at the three coarser values of
angular divergence, the uncertainty is approximately three times the size
of the symbols, whereas the uncertainty in the data corresponding to the
three finer divergences is about six times the symbol size. Although the
angular divergence of the incident beam was varied by more than a factor
of 40, the individual neutron wave packets in each of the different beams
had a transverse extent sufficient to effectively average over a significant
number of Ni stripes and intervening troughs, thereby resulting in a single
critical value of Qc corresponding to the mean value of SLD. Note that,
because of the rounding of the critical edge due to beam angular
divergence, a single common value of Qc is best shown by the nearly
identical intersection of all of the separate data sets at approximately a
value of half the maximum measured specular reflectivity.

Table 4
Typical reflectometer slit widths and geometrical angular divergences for
the incident beam corresponding to the data shown in Fig. 12.

The angular widths (FWHM) calculated from the slit widths and their
separation distance are typically measured to be consistent to within a few (2–
3) per cent accuracy.

W1 (mm) W2 (mm) L12 ��BM (rad) 2�kBMT ’ 2kBM ��BM (Å�1)

0.05 0.05 1429 3.50 � 10�5 8.80 � 10�5

0.10 0.10 1429 7.00 � 10�5 1.76 � 10�4

0.20 0.20 1429 1.40 � 10�4 3.52 � 10�4

1.00 0.10 1719 3.20 � 10�4 8.04 � 10�4

2.00 0.10 1719 6.11 � 10�4 1.54 � 10�3

5.00 0.10 1719 1.48 � 10�3 3.72 � 10�3



(subscript M) packet wavevectors in the beam (subscript B),

as defined in Table 4]. This value would be far too small to

average over the stripes and troughs of the 20 mm-period

structure and would be in contradiction to that indicated by

the data shown in Fig. 12. Once again, evidence shows that the

packet �rT is not obtained from the distribution of transverse

components of mean packet wavevectors, which defines the

geometrical angular divergence of the incident beam {where

�kBMT ’ kBM��BM and ��BM ’ arctan[(W1 + W2) / (2L12)]}.

Fig. 13 shows model specular neutron reflectivity curves

about the effective critical angle for a striped pattern with

neutron wavevector perpendicular to the stripes at two

extremes of instrumental beam resolution and where the

glancing angular dependence of the projection of �rT, given

by equation (10), was explicitly taken into account. To

generate the model specular NR curves in this figure, the one-

dimensional time-independent Schrödinger equation was

solved, employing plane-wave forms in such a way that the

effect of the range over which averaging is performed by a

wavefront of finite extent was accounted for separately.

The use of striped thin films to determine the transverse

extent of wavefronts has also been applied in a related but

different manner to study X-ray coherence properties (Lee et

al., 2011; Tolan et al., 1992, 1994; Salditt et al., 1994).

6.2.1. The effect of surface flatness on specular reflection
at glancing angles. In preceding sections, measurements of the

transverse width of the neutron packet wavefront via

diffraction from phase gratings at normal incidence as well as

by specular reflection from thin-film striped patterns at glan-

cing angles were described. As might have been noticed,

markedly different results between the two methods were

obtained. Using phase gratings, in the case of the work

reported herein as well as that of others (Treimer et al., 2006),

the uniform transverse extent of the packet wavefront was

found to be of the order of tens of micrometres, in contrast to a

value of about 1 mm or less in the method involving specular

reflection. The cause of this inconsistency was not immediately

obvious. After all, the instruments in all cases employed an

HOPG(002) pre-monochromator at nearly the same neutron

wavelength and with comparable geometrical angular diver-

gences of several seconds of arc, as described earlier.

Although the USANS instrument employed by Treimer et al.

(2006) also included a multiple-bounce channel-cut Si(111)

monochromator and analyzer, the calculations as well as the

measurements presented here indicate that the HOPG 002

reflection from a micro-crystal block alone probably suffices to

impart to the neutron packet a �rT of the order of tens of

micrometres.

The discrepancy is probably related to the flatness of the

supporting Si substrates on which the Ni-stripe thin-film

patterns are deposited. In the case of specular reflection from

thin-film patterned structures at low wavevector transfer

(glancing angles of incidence relative to the reflecting surface),

curvature of the underlying support substrate can affect the

measurement of the incident neutron packet �rT and distort

that of the specularly reflected one, as shown in previous work

(Majkrzak et al., 2014). On the other hand, for a phase grating

etched onto a silicon substrate and oriented perpendicular to

the incident beam in the transmission geometry, the geome-

trical or angular amplification by the sine function is

suppressed and the surface flatness requirement to maintain

uniform phase across an incident wavefront is thereby relaxed.

As a practical consequence for specular neutron reflecto-

metry studies of layered thin-film structures, the supporting

substrate can effectively become a limiting component of the

instrumental optics in that its curvature can restrict the surface

area over which an incident packet can engage in a coherent

specular scattering process. Moreover, the effect of surface

curvature in distorting the wavefronts

of a reflected packet can have conse-

quences – such as for reflection within

neutron guide tubes.

7. Measures of coherence

As we have shown, for a single neutron,

the region from which coherent elastic

scattering can occur is determined by its

wave packet. In particular, if the trans-

verse width of an incident wave packet

is uniform over the entire extent of a

material object, then the wave packet

can be coherently scattered as an inci-

dent plane wave would be. A beam can

be characterized as a collection of

individual wave packets of similar size

and shape associated with a distribution

of packet mean wavevector directions

that define a geometrical angular diver-

gence. This angular divergence repre-

sents a component of the instrumental
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Figure 13
Calculated model specular neutron reflectivity curves about the effective critical angle for a 10 + 10 =
20 mm patterned film repeat (Ni stripes 950 Å thick) with the neutron wavevector perpendicular to
the Ni stripes at relatively high (7.0 � 10�5 rad, left plot) and low (1.5 � 10�3 rad, right plot)
instrumental beam angular resolution, for different values of �rT. The glancing angular dependence
of the projection given by equation (10), i.e. �rT = L sin�, was explicitly taken into account. Despite
the marked difference in instrumental angular beam divergence, the transverse extent of uniform
phase of a neutron packet wavefront has a clearly distinguishable effect on the specular reflectivity
in the critical angle region in both cases.



beam resolution which limits the ability to resolve the intrinsic

structure of a diffraction or specular reflection pattern.

Both the collective distribution of packet mean wavevectors

in the beam and the set of basis wavevectors within each

individual packet limit what can be observed about the

intrinsic diffraction pattern for a given object. However, it is

the coherent superposition of basis states which compose an

individual packet wavefunction alone that determines the

transverse extent over which a particular wavefront is of

sufficiently uniform phase to interact simultaneously with

scattering material in a coherent manner (thereby creating a

superposition of reflection amplitudes).

In the following sub-section we consider a well known

theory of partial coherence developed for light optics – but

applicable to neutrons as well – with the aim of making clearer

the sometimes confusing issue regarding the differences

between plane-wave beams and beams of wave packets.

(Because of the relatively large number of different quan-

tities that are involved in this section and the associated

Appendix B, a glossary of variables and their definitions is

given at the end of Appendix B.)

7.1. Theory of partial coherence

A theory of partial coherence was developed originally for

ordinary light optics by Mandel & Wolf (1965, 1995) and

others and has since been applied to both X-rays (Sinha et al.,

1998, 2014; Kaganer et al., 2001) and neutrons (Gähler et al.,

1998; Felber et al., 1998; de Haan et al., 2008, 2010). It is

applicable to plane wave as well as paraxial type wavefunction

forms. One of the core tenets of this partial coherence theory

is to adopt a two space–time point correlation function as a

measure of coherence. Although such a measure of coherence

can be a useful tool for certain aspects of the analysis of

diffraction data, by itself, it can be incomplete or ambiguous in

regard to the measure of the spatial extent of a packet

wavefront over which the phase can be considered to be of

sufficient uniformity. This can be illustrated by a classic text-

book example of a two-dimensional incoherent line source of

plane waves (Born & Wolf, 1975; Hecht, 1998) compared with

that for wave packets – as will now be shown.

According to this theory of partial coherence, one way of

defining coherence is to quantify it through an association with

the cross correlation function

�A1A2 ¼ h�A1ðxA1; yA1Þ�
�
A2ðxA2; yA2ÞiEnsemble Average; ð13Þ

referred to as the mutual coherence function (MCF). The

MCF is constructed as follows. First, the wavefunction

�A1(xA1, yA1) for a single wave emanating from a given point

on an extended source of incoherent points of emission – as

shown in Fig. 14 – is evaluated at some distant point A1. The

product of this wavefunction and its complex conjugate eval-

uated at a different point A2 is then integrated over all

possible realizations of paths from the extended source

through points A1 and A2, thereby forming an ensemble

average for all the radiation emitted by the source. The inte-

grand is a measure of the phase difference between the two

points A1 and A2 for the wave from each of the possible source

points. The mutual coherence function incorporates the

statistical nature of the scattering process wherein the

diffraction pattern emerges after a sufficient number of scat-

tering (diffraction) events are recorded through the averaging

over all possible trajectories a neutron can take from a source

point to the diffracting object. The normalized form of the

mutual coherence function 	A1A2, named the complex degree

of coherence, is given by

	A1A2 ¼ h�A1ðx1; y1Þ�
�
A2ðx2; y2Þi

=½hj�A1ðx1; y1Þj
2
ihj�A2ðx2; y2Þj

2
i�

1=2: ð14Þ

The modulus of 	A1A2 can be shown (e.g. Born & Wolf, 1975)

to be identical to the fringe visibility V that would be observed

in an interference pattern (equivalent to Young’s two-slit

diffraction experiment) as given by

V ¼ ðIMAX � IMINÞ=ðIMAX þ IMINÞ ¼ j	A1A2j; ð15Þ

where (0  V  1). Fig. 14 illustrates pictorially what the

complex degree of coherence or fringe visibility measures. A

more comprehensive discussion of the derivation of the

mutual coherence function and complex degree of coherence

is given in Appendix B along with a glossary of the definitions

of the relevant quantities involved.
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Figure 14
Young’s experiment for creating an interference pattern in which two
apertures are illuminated with quasi-monochromatic radiation from a
temporally and spatially extended incoherent source (the waves from the
two source points shown are emitted independently of one another with a
random phase difference). In this two-dimensional illustration, the
radiation is emitted as circular waves from each point on a line. The
distances between source and apertures and between apertures and
detection line are great enough that the Fraunhofer or far-field limit is a
valid approximation for describing the scattering. At the location of the
apertures A1 and A2, the circular wavefronts are nearly planar. Any
single-aperture diffraction that might occur and modulate the two-slit
interference pattern plotted on the far right-hand side of the figure is
neglected since it is not relevant to the arguments made concerning the
role of the mutual coherence function and fringe visibility discussed in the
text (this is equivalent to both single-aperture widths approaching zero).
The red and green patterns of intensity plotted on the right correspond to
two point sources, one at the origin S0 and the other off the horizontal
axis of symmetry at S1, respectively. The blue curve results upon adding
these two single-source-point intensity distributions together. Because of
the translational offset between the two single-point patterns, a reduced
‘fringe’ visibility or diminished instrumental resolution results.



In brief, the principal information contained in 	A1A2 is the

degree to which the features of an intrinsic diffraction pattern

can be resolved when the diffracting object is illuminated by

an extended source of independent, incoherent emitters –

given that the wave emanating from each source point is by

itself perfectly coherent and for the case of plane waves of

infinite transverse extent. No explicit information about the

transverse dimensions of the wavefronts is contained in the

complex degree of coherence. The diffraction pattern which

would have been observed for two infinitesimally narrow slits

positioned at points A1 and A2 results from adding together

the diffracted intensities contributed by each one of the

separate and independent source points that are incoherently

related to one another. Nonetheless, as reproduced in

Appendix B, a ‘coherence length’ has been conventionally

defined in terms of the fringe visibility represented by the

function 	A1A2 as it approaches zero value.

For the specific example just given above, in which the

incoherent line source is of uniform emittance [see Appendix

B and the derivation therein leading to equation (31) or (16)

below],

[plane waves, uniform source]

	A1A2 ¼ sin½ð2sÞð2aÞ�=ðl�Þ�=½ð2sÞð2aÞ�=ðl�Þ�

¼ sinc½ð2sÞð2aÞ�=ðl�Þ�; ð16Þ

where 2s is the width of the line source, 2a is the distance

between points A1 and A2, l is the distance between the source

line and points A1 and A2 (see again Appendix B and Fig. 15

therein), and � is the wavelength of the radiation. Setting the

argument of the sinc function to � at which the first zero

occurs (and beyond which the features of the interference

pattern are significantly and progressively further diminished)

defines a limit on the maximum width the source can be before

resolution of diffraction pattern features is no longer possible.

This condition gives the relation (once again, consult

Appendix B for details)

ð2sÞð2aÞ�=ðl�Þ ¼ � ð17aÞ

or

2a ¼ 0:5�=��SOURCE; ð17bÞ

where ��SOURCE ’ s / l. Since k = 2�/�, the quantity

k��SOURCE is a measure of the width of the distribution

describing an uncertainty in wavevector components trans-

verse or normal to the mean direction of propagation. For a

given wavelength and aperture spacing and a fixed distance

between source and apertures, the fringe visibility decreases

with increasing source size – or, equivalently, with an

increasing range of the angular distribution of trajectories of

wavevectors directed from the source points towards the

apertures. That is, the greater the angular divergence of the

incident beam, the poorer the resolution of the features of the

interference pattern. To resolve a spatial dimension of the

order of 2a (the separation of the two points A1 and A2), the

instrumental beam resolution must be of the order of

k��SOURCE. The distance 2a is conventionally taken to be a

measure of coherence. But it is actually proportional to the

angular divergence of the beam and does not directly provide

any explicit information about the width of the wavefront.

Rather, it is implied by the assumption of a plane-wave form

that every wavefront emitted from any single point on the

extended source has a phase uniform to within one wavelength

at the location of the two points a distance 2a apart on the

diffracting sample object.

As a second example, suppose that the evaluation of 	A1A2

performed above is repeated for a similar incoherent source

which is identical in all respects except that, instead of a line

source of uniform emittance, the intensity distribution of the

point sources is Gaussian, centered on the origin of the y axis.

In this case it is straightforward to show that (see Appendix B

for details)

[plane waves, Gaussian source]

	A1A2 ¼ exp½�a2=ð2�2
SÞ�; ð18Þ

where �S is the standard deviation of the Gaussian source

intensity distribution representing the width of the source line

along the y axis, analogous to the half-width s in the previous

example above. As shown in Appendix B, �S = 1/�k, where �k

is the corresponding standard deviation of a Gaussian distri-

bution of transverse components of wavevectors and is

directly related to the beam angular divergence ��SOURCE and

wavevector k. In this case, the relationship between 2a and the

source width can be obtained, for instance, by setting 	A1A2 =

0.5 (at the HWHM) so that

2a ¼ ð2 ln 2=�Þð�=��SOURCEÞ;

2a ’ 0:88�=��SOURCE;
ð19Þ

which is comparable to the previous result given by

equation (17).

As one more (particularly revealing) example, suppose that

the truncated wavefunction representing the elongated wave

packet described by equation (7) is chosen for the calculation

of the complex degree of coherence 	A1A2 instead of a plane

wave. Again, assume the Gaussian distribution of emitter

strengths along the extended source line as in the example

immediately above. Now, however, each isotropic point

emitter which produced a nearly plane wave at A1 and A2 is

replaced by a micro-crystal block that – through the wave-

length- and angle-selective Bragg diffraction process –

produces a truncated plane wavefront [similar to that

described by equation (7)] directed through those two points.

Following exactly the same procedure as for the previous two

examples, it is found (refer, once again, to Appendix B for

calculation details) that

[wave packet, Gaussian source]

	A1A2 ¼ exp½�a2=ð2�2
SÞ�: ð20Þ

The term exp[�y2 / (2�2
yWP?)] of equation (7), representing

the coherent superposition of wave amplitudes for the basis

states of the individual neutron packet wavefunction, cancels

out of the expression for the complex degree of coherence.

What remains in equation (20) is an expression describing the
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incoherent distribution of mean wavevectors in the beam,

which corresponds to the instrumental angular divergence.

This expression is equivalent to that obtained for the plane

wavefunction leading to the result given by equation (18). This

result is consistent with what the complex degree of coherence

and fringe visibility represent, as discussed earlier. No infor-

mation about wavefront width, explicit or otherwise, is

contained in 	A1A2.

On the other hand, the mutual coherence function �A1A2 –

which is essentially the un-normalized complex degree of

coherence [see equations (13) and (14)] – does contain para-

meters characterizing the width of the packet wavefront. As

derived in Appendix B, �A1A2 for the wave packet example is

given by

�A1A2 ¼ C�WPGS exp �a2
f½2=ð2�2

yWP?Þ� þ ½1=ð2�
2
SÞ�g

� �
; ð21Þ

where the standard deviations �yWP? and �S correspond to an

individual wave packet width and the source width, respec-

tively. [The factor C�WPGS contains other normalization

constants for the Gaussian wave packet function (‘WP’) and

Gaussian source (‘GS’).] Note that, although the mutual

coherence function includes the widths of both packet and

source distributions, the two are combined in the width of one

composite Gaussian distribution. Any given value of the width

of that composite distribution (as characterized in the argu-

ment of the exponential) can be composed of different

combinations of the separate packet and source widths �yWP?

and �S and, therefore, cannot represent a single unique

measure of coherence ‘length’.

In summary, the complex degree of coherence primarily

describes the degree to which the incoherent addition of

intensity contributions from different source points diminishes

the ability to resolve features in the intrinsic diffraction

pattern for a given object (which would have been completely

resolved if illuminated by a single ideal point source). It

quantifies the effect of beam angular divergence on the

instrumental resolution. The complex degree of coherence is

not a direct measure of the transverse uniformity of a wave-

front in a packet associated with any one individual quantum

particle in a beam originating from any particular source

point.

A full analysis of instrumental effects in specular reflection

consequently requires knowledge of two separate measures,

one corresponding to the coherent transverse extent of indi-

vidual packet wavefronts and the other associated with the

geometrical angular divergence of the mean wavevectors of

the incoherent collection of packets composing the beam. But

as has already been described in Section 6 above, there are

means to obtain information about the effective transverse

wavefront dimensions nearly independently of the geome-

trical beam angular divergence.

8. Discussion

In the model employed in the present work, each neutron in a

beam is represented by an independent wave packet function.

The principles of standard quantum mechanics theory

constrain what form a wavefunction can take to describe a

pure state associated with a single Fermi quantum particle.

Berk (2018) shows that a fermion wave packet appropriate for

the description of scattering problems (and which may be

constructed, for instance, of a linear superposition of pure

plane-wave states) represents a pure quantum state of a single

particle. On the other hand, mixed states can be constructed to

describe beams of independent particles created by appro-

priate incoherent sources (Berk, 2018). The corresponding

differences between pure and mixed states in their respective

formal representations as statistical operators or ‘density

matrices’ is also discussed by Berk (2018). The interpretation

of the representation of beams in terms of pure and mixed

states, as considered, for example by Ballentine (1988), has

been further critically examined more recently by Berk (2018).

9. Conclusion

The full analysis of specular neutron reflectivity measurements

from surfaces or interfaces with inhomogeneous in-plane

density distributions requires knowledge of the transverse

extent of neutron packet wavefronts over which the phase is of

sufficient uniformity. A plane-wave representation of the

neutron is not always adequate, and wave forms with limited

transverse extent that more accurately describe how the

neutron wavefunction is prepared in the instrument need to be

adopted.

There are two distinct distributions of wavevectors asso-

ciated with a beam of freely propagating neutrons as prepared

in a typical scattering instrument. One consists of the wave-

vectors of the components of a coherent superposition of basis

states that constitute each individual neutron’s corresponding

wave packet function – i.e. the distribution of wavevectors

associated with a single neutron that define its transverse

coherent extent. The other is made up of an incoherent

collection of mean packet wavevectors associated with the

entire ensemble of individual neutrons composing a beam –

i.e. the distribution of the individual neutron packet mean

wavevectors associated with a geometrically defined beam

angular divergence.

Both the distribution of the mean wavevectors of all of the

neutron packets in the beam and the wavevector components

of the superposition of basis functions within an individual

packet limit what can be observed about the intrinsic

diffraction pattern for a given object. However, it is the

transverse spatial extent of packet wavefronts – over which

the phase is sufficiently uniform – alone that determines the

area over which a coherent scattering process with matter can

occur. This picture is consistent in principle with the formal

tenets of the standard quantum theory for describing scat-

tering.

Although the exact shape or form of the neutron packet

may not be known, approximate models which limit the

transverse extent of the packet, for example, a packet with

truncated nearly planar wavefronts, or one as described by

equation (7), may provide for a sufficiently accurate analysis
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of specular reflectivity in practical cases. Other wavefunctions

can of course be adopted depending on how a neutron is

prepared on a given instrument.

Because the same monochromating and collimating devices,

such as crystals and slits, may shape each individual neutron

wave packet as well as defining the distribution of mean

packet wavevectors of the neutrons composing a beam, it

might not appear possible to avoid conflating the two effects.

However, it is demonstrated that the two distinct distributions

– one consisting of the transverse components of the collection

of packet mean wavevectors in the beam and the other made

up of the transverse components of basis wavevectors intrinsic

to each individual wave packet – can be distinguished from

one another experimentally in practice.

In the transmission phase-grating measurements reported

on here, the effective transverse coherent extent of a packet

wavefront was determined to be approximately 24 mm.

However, this result pertains to a particular instrumental

configuration, i.e. the wavefront characteristics depend on the

specific way a neutron packet is formed within a given

instrument. It would be expected, for example, that the result

reported here would differ from that which would be obtained

for a time-of-flight instrument not employing a crystal

monochromator.

Moreover, it is also shown that the shape of a scattering

object under study, for example, a thin-film sample supported

by a substrate that deviates from perfect flatness, can also

affect the transverse uniformity of a neutron packet wave-

front, thereby, in effect, causing the scattering object to act as

part of the instrument optics.

APPENDIX A
Instrumental specifications

At the NIST Center for Neutron Research, the reflectometer

MAGIK (formerly named AND/R prior to relocation; Dura et

al., 2006) was specifically configured for the measurements

reported herein as follows. A composite HOPG mono-

chromator was situated in a gap on the NG-D neutron guide

tube and was aligned to Bragg reflect neutrons with wave-

lengths of approximately 5.00 � 0.01 Å. The distance between

the monochromator and the first slit aperture downstream was

approximately 908 mm (in between which was positioned a

polycrystalline block of Be cooled to liquid nitrogen

temperature to remove higher-order wavelength neutrons).

The distance between the first and the second slit was L =

863.6 mm. Both slits had a nominal width W = 0.025 mm. Each

slit aperture extended along the vertical direction – out of the

plane of Fig. 2 – by approximately 25 mm and was defined by a

pair of parallel absorbing Cd masks, 1 mm thick, with accu-

rately machined edges. An identical ‘detector’ slit was situated

in front of a 3He detector tube a distance of 1651 mm away

from the second slit. The detector slit could be scanned along a

direction perpendicular to an axis defined along the center of

the two collimating slits upstream. The geometrical divergence

limits�" of the pair of collimating slits are given by tan" = W /

L. For the numerical values given above, " = �2.895 �

10�5 rad (or 1.659� 10�3	 = 9.952� 10�20 = 5.9700). Projecting

back through the pair of slits toward the HOPG mono-

chromator upstream, the width viewed at the monochromator

position was approximately 7.76� 10�2 mm (although a width

of about 25 mm across the surface of the monochromator

illuminated the entrance to the first slit with a relatively

uniform – spatially and in angle – flux of quasi-monochromatic

neutrons).

APPENDIX B
The mutual coherence function and complex degree of
coherence

(Note that, because of the relatively large number of different

quantities that are involved in this appendix and in Section 7

of the paper to which it refers, a glossary of variables and their

definitions is given at the end.)

The mutual coherence function is a measure of the degree

to which the spatial extent of an incoherent radiation source

diminishes the ability to resolve certain features of a diffracted

intensity pattern. This composite pattern formed from an

extended source is the result of a summation of distinct

intensity contributions from each point source component on

the extended source. Each of these intensity contributions is

created in the first place by a coherent process involving the

superposition of component amplitudes originating from a

given object illuminated by a single point source (at a suffi-

cient distance that the wavefronts have become effectively

planar). Subtle distinctions between quantities representing a

superposition of amplitudes in contrast to those which are a

summation of intensities are important.

The basic meaning of the mutual coherence function and

related quantities is typically illustrated through the simple

example of how the interference pattern produced by a pair of

apertures – illuminated by a perfectly monochromatic and

spatially coherent point source of light (Young’s experiment) –

differs from that which arises if the waves are quasi-mono-

chromatic and emanate from an extended incoherent source

as depicted in Fig. 14 (the slit widths are taken to be zero so

that no modulating envelope due to diffraction by each of the

individual slits appears in the intensity plot of the figure). This

classic experiment is described in numerous texts on optics,

but we follow more closely the descriptions given by Born &

Wolf (1975), Hecht (1998) and Mandel & Wolf (1995).

To begin, several simplifying assumptions and approxima-

tions are made that are valid for the specific case of interest at

hand, namely, the elastic scattering of neutrons that originated

in a temporally and spatially extended incoherent source such

as a liquid hydrogen moderator at a continuous flux reactor.

We will also ignore neutron polarization and consider only

scalar wavefunctions as opposed to spinors (analogous to

neglecting the polarization of electromagnetic radiation). The

usable source intensity can be considered, for the sake of

argument, sufficiently weak that only one neutron at a time

interacts with the diffracting object and the measuring
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instrument (diffractometer or reflectometer). In typical

circumstances, a single neutron may pass from source to

diffracting object to detector before another neutron arrives

as discussed in the main text. This means that any interference

phenomena resulting from the interaction of a single neutron

and a diffracting object arises strictly in terms of the compo-

nent basis states of which the wave packet representing that

particular neutron is composed. It is also a well established

quantum phenomenon that the observation of the diffraction

pattern is stochastic in nature, requiring a sufficient number of

apparently random detections of individual neutrons across a

range of angular or spatial positions to reveal the underlying

form of the pattern.

Further, it is assumed that the neutrons are quasi-mono-

chromatic. This means that each corresponding wave packet

possesses a temporal coherence length (which is often referred

to as a longitudinal spatial coherence length along the mean

direction of propagation) that is significantly larger than its

transverse coherence length (perpendicular to the mean

direction of propagation) – similar in form to that which we

adopted in preceding sections. Here we are primarily

concerned with the transverse coherence length or, more

accurately, the transverse coherent extent of the wavefronts

within the neutron wave packet over which the phase is

constant and can thereby give rise to coherent scattering from

an effective average material density. We also assume statio-

narity and ergodicity, i.e. that any time average over a

collection of similar neutron quantum particles successively

interacting with the scattering object is time independent and

that the time average is essentially equivalent to the ensemble

average, respectively.

With the simplifications and assumptions so stated, consider

again the diffraction arrangement schematically represented

(in two dimensions) in Fig. 14. Let the distances between

source and opaque barrier (including apertures) and detector

plane be sufficiently large and the source width small enough

that the far-field or Fraunhofer limit is a valid approximation

for describing the diffraction. We first consider the case where

circular wavefronts emanate from the source at a point S0

along the axis of symmetry, equidistant from each aperture,

and travel towards the opaque barrier, becoming nearly planar

along the way.

At the barrier, the two apertures act as coherent secondary

sources which radiate circular waves that subsequently inter-

fere at the detector plane to produce a well known inter-

ference pattern of detected intensity – once an adequate

number of single neutrons are emitted and diffract in similar

fashion. (As indicated previously, because the slit widths are

taken to effectively approach zero, the modulating envelope

due to diffraction by each of the individual slits does not

appear in the intensity plot of the figure). If all the neutrons

were emitted from the same central source point, the

diffraction pattern would be perfectly resolved and the ‘fringe’

visibility V defined in terms of the normalized contrast

(difference) between intensity maximum IMAX and minimum

IMIN (i.e. the minimum immediately adjacent to the maximum)

would be greatest and equal to unity:

V ¼ ðIMAX � IMINÞ=ðIMAX þ IMINÞ: ð22Þ

Note that the central maximum of the pattern coincides

with the position of the horizontal symmetry axis.

Consider next a wave train emanating from another source

point S, one that is off the symmetry axis and not equidistant

from either aperture. Once again, the two apertures act as

secondary sources of circular waves that produce a similar

diffraction pattern – but one which is now, on the whole,

translationally shifted along the vertical detector axis relative

to that associated with the central source point, as shown in

Fig. 14. The sum of the two intensity contributions is also

shown in Fig. 14 and clearly indicates a loss of fringe visibility

or resolution as defined by equation (22). In effect, extending

the source obscures the interference pattern to some degree

relative to what would have been observed with a single point

source. This does not imply, however, that a wavefront of the

radiation emanating from any one point source has a dimin-

ished transverse extent over which the phase is uniform.

The resultant neutron wavefunction �D (here the neutron

wavefunction replaces the scalar electric field in an analogous

description for visible light) at a point D on the detector plane

is the sum of the two waves that emanated from each of the

two secondary source points or apertures A1 and A2 at that

point D and is given by

�DðtÞ ¼ CA1�A1ðt � r1=vÞ þ CA2�A2ðt � r2=vÞ; ð23Þ

where t is a point in time, v is the modulus of the phase velocity

of the wave, and the (time-independent) coefficients CA1 and

CA2 account for changes in the wavefunctions that depend

upon which aperture the respective component emanated

from. In other words, equation (23) says what the wavefunc-

tion or field amplitude is at any given position and time on the

detector in terms of what the wavefunctions at apertures A1

and A2 were at earlier times t1 = r1 /v and t2 = r2 /v, respectively.

Ultimately, what is observed on the detector is an intensity

pattern acquired over a finite time period 
 which is taken to

be long in comparison to the coherence time (which is simply

related to the longitudinal or temporal coherence length that

was discussed earlier). The net intensity �ID is obtained by

averaging over the finite time interval T and accounts for

neutrons emanating from every possible point on the

extended source. This average is denoted by

�ID ¼ h�DðtÞ�
�
DðtÞiT: ð24Þ

Substituting the explicit expression for �D given in equation

(23) into equation (24), expanding, changing variables to 
 =

t2� t1 (imposing the condition of stationarity), and identifying

quantities ID1 and ID2 as corresponding to the intensities which

would be obtained at point D if only either aperture A1 or A2

alone had been open, respectively, we obtain [see, for example,

Section 12.3 of Hecht (1998)]

�ID ¼ ID1 þ ID2 þ 2ðID1ID2Þ
1=2

� Ref�A1A2ð
Þ=½ð�A1A1ð0Þ�A2A2ð0Þ�
1=2
g

¼ ID1 þ ID2 þ 2ðID1ID2Þ
1=2Re½	A1A2ð
Þ�; ð25Þ
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where �A1A2(
) = h�A1(t + 
)�A2
* (t)iT, �A1A1(0) = h|�A1(0)|2iT

and �A2A2(0) = h|�A2(0)|2iT.

The quantity �A1A2(
) in the interference term which arises

upon superposition of the waves is a two space–time point

cross-correlation function that is commonly referred to as the

mutual coherence function (Mandel & Wolf, 1995). The

argument of the Re part of the function in the last term on the

right-hand side of equation (25), 	A1A2(
), is called the

normalized mutual coherence function or the complex degree

of coherence. Its modulus can be shown (Mandel & Wolf,

1995) to be identical to the fringe visibility given by equation

(22) [see also Hecht (1998), Section 12.3], which varies from

zero (for complete loss of contrast) to unity (for the optimum

contrast possible as would be obtained with a perfectly

spatially coherent monochromatic single-point source). For

values in between zero and one, the diffraction pattern

manifests some degree of partial fringe visibility.

Up to this point in the discussion, no explicit form for the

wavefunction �(r, t) in the formula for the mutual coherence

function and complex degree of coherence has been assumed.

Although localized wave packet functions are ultimately of

interest, it happens that a circular (in two dimensions) or

spherical (in three dimensions) wave, which at a sufficient

distance from its point source is effectively planar, suffices for

describing the fundamental meaning of the complex degree of

coherence. (However, in three dimensions it is necessary to

consider the normalization involved in calculating absolute

intensities properly.) We can take �(r, t) to play either the role

of the electric field intensity for unpolarized electromagnetic

radiation or the wavefunction of an unpolarized neutron. As it

turns out, to relate the fringe visibility or instrumental reso-

lution to the relevant characteristics of the radiation source, it

is necessary only to evaluate the informational content of the

normalized mutual coherence function or complex degree of

coherence 	A1A2(
). The mathematical details are as follows.

The relevant part of Fig. 14 is redrawn in more detail in

Fig. 15. Rather than computing the time average associated

with the mutual coherence function, we will invoke ergodicity

and perform the equivalent alternative ensemble average over

all possible realizations of the neutron waves emanating from

the extended source.

Let the wavefield emanating from each point on the

extended source be circular and far enough from the apertures

that the curvature of every wavefront at the location of the

apertures can be approximated by a straight line (plane-wave-

like in the Fraunhofer limit). The wavefunction in this (two-

dimensional case) is given by

�ðrÞ ¼ �ðx; yÞ ¼ ½1=ð2�Þ� exp½iðkxxþ kyyÞ�; ð26Þ

where kx and ky are the Cartesian components of the neutron

wavevector. The quantity that we need to calculate explicitly is

	A1A2 ¼ h�A1ðx1 ¼ 0; y1 ¼ þaÞ��A2ðx2 ¼ 0; y2 ¼ �aÞi

=½hj�A1ðx1 ¼ 0; y1 ¼ þaÞj2i

� hj�A2ðx2 ¼ 0; y2 ¼ �aÞj2i�1=2; ð27Þ

where the ensemble average hi is carried out over the entire

line source from y = �s to y = +s. It is assumed that the source

emits a uniform distribution of waves at all positions along the

line (parallel to the y axis). The neutron wavevector direction

is specified by the angles �1 and �2 for positions A1 and A2 on

the y axis at +a and �a – where the wavefunctions are eval-

uated – as indicated in Fig. 15. The parameters r1 and r2 specify

the corresponding distances between a particular source point

on the line and the points A1 and A2. The distance between

source line and aperture line along the horizontal x axis is

denoted by l. An integration along the source line can be

straightforwardly parameterized by expressing the x and y

components of the wavevector, kx and ky, in terms of �1, �2, l

and a. Note that the plane wavefronts are approximated to be

perpendicular to the line between the origin and the source

point – which should be valid for the relatively small angles

typically encountered. The essential requirement is to prop-

erly account for the phase difference between the two points

A1 and A2. We can write

�A1ðx1 ¼ 0; y1 ¼ þaÞ��A2ðx2 ¼ 0; y2 ¼ �aÞ ¼ ½1=ð2�Þ2�

� exp½iðkx1x1 þ ky1y1Þ� exp½�iðkx2x2 þ ky2y2Þ�

¼ ½1=ð2�Þ2� exp½�iðka=lÞð2YÞ�; ð28Þ

where we have made the substitutions ky1 = ksin�1, ky2 =

ksin�2, tan�1 = [(Y � a) / l] ’ sin�1 ’ �1 and tan�2 = [(Y + a) /

l] ’ sin�2 ’ �2, and where Y has been defined as the position

along the vertical line source axis. Then

h�A1ðx1 ¼ 0; y1 ¼ þaÞ��A2ðx2 ¼ 0; y2 ¼ �aÞi ¼ ½1=ð2�Þ2�

�
Rþs

�s

exp½�iðka=lÞð2YÞ� dY

¼ ½2s=ð2�Þ2� sin½ð2sÞð2aÞ�=ðl�Þ�=½ð2sÞð2aÞ�=ðl�Þ�; ð29Þ

where k = 2�/� has been substituted, in which � is the neutron

wavelength. Performing similar integrations we obtain
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Figure 15
The relevant part of Fig. 14 is redrawn in more detail here for reference to
the discussion in the text regarding the calculation of the mutual
coherence function and complex degree of coherence.



hj�A1ðx1 ¼ 0; y1 ¼ þaÞj2i ¼ hj�A2ðx
2 ¼ 0; y2 ¼ �aÞj2i

¼ ½2s=ð2�Þ2� ð30Þ

so that

	A1A2 ¼ sin½ð2sÞð2aÞ�=ðl�Þ�=½ð2sÞð2aÞ�=ðl�Þ�

¼ sinc½ð2sÞð2aÞ�=ðl�Þ�: ð31Þ

This result is equation (16) in the main text. 	A1A2 can be

explicitly related to the fringe visibility V defined in equation

(22) (for the case of the two-slit interference pattern) [see, for

example, Hecht (1998), ch. 12]:

V ¼ ðIMAX � IMINÞ=ðIMAX þ IMINÞ ¼ j	A1A2j

¼ jsinc½ð2sÞð2aÞ�=ðl�Þ�j; ð32Þ

where 0 < |	A1A2| < 1 (a well known result in light optics).

Thus, the visibility of a diffraction pattern can be predicted in

terms of what would be observed for scattered radiation

emanating from a hypothetical pair of points on an object a

distance 2a apart when illuminated by incident radiation from

all of the points on a primary spatially extended incoherent

source. For any specified degree of visibility V between zero

(completely unresolved) and one (maximum resolution), the

complex degree of coherence predicts the lateral dimension 2s

of the primary incoherent source.

The complex degree of coherence or fringe visibility implies

that resolution of the features in the interference pattern

depends upon the source size (2s), the aperture spacing (2a),

the distance between source line and aperture line (l), and the

wavelength (�). For a given wavelength and aperture spacing

and a fixed distance between source and apertures, the fringe

visibility decreases with increasing source size – or, equiva-

lently, with an increasing range of the angular distribution of

trajectories of wavevectors directed from the source points

towards the apertures. That is, the greater the angular diver-

gence of the incident beam, the poorer the resolution of the

features of the interference pattern.

However, this relationship between fringe visibility or the

complex degree of coherence and geometrical angular beam

resolution does not imply that the nearly planar wave train

emanating from any one source point by itself creates a less-

resolved diffracted intensity pattern – it is simply hidden

among the similar but shifted patterns contributed by all the

other source points which are emitting at the same time. It is

this summation of the intensity contributions from a collection

of such source points on the extended source line that causes

the resolution of the net resulting pattern to be effectively

diminished. In this sense, the complex degree of ‘coherence’ –

as shown to be associated with the fringe visibility – can be

thought of more as a measure of the degree to which

increasing the spatial extent of the source effectively obscures

the underlying pattern that would have been better resolved

by restricting the source size to one point. Once again, this

calculation of the mutual coherence function and complex

degree of coherence was performed, as typically done,

assuming an explicit plane-wave form for the wavefunction

where the spatial extent of a wavefront of constant phase is

infinite. Two other specific cases for different source intensity

distributions and individual neutron waveforms are summar-

ized below.

Note that, for both of these examples, it is assumed that

either the wavevector of the plane wave or the mean wave-

vector of the packet is always directed from a given point on

the source line towards the origin (x, y) = (0, 0) of the

laboratory reference frame. This should be a good approx-

imation for the relatively small angles typically involved (i.e.

where the small-angle approximation that sin� ’ � is valid).

And even though some plane-wave or packet mean wave-

vectors may be directed at locations other than the origin

midway between points A1 and A2, a sufficiently balanced

sampling of neutrons originating from various points along the

source line should be ensured in performing the integration

over possible trajectories.

Finally, we outline the derivation of two of the principal

equations appearing in Section 7 of the main text, namely

equations (18) and (20).

B1. Plane waves, Gaussian source, leading to equation (18) in
Section 7 of the main text

Given the plane wavefunction �(x, y) = CPWexp(ikxx) �

exp(ikyy) and a Gaussian source, the mutual coherence func-

tion can be written, beginning with equation (13) for the

mutual coherence function, as

�A1A2 ¼ h�A1ðxA1; yA1Þ�
�
A2ðxA2; yA2ÞiEnsemble Average ð13Þ

¼ h�A1ðx1 ¼ 0; y1 ¼ þaÞ��A2ðx2 ¼ 0; y2 ¼ �aÞi

¼ C2
PWCGS

Rþ1

�1

exp½�k2
?=ð2�

2
k?Þ� expðik?2aÞ dk?

¼ C2
PWCGSCFTGS expf�a2

½1=ð2�2
SÞ�g

¼ C�PWGS expf�a2½1=ð2�2
SÞ�g; ð33Þ

where CPW, CGS and CFTGS are normalization constants for the

plane wave, Gaussian distribution and Fourier transform,

respectively, and C�PWGS is their product. Since

hj�A1ðx1 ¼ 0; y1 ¼ þaÞj2i ¼ hj�A2ðx2 ¼ 0; y2 ¼ �aÞj2i

¼ C�PWGS ð34Þ

(the same product of constants occurs whether a Fourier

transform or a simple integration of a Gaussian is performed),

the complex degree of coherence [equation (14)] is then

	A1A2 ¼ h�A1ðx1; y1Þ�
�
A2ðx2; y2Þi

=½hj�A1ðx1; y1Þj
2
ihj�A2ðx2; y2Þj

2
i�

1=2
ð14Þ

¼ h�A1ðx1 ¼ 0; y1 ¼ þaÞ��A2ðx2 ¼ 0; y2 ¼ �aÞi

=½hj�A1ðx1 ¼ 0; y1 ¼ þaÞj2i

� hj�A2ðx2 ¼ 0; y2 ¼ �aÞj2i�1=2

¼ 	A1A2 ¼ exp½�a2=ð2�2
SÞ�: ð35Þ
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B2. Wave packet, Gaussian source, leading to equation (20)
in Section 7 of the main text

Given the Gaussian wave packet �(x, y) = CWP exp[�y2 /

(2�2
yWP?)]exp(ikMxx)exp(ikMyy) and a Gaussian source,

beginning again with equation (13) for the mutual coherence

function,

�A1A2 ¼ h�A1ðx1 ¼ 0; y1 ¼ þaÞ��A2ðx2 ¼ 0; y2 ¼ �aÞi

¼ C2
WPCGS exp½�2a2=ð2�2

yWP?Þ�

�
Rþ1

�1

exp½�k2
M?=ð2�

2
kM?Þ� expðikM?2aÞ dkM?

¼ C2
WPCGSCFTGS expð�a2

f½2=ð2�2
yWP?Þ� þ ½1=ð2�

2
SÞ�gÞ

¼ �A1A2 ¼ C�WPGS expð�a2
f½2=ð2�2

yWP?Þ� þ ½1=ð2�
2
SÞ�gÞ;

ð36Þ

where CWP, CGS and CFTGS are normalization constants for the

wave packet, Gaussian distribution, and Fourier transform,

respectively, and C�WPGS is their product. Since

hj�A1ðx1 ¼ 0; y1 ¼ þaÞj2i ¼ hj�A2ðx2 ¼ 0; y2 ¼ �aÞj2i

¼ C�WPGS expð�a2
f½2=ð2�2

yWP?Þ�gÞ ð37Þ

(the same product of constants occurs whether a Fourier

transform or simple integration of a Gaussian is performed),

then

	A1A2 ¼ h�A1ðx1 ¼ 0; y1 ¼ þaÞ��A2ðx2 ¼ 0; y2 ¼ �aÞi

=½hj�A1ðx1 ¼ 0; y1 ¼ þaÞj2i

� hj�A2ðx2 ¼ 0; y2 ¼ �aÞj2i�1=2

¼ 	A1A2 ¼ exp½�a2=ð2�2
SÞ�; ð38Þ

which is the same as the result obtained in the previous

example for the plane wavefunction.

B3. Glossary of variables for Appendix B and Section 7

�rT = transverse coherence – defined as the spatial width, in

general, over which the wavefronts of the wave packet do not

fall out of phase by more than a certain specified amount – for

the particular wave packets of Gaussian form discussed in

Section 7 and Appendix B, �rT is taken to be the standard

deviation of the distribution �yWP�? as defined below

V = ‘fringe’ visibility

�D = resultant neutron wavefunction at a point D on the

detector plane

A1 and A2 = apertures acting as secondary source points

r1 and r2 = distances from source point to apertures A1 and

A2, respectively
�ID = net intensity at detector D

�A1A2 = mutual coherence function

	A1A2 = normalized mutual coherence function or the

complex degree of coherence

k = 2�/�, where � is the neutron wavelength

kx and ky = Cartesian components of the neutron wave-

vector k

2s = line source width extending from y = �s to y = +s

2a = distance between aperture points A1 and A2 along the

y axis

l = distance between source line and aperture line

�1 and �2 = angles corresponding to the positions A1 and A2,

respectively, on the y axis at +a and �a, where the wave-

functions are evaluated, which specify the neutron wavevector

direction

Y = position along the vertical line source axis

Terms associated with a Gaussian extended source distribution

(applicable to either plane-wave or wave packet model)

�S = the standard deviation of the Gaussian source intensity

distribution representing the width of the source line along the

y axis

�k = the standard deviation of a Gaussian distribution of y

components of wavevectors (each wavevector corresponding

either to a plane-wave wavevector or a packet mean wave-

vector) emanating from different source points (�k = 1/ �S)

Terminology specifically associated with plane-wave model

k? = y component of a plane-wave wavevector (the y axis is

perpendicular to the nominal or average beam propagation

direction along the x axis) for a plane wave emanating from a

given point on an extended source line

�k? = standard deviation of a Gaussian distribution of the y

components of the plane-wave wavevectors in a beam

composed of plane waves emanating from an extended source

line

CPW, CGS and CFTGS are normalization constants for the

plane wave, Gaussian distribution and Fourier transform,

respectively, and C�PWGS is their product

Terminology specifically associated with wave packet model

�yWP? = standard deviation of the width of a packet in real

space [as appears in equation (7)]

kM = packet mean wavevector

kMx and kMy = x and y components of the packet mean

wavevector kM, respectively

kM? = y component of the packet mean wavevector (the y

axis is perpendicular to the nominal or average beam propa-

gation direction along the x axis) for a packet emanating from

a given point on an extended source line

�kM? = standard deviation of a Gaussian distribution of the

y components of the packet mean wavevectors in a beam

composed of wave packets emanating from an extended

source line

CWP, CGS and CFTGS are normalization constants for the

wave packet, Gaussian distribution and Fourier transform,

respectively, and C�WPGS is their product
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