
computer programs

J. Appl. Cryst. (2022). 55, 1063–1071 https://doi.org/10.1107/S1600576722006653 1063

Received 20 January 2022

Accepted 28 June 2022

Edited by E. P. Gilbert, Australian Centre for

Neutron Scattering, ANSTO, Australia

Keywords: reflectometry; surface X-ray

diffraction; neutron analysis; X-ray analysis.

Supporting information: this article has

supporting information at journals.iucr.org/j

GenX 3: the latest generation of an established tool

Artur Glavica* and Matts Björckb

aLaboratory for Neutron and Muon Instrumentation, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland, and
bDepartment of Physics, Uppsala Universitet, Box 530, SE-751 21, Uppsala, Sweden. *Correspondence e-mail:

artur.glavic@psi.ch

Since its publication more than 15 years ago the GenX software has been

continuously developed and has established itself as a standard package for

analyzing X-ray and neutron reflectometry data. The evolution of the software

during the last two major revisions is reported here. This includes a simplified

model builder for beginners, simple samples, additional sample models,

statistical error analysis and the use of just-in-time compilation modules for

the reflectometry kernel to achieve higher performance. In addition, the

influence of experimental errors on the reflectivity curve is discussed, and new

features are described that allow the user to include these in the error statistics

to improve the fitting and uncertainty estimation.

1. Introduction

Neutron and X-ray reflectivity measurements often rely on

modeling the sample structure to reproduce the experimental

data. The process of building and subsequently refining that

model and its parameters to give the best fit to the measure-

ment is thus of great importance to the scientific community.

In addition to countless small programs and scripts that

circulate at universities and research institutes, there are

several established and professionally maintained programs

that focus on various aspects of science. One important

application is the modeling of soft-matter structures using

system-specific parameterization, for example in the programs

RefNX (Nelson & Prescott, 2019) or Refl1D (Kienzle et al.,

2011). Other software focuses on simplified interactive online

modeling (Maranville, 2017) or scripting (Koutsioubas, 2021),

grazing-incidence scattering (Pospelov et al., 2020), or reso-

nant and magnetic X-ray modeling (Macke et al., 2014;

Vignaud & Gibaud, 2019). The original GenX (Björck &

Andersson, 2007) software was a tool to perform that

modeling and aid the process of finding the right model

parameters by differential evolution (DE) refinement. To

simplify its use and aid the user, a minimal graphical user

interface (GUI) was included. While some recent studies

require sophisticated and complex models combining X-ray

and neutron data for non-trivial structures (Cassidy et al., 2021;

Mogi et al., 2019; Spencer et al., 2018), the user base of the

program also consists of scientists inexperienced in the tech-

nique who require a simple introduction to the analysis. Other

important aspects of high-quality research are reproducibility,

repeatability and traceability of results, and proper analysis of

parameter uncertainties.

To balance aspects of flexibility and advanced features with

ease of access, GenX’s key concept is a GUI-based model

builder that generates a Python model script. The script can be

ISSN 1600-5767

Published under a CC BY 4.0 licence

https://creativecommons.org/licences/by/4.0/legalcode
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576722006653&domain=pdf&date_stamp=2022-07-30


modified interactively and is executed inside the GUI to

produce a model graph and refine a figure of merit (FOM) for

a set of parameters. The flexibility of this approach is apparent

in the fact that GenX can be used to model and fit specular,

off-specular or grazing-incidence diffraction data, as well as

user-defined functions, with the same interface. This also

turned out to be a weakness in the first version of the software

since the entrance threshold for new users was too high. In

Version 2, a plugin facility was introduced to allow GUI

improvements for specific modeling tasks as well as different

data loaders. The reflectivity model builder plugin is the most

commonly used and can perform the complete script genera-

tion for X-ray and neutron reflectivity data in most use cases.

This plugin, according to feedback received, lowered the

barrier to new users. A materials database plugin further

simplifies the parameter definition for known materials and

can be used to query online databases for new materials.

In the present third version several new features have been

added, in addition to porting the software to Python 3 and

wxPython 4. New user models can describe more complex

sample structures like element-specific diffusion, magnetic

structures propagating through layer boundaries, layer in-

homogeneities or neutron supermirror coatings without the

need for manual scripting. A SimpleReflectivity interface

plugin has been introduced that mimics the simplicity of early

analysis tools like Parratt321 where the sample model is

completely described in a single table. With this we hope to

lower the entrance barrier for new users of GenX still further

as the complexity of scripting and the high number of para-

meters are hidden. More data types have been added for

import, and the export and import of results as Open

Reflectivity Text (.ort) files (Arnold et al., 2021) follows the

spirit of the FAIR principle (Wilkinson et al., 2016) that is

endorsed by many scientific funding agencies.

The calculation kernel and the capabilities of the models

have also been improved. Just-in-time compilation (JIT) for

the most calculation-intensive functions is now used to speed

up all reflectivity models and allow multi-threaded execution,

not just during refinement. GPU computing has also been

introduced but only leads to benefits in more complex models,

especially when the matrix neutron algorithm is required. For

a more rigorous statistical estimate of parameter uncertainties,

an interface to the Bumps library (Kienzle et al., 2021) has

been developed, together with a dialog reporting such results.

As statistical estimates require a suitable �2 FOM we have

introduced functionality to include instrument or other

experimental errors, and this is described in detail below.

In the following we will report the improvements in more

detail, with some general explanations of program use. The

reader interested in the software layout of the GenX package

is referred to the supporting information (Supplement 3) and

to the source code. At the time of writing the latest published

version of GenX is 3.6.12 with roughly 100 000 lines of code.

2. User interface

After starting up and loading a model for reflectivity, the

GenX interface will look similar to the screenshot shown in

Fig. 1. Below the menu and tool bars there is an adjustable

area for data sets, data plots and scattering length density

(SLD) graphs, a list of known materials, and a table with the

SimpleReflectivity model. Plugins change the available tabs

below the menu bar.

The main toolbar (Fig. 2) hosts the most important actions

to load/save a model, simulate and fit, as well as for selecting

the used optimizer algorithm and calculating parameter un-

certainties. These and additional actions are accessible

through the individual menus and most of them have

keyboard shortcuts.

2.1. Data sets

Organization for data sets to be fitted is found in the table

on the left-hand side of the interface (Fig. 3). It has a small

toolbar for data-specific options and a list of data set entries

that can be labeled and selected for plotting and fitting. Data

can be imported with data_loader plugins that can be selected

in the ‘Settings’ menu. Depending on the file format and the

data loader used, some or all of the header information is

imported and stored within the model following the guidelines

for file formats of the Open Reflectometry Standards Orga-

nization (ORSO) (Arnold et al., 2021). The metadata can later

be accessed using the ‘Info’ button.

While, by default, the measured data are used directly in

their raw form, the calculation dialog (Fig. 4) allows modifi-

cation of the columns using Python expressions. This func-

computer programs

1064 Glavic and Björck � GenX 3 J. Appl. Cryst. (2022). 55, 1063–1071

Figure 1
The GenX GUI with SimpleReflectivity and SimpleLayer plugins and
widescreen optimized view.

Figure 2
The main program toolbar with elements (from left to right) new model,
open model, save model, simulate, select optimizer, start fit, stop fit,
restart fit, estimate parameter uncertainty, perform parameter statistical
analysis (Bumps) and enlarge figures.

1 Software for reflectometry from the former Hahn Meitner Institut, now the
Helmholtz Center Berlin, no longer maintained.



tionality is most commonly used to filter data points, change

the x-axis units or implement experimental error calculations,

as described below.

When a model is exported to ORSO file format (.ort) all

individual data sets with their header information, as well as

the model intensity, script and parameters, are written to the

file header. This provides an ASCII data format that, at the

same time, includes all necessary information to trace the

source of the measured data and the sample model used. Data

and model can be recovered using the ‘Import’! ‘New from

file’ feature. We therefore encourage authors to include such

exported data in any future publication that uses GenX for

modeling. An example file has been uploaded to Zenodo

(https://zenodo.org/record/5770518#.YtpsL3ZBxjE).

2.2. Model and fitting

The script that generates the simulation model can be

entered in the ‘Script’ tab at the bottom. A script can use any

valid Python code but must at least define a simulation func-

tion Sim(data) that takes a list of data sets as arguments and

returns a list of simulated intensity arrays. For reflectivity

models the script is generated automatically by the Simple-

Reflectivity or Reflectivity plugin and can be modified for

specific model requirements.

Refinement is performed by calling the Sim function and

modifying any user-defined parameters from the model. The

parameters are defined in the ‘Grid’ tab (Fig. 5) and are

represented by set functions that are called on parameter

update (typically parameter setters of the classes repre-

senting certain aspects of the model as e.g. layers). Starting

parameters and minimum and maximum values can be

specified in this table, too. Parameter constraints can be

implemented by performing calculations within the Sim

functions using existing model or user-defined parameter

attributes. This allows complex constraints or even mimicking

of parameter inequalities (an inequality can be realized by

fitting a user parameter in a given fixed range from 0 to 1 and

scaling it with the parameter that acts as upper/lower bound).

Changes to the model script and parameters are now

realized using the Command design pattern, which allows the

user to undo previous changes and even remove specific

actions from the editing history. An external text editor can

also be used to modify the script for more convenient editing

of complex models. The temporary file is constantly monitored

and the GenX model is automatically updated on any change.

2.3. Plugin facility

Besides the data_loader plugins, GenX supports dynamic

loading of plugins that modify the GUI functionality. These

can be accessed through the ‘Settings’ ! ‘Plugins’ menu.

Loaded plugins are saved in the GenX model file and reloaded

when a model is opened. The configuration file, which can be

filled from a set of default options, defines which plugins are

loaded on program start.

2.4. SimpleReflectivity

This plugin allows easy access to reflectometry modeling. A

new model is created using a wizard interface that guides the

user through generic configuration choices. The sample is then

defined within a single table interface that also allows the fit

parameters to be chosen. Modeling of X-ray, neutron and

polarized neutron measurements is possible, and the sample

can have any number of bottom and top layers, as well as a set

of central layers that allows repetition in a superlattice. The

three stacks that are used to separate bottom, repeated and

top layers are color coded as a quick visual hint.

computer programs

J. Appl. Cryst. (2022). 55, 1063–1071 Glavic and Björck � GenX 3 1065

Figure 3
The data set control table, with the toolbar at the top containing elements
from left to right: add data set, import data, add simulation, look at
metadata information, move up, move down, remove data set, plot
options and carry out column calculations. Below the toolbar is the list of
data sets with activity status.

Figure 4
Data column calculations that allow the user to modify the columns of
each data set, represented by NumPy arrays. In the given example only
the first 2060 data points are used.

Figure 5
The fitting parameter control grid used in model refinement. The first
column is the name of the method used for changing a parameter
(setter); in classes of the standard models these are capitalized
parameter names with the prefix set. Other columns define the current
parameter value, whether it is fixed or fitted, the fit range and parameter
uncertainties calculated from the fit. The toolbar on the left has actions
(from top to bottom) add parameter, delete parameter, move parameter
up, move parameter down, sort class name first, sort method name first,
toggle the value slider, project the FOM on the parameter axis and scan
the FOM.



Each layer is defined by a chemical formula with density, by

an SLD value (neutron) or as a mixture of two SLDs. Each

layer has a magnetization, thickness and roughness. By

default, the ‘Grid’ and ‘Script’ tabs are hidden to make the

interface more accessible to users without a programming

background or GenX experience. When the user edits the

chemical formula the SimpleLayer plugin materials list and the

ORSO SLD database (Glavic & ORSO, 2021) are searched to

propose a material density to the user.

At any time the model can be transferred to the Reflectivity

plugin. This allows modeling to start with a fast and easy

interface, and model complexity can be increased later, if

necessary.

2.5. Reflectivity

This is the traditional plugin for building reflectometry

models and also the first plugin that appeared in GenX 2. Each

component of a sample (substrate and ambient material,

stacks and layers) is listed in a specific ‘Model’ tab. Compo-

nent parameters can be changed with a double click that opens

a dialog to enter the values. A similar dialog is available for

global sample and instrument parameters. Constraints and

user parameters can be added on the ‘Simulation’ tab, which

also allows one of the user-defined instruments to be chosen

for each data set.

Fitting parameters have to be added by the user, either

directly in the ‘Grid’ tab or with a button that is present in the

parameter dialog next to each entry. While the interface is

more powerful than the SimpleReflectivity plugin, it can be

overwhelming due to the large number of parameters and the

need to edit each layer individually in its separate dialog.

The model generated by the plugin uses specific comment

lines to highlight automatically generated lines. The user can

change any lines outside these areas for script modifications

like complex constraint calculations or to create modifications

to existing models.

2.6. Other plugins

The current version of GenX ships with the following

plugins:

SimpleLayer. Stores a list of user-defined materials for later

use in reflectivity calculations. Materials can be entered with

formula and mass density or crystal parameters. The ORSO

SLD database (Glavic & ORSO, 2021) and Crystallography

Open Database (Gražulis et al., 2011) can be used to find data

for new materials.

SpinAsymmetry. Adds an additional plot that shows the

neutron spin asymmetry of data and simulation. Requires that

the data set is sorted with alternating spin-up/spin-down

channels.

MagSLD. Modifies the SLD plot from the Reflectivity

plugin to show a second y axis with magnetic units and the

integrated value of the magnetic profile for comparison with

macroscopic methods.

ParameterVault. Stores model parameter values for later

use and comparison. Useful when fitting complex models of

many parameters to assist evaluation of possible improve-

ments and revert to old settings.

Shell. A Python shell that has access to the program

namespace, mostly used for debugging purposes.

Exporter. Creates models of other programs from an

existing GenX reflectivity simulation. Currently only the

BornAgain software (Pospelov et al., 2020) is supported.

SXRD. A model builder for surface X-ray diffraction that is

similar to the Reflectivity plugin and shows a 3D image of

atomic positions. It can also export the atom positions to .XYZ

data files.

3. Models

Models included in GenX can be directly imported in the

model script (as is done by the model-building plugins). The

model incorporates both the physical model and a general

parameterization of it. Each model and its parameters are

described in the dialog accessed through the ‘Help’ !

‘Models help’ menu. All source code can be found in the

GenX program folder/package directory under genx/

models/[model].py. Here we will, for completeness, list

all current models and give more detailed descriptions for

those not already published.

interdiff. A model for specular and off-specular X-ray

reflectivity. See initial publication (Vrugt et al., 2008).

spec_nx. A combined specular X-ray and neutron model.

For specular X-rays it is equivalent to interdiff. Uses

Parratt (Parratt, 1954) for X-ray and non-spin-flip neutrons,

and Matrix (Blundell & Bland, 1992) for spin-flip calculations.

See initial publication (Vrugt et al., 2008).

spec_adaptive. A model based on spec_nx that allows

the user to build complex models of mixing components such

as for element-specific interdiffusion. The final SLD profile is

generated using adaptive layer segmentation.

spec_inhom. Another spec_nx-based model that simu-

lates superlattices with different inhomogeneities, including

macroscopic thickness variation and thickness or roughness

variation from bottom to top.

soft_nx. A combined specular X-ray and neutron model

equivalent to spec_nx but using SLDs instead of molecular

scattering length and density as is common in the soft-matter

community.

mag_refl. A model for magnetic resonant soft X-ray

reflectivity and specular neutron reflectivity from the same

structure, with the possibility of using adaptive layer

segmentation or derived roughness factors for the interfaces

(Björck et al., 2014). The model includes both magnetic and

structural roughness. The specific X-ray Matrix formalism is

described by Stepanov & Sinha (2000).

sxrd(2). This models surface X-ray diffraction using

kinematic diffraction theory. The sxrd2 variant is used by the

SXRD plugin to build the model. The model itself was added

early on (Björck et al., 2008) and more details of the theory of

SXRD are provided by Schlepütz (2009). The model also has

an extension for modeling superlattices with the SUPREX

model (Fullerton et al., 1992).

computer programs

1066 Glavic and Björck � GenX 3 J. Appl. Cryst. (2022). 55, 1063–1071



3.1. Adaptive layer segmentation

The new spec_adaptive model is similar to the standard

reflectivity models in terms of model parameters and intensity

simulation. In addition to all functionalities from the

spec_nx module, a sample can be built of separate Elements

that can be described independently of each other. This option

can be useful to model physical characteristics that are not

directly coupled to each other, like a magnetic structure that

propagates through a superlattice with incommensurate

period or element-specific interdiffusion.

Each of the Elements is built up from the substrate indivi-

dually (Fig. 6). Upon simulation the SLDs for each item are

calculated in fine slices (e.g. 0.5 Å) and combined. Before the

actual simulation, similar total SLD values are merged into

one layer (adaptive segmentation) to increase model effi-

ciency. The maximum deviation allowed to combine two layers

can be defined by the user for X-ray, neutron and magnetic

components. This approach allows the model to define a

magnetic roughness that is different from the nuclear struc-

ture, magnetic void layers (no magnetization even if other

Elements define magnetism at this location) and non-Gaussian

interface profiles. This model was used by Cassidy et al. (2021)

to describe molecular diffusion with mass conservation.

3.2. Inhomogeneous superlattices

Superlattices with many repetitions lead to very strong and

sharp Bragg peaks that are sensitive to small deviations in the

sample structure that would not be noticeable in individual

layers. Describing the system with individual layers would

generate a model with too many parameters, and constraining

these parameters manually would require a large number of

parameter couplings. Variation of the layer thickness over

macroscopic areas on the sample leads to incoherent averages

of reflectivity curves. In this situation the spec_inhom model

can be used to change the layer parameters automatically from

the bottom to the top of the stack, as well as to perform an

incoherent sum over sample thickness variations.

Thickness variation can be modeled using global sample

parameters with a Gaussian profile, or different functions like

an empirical shape based on pulsed laser deposition plume

profiles as described by Glavic (2012, ch. 3.5.7). Roughness

and thickness gradients can either be applied to a complete

stack of layers or be defined on a per-layer basis if, for

example, interdiffusion only affects one interface in the stack.

The roughness increase can be either linear or as the square

root of the layer number to model root-mean-square (r.m.s.)-

like increases. A gradient for material density can also be

applied. An example application of the model can be found in

the work of Glavic et al. (2016), modeling thin NdMnO3/

SrMnO3 superlattices with 40 repetitions and varying interface

roughness.

Additional stack parameters allow the user to transform the

superlattice into a neutron supermirror sequence using either

the simplified analytical model from Schelten & Mika (1979)

or an iterative technique (Hayter & Mook, 1989). This allows

the simple definition of model systems with very few para-

meters describing up to several thousand layers to find the

reason for reflectivity deviations or to try new material

combinations.

3.3. Model performance

Python combined with the NumPy library (https://numpy.

org/) has established itself as an efficient computing platform

for data analysis. NumPy can compensate most of the short-

comings that Python, being a interpreted language, has when

compared with fast compiled languages like C, C++ or

Fortran. Well written NumPy implementations are typically

two to ten times slower than compiled code, which is sufficient

for many applications.

To improve the speed in GenX further, we have used

Numba (Anaconda, 2021) which uses a JIT compiler to

increase the speed of the code. This has been done for parts of

the footprint and resolution correction, the reflectivity kernel

using the Parratt formula (Parratt, 1954), the neutron matrix

method (Blundell & Bland, 1992), and expensive complex-

number sums for surface diffraction and distorted wave Born

approximation calculations for off-specular scattering from

roughness. These algorithms have been profiled to use more

than 90% of the total computation time. An extension of

Numba can also deal with GPU computing parallelization

using the CUDA programming interface, which is imple-

mented as an alternative. As the possible gain depends

strongly on hardware and model complexity the user can

choose to activate it. For compatibility, all NumPy imple-

mentations are still included in the GenX libraries and used

automatically if Numba is not available.

In Fig. 7 we show examples of the performance gains for a

relatively complex model of 202 layers calculated for 4000

data points on different platforms (all results can be found in

the spreadsheet in the supporting information, Supplement 1).

This is comparable to real-world fitting problems where GenX

computer programs

J. Appl. Cryst. (2022). 55, 1063–1071 Glavic and Björck � GenX 3 1067

Figure 6
An example of an adaptive layer segmentation model with three
Elements, E1–E3. The three Elements with nuclear SLDs in E1 and E2
and magnetic SLD in E3 are (a) shown separately and (b) shown in
combination and segmentation. The central layer in E1 is defined as a
magnetic void, negating the magnetic SLD in this region of the combined
model.



was tangibly slowed down. The script for running these timings

is included with the GenX source under tests/numba_

performance.py.

The results show that all Numba implementations out-

perform NumPy-based functions even when executed in a

single thread. The gain in performance for the neutron matrix

method, which is always slower than Parratt’s algorithm, is

generally greater. In both cases we also observe that the gain

on Linux-based systems is smaller, which we attribute to the

generally lower performance of NumPy functions on the MS

Windows binaries we have used. GPU functions have a

significant performance gain compared with the single-core

CPU implementation, although the improvement is lower than

expected and mostly comparable to using multiple CPU cores.

For model fitting the user has the choice between using a

single Python process (multiple Numba threads) with CPU or

GPU and using the multiprocessing library. The implementa-

tion will lower the number of cores used for Numba functions

for optimal performance and, if GPU computation is chosen,

will set aside a single process for GPU calculations while using

the CPU cores for all other simulations. Each parameter set of

a generation is divided between the processes using asyn-

chronous map functions so that faster processes (like GPU

computation) have no unnecessary idle times. If GenX is used

from the command line, models can be fitted in parallel using

the message parsing interface, which is usually available on

clusters and supercomputers, providing yet another way of

scaling the computations.

4. Parameter statistics

The primary reason for fitting models to collected data is to

retrieve physical parameters for the measured sample. It is

thus important to estimate the uncertainty in the resulting fit

parameters. A rough estimation of errors after a GenX fit with

DE was implemented early on, using the set of parameter

values from all generations and filtering those that lead to a

limited increase in the FOM (default 5%). This method has

the advantage of being applicable to any FOM and giving

independent errors for a variety of parameters in positive and

negative directions, but it only gives a relative measure and

has no rigorous statistical basis. Traditionally, for gradient

descent methods like the Levenberg–Marquardt (LM) algo-

rithm (Marquardt, 1963; Levenberg, 1944) the uncertainty and

covariance estimate are based on the Jacobian matrix calcu-

lated at the point of convergence. This technique requires

running the algorithm for the final minimization and is

implemented in GenX when the ‘Calculate errorbars’ action is

executed after an LM fit.

computer programs

1068 Glavic and Björck � GenX 3 J. Appl. Cryst. (2022). 55, 1063–1071

Figure 7
Measured performance gains provided by Numba implementation in different configurations. The data used were computed for 4000 data points and a
202 layer sample. Colors represent the computing hardware configuration. The first two blocks represent the improvement from NumPy to single-thread
Numba in the JIT version, the middle two blocks show the improvement when using all available cores compared with single-thread Numba and the last
two show the gain from single-threaded CPU to GPU implementation.

Figure 8
The GenX dialog for parameter uncertainty determination. On the left-
hand side is the table of parameter values, errors and covariance matrix
entries, and on the right is a logarithmic probability plot for a pair of
parameters.



A more recent alternative for statistical uncertainty esti-

mation and analysis is based on the likelihood function of

parameter ensembles from Markov-chain Monte Carlo

(MCMC) simulations (Vrugt et al., 2008; Schoups & Vrugt,

2010). An implementation of this technique for model fitting

and evaluation is the Differential Evolution Adaptive Metro-

polis (DREAM) algorithm that is provided by the Bumps

library (Kienzle et al., 2021). It produces estimates of para-

meter errors and the covariance matrix, and allows prob-

abilities to be visualized for parameter pairs. In GenX the

estimation can be done after any refinement by generating

new MCMC histories or using results from a previous refine-

ment with the Bumps optimizer. The ‘Error Statistics’ action

will open the dialog shown in Fig. 8, allowing the user to

choose the population size for the MCMC simulation, the

number of parameter sets to be used for the estimate and the

burn parameter defining the number of iterations to run the

algorithm before collecting statistics.

The default values of a population size of 2Npars + 2, 104

samples and burn = 200 should be sufficient to estimate

uncertainties and possible cross correlations. For publication,

an increase in the sample size by a factor of 10 to 100 is

encouraged. For the example shown in Fig. 8 and Table 1 the

default sample size, 50� smaller than in the figure and that

could be evaluated in a few seconds, only showed deviations of

�10%.

Both the Jacobian matrix approach with LM and the

MCMC method require the use of error-weighted �2 as the

FOM to produce valid uncertainties. For many reflectivity data

sets, mostly from X-ray measurements, this can lead to issues

with the refinement caused by systematic/instrumental errors

from the experiment. GenX implements extra functions to

include some of these effects in the data analysis, which are

described in the following section.

5. Experimental errors

It is a well known problem in reflectometry that the infor-

mation of the measurement is spread over many orders of

magnitude in intensity, and this leads to issues in refining to a

�2 FOM as relative counting errors can be very different

throughout the data set. This issue is very common for X-ray

reflectivity, as measurements are often done with the same

counting time for each point while the intensity varies over six

or more orders of magnitude. In this case, the deviations of the

data from a perfect model are dominated by experimental

errors rather than the counting statistics. It has therefore been

an established practice for these data sets to be fitted using the

logarithmic difference without including error bars

(Wormington et al., 1999).

For a rigorous statistical treatment a FOM that does not

include data uncertainties is not suitable. We have introduced

some functionality into GenX to take into consideration the

most common experimental errors for existing data sets to

solve this problem. Most of these calculations modify the error

bars of the data points and are thus, in principle, applicable to

any analysis of the data independent of software.

Instrumental errors, often the dominant experimental

errors, can be categorized into two classes, global deviations

that change the measurement result over many points and

point-by-point errors. While the former can best be modeled

in the data refinement or corrected during data reduction, the

latter lead to actual loss of information, as the data do not

contain any correlations that could allow the derivation of the

value of the experimental deviation. It is therefore optimal to

describe experimental errors with a global impact as special

fitting parameters and point-by-point errors as a correction to

the �2 calculation. If the model does not yet describe the

source of a global error, one can fall back to include these in

the error bars to improve the �2 accuracy, but the user needs

to be aware of possible issues arising from the correlated

nature of these errors.

For reflectometry, assuming that the experiment was carried

out correctly, the most common experimental errors are

deviations of the reflection angle and deviations from the

theoretical footprint correction due to variation over the beam

cross section and linear offset of the sample position. We

discuss these in detail in the supporting information

(Supplement 2) for the example of a laboratory X-ray

reflectometer with a nominally square-shaped beam. Most of

these considerations are applicable to other instruments or

sources of experimental errors as well.

The above-mentioned effects of step error and footprint can

be included in GenX using three functions that can be used to

modify the error values:

rms(*sigmas). Calculates the root-mean-square as

rmsð�1; �2; . . . ; �nÞ = ð
Pn

i¼1 �
2
i Þ

1=2.

dydz(). Returns the numerical derivative from the data

points. See the supporting information (Supplement 2) for

details.

fpe(xmax, oset=0, inhom=0, steps=10). Returns

the footprint error for a given theoretical point of full

coverage xmax , the � of the sample offset relative to beam size

and the relative beam inhomogeneity with dominant sub-

beams (N) as inhom_steps.

In the example SuperAdam_SiO_systematic_

errors.hgx that is distributed with GenX the total error is

calculated using a step error of 6 � 10�4 �, a sample offset of

10% beam size and 25% inhomogeneity as

e¼rmsðsqrtð1=detþ 1=monÞ � det=mon;

0:0006 � dydxðÞ;fpeð0:034;0:1;0:25ÞÞ

computer programs

J. Appl. Cryst. (2022). 55, 1063–1071 Glavic and Björck � GenX 3 1069

Table 1
Comparison of error estimation in GenX using the three refinement
methods, differential evolution (DE), Levenberg–Marquardt (LM) and
Bumps, on the experimental errors example model SuperAdam_SiO_
systematic_errors.hgx.

Parameter GenX DE LM Bumps

SiO d 1.2 6.7 � 10�1 5.0 � 10�1

SiO b 2.0 � 10�1 5.8 � 10�2 7.5 � 10�2

SiO � 7.1 � 10�1 2.5 � 10�1 3.4 � 10�1

Substrate � 2.1 1.0 1.1
Instrument background 1.9 � 10�6 5.6 � 10�7 7.2 � 10�7



A calibration error in the reflection angle can be fitted using

the tthoff instrument parameter with a custom systematic

error parameter that can be created similarly to other user

parameters:

cp:new sys errðname;value;errorÞ

With such corrected standard deviations, a fit conducted

with �2 as the FOM yields similar results to a logarithmic

refinement. Using the standard counting error does not give

satisfactory results – they deviate from the data in the larger

half of the q range.

6. Conclusions

Model flexibility paired with usability have been the key

properties that have made GenX attractive to the reflectivity

and surface scattering communities. We have built on these

strengths by adding an even simpler to use interface for

reflectivity models, as well as new advanced functionalities for

complex model building and statistical analysis. The imple-

mentation of error corrections for experimental uncertainties

can already improve the quality of the scientific results and we

will address experimental issues such as the impact of instru-

ment component imperfections for laboratory and large-scale

instruments, as well as sample shape, in more detail in a future

publication. We have implemented the first step towards more

transparent data analysis according to FAIR principles

(Wilkinson et al., 2016), closely following the recent devel-

opments started by the community within ORSO (Arnold et

al., 2021).

With continuous development efforts we hope that GenX

can continue to be a standard package used for data analysis in

this field. The software is developed open source and any

contribution from the community is welcome. The code is

available at https://sourceforge.net/projects/genx and https://

github.com/aglavic/genx.

7. Related literature

For further literature related to the supporting information,

see D’Agostini (1994).

Acknowledgements

GenX as a program would not have become a widely used tool

without an active user community that provided feedback on

the software. During the first ten years the groups of Andrew

Wildes (Institut Laue–Langevin), Tom Hase (University of

Warwick) and Björgvin Hjörvarsson (Uppsala University)

provided instrumental feedback as well as being ambassadors

for GenX. Jochen Stahn (Paul Scherrer Institut) provided the

idea for the SimpleReflectivity plugin and many suggestions for

improved user interfaces. We also thank Andrew Caruana

(ISIS Neutron and Muon Source, STFC) for introducing the

Bumps package and for useful discussions. However, there are

also numerous users who have, during these ten years, come

up with ideas, suggestions, bug reports and other contributions

that have helped to shape the software.

References

Anaconda (2021). Numba – A Just-In-Time Compiler for Numerical
Functions in Python, http://numba.pydata.org.

Arnold, T., Glavic, A. G. & Cooper, J. F. K. (2021). Neutron News,
32(1), 7–8.

Björck, M. & Andersson, G. (2007). J. Appl. Cryst. 40, 1174–1178.
Björck, M., Brewer, M. S., Arnalds, U. B., Östman, E., Ahlberg, M.,

Kapaklis, V., Papaioannou, E. T., Andersson, G., Hjörvarsson, B. &
Hase, T. P. A. (2014). J. Surf. Interfaces Mater. 2, 24–32.

Björck, M., Schlepütz, C. M., Pauli, S. A., Martoccia, D., Herger, R. &
Willmott, P. R. (2008). J. Phys. Condens. Matter, 20, 445006.

Blundell, S. J. & Bland, J. A. C. (1992). Phys. Rev. B, 46, 3391–3400.
Cassidy, A., Jørgensen, M. R. V., Glavic, A., Lauter, V., Plekan, O. &

Field, D. (2021). Chem. Commun. 57, 6368–6371.
D’Agostini, G. (1994). Nucl. Instrum. Methods Phys. Res. A, 346, 306–

311.
Fullerton, E. E., Schuller, I. K., Vanderstraeten, H. & Bruynseraede,

Y. (1992). Phys. Rev. B, 45, 9292–9310.
Glavic, A. (2012). PhD thesis, RWTH Aachen, Germany.
Glavic, A., Dixit, H., Cooper, V. R. & Aczel, A. A. (2016). Phys. Rev.

B, 93, 140413.
Glavic, A. & ORS (2021). SLDDB: Open Reflectometry Standards

Organisation Scattering Length Density Database, https://
slddb.esss.dk/slddb/.

Gražulis, S., Daškevič, A., Merkys, A., Chateigner, D., Lutterotti, L.,
Quirós, M., Serebryanaya, N. R., Moeck, P., Downs, R. T. & Bail,
A. L. (2011). Nucleic Acids Res. 40(D1), D420–D427.

Hayter, J. B. & Mook, H. A. (1989). J. Appl. Cryst. 22, 35–41.
Kienzle, P., Krycka, J., Patel, N. & Sahin, I. (2011). Refl1D. University

of Maryland, College Park, Maryland, USA. https://github.com/
reflectometry/refl1d.

Kienzle, P., Krycka, J., Patel, N. & Sahin, I. (2021). Bumps. Version
0.8.1. https://bumps.readthedocs.io/en/latest/index.html.

Koutsioubas, A. (2021). J. Appl. Cryst. 54, 1857–1866.
Levenberg, K. (1944). Q. Appl. Math. 2, 164–168.
Macke, S., Radi, A., Hamann-Borrero, J. E., Verna, A., Bluschke, M.,

Brück, S., Goering, E., Sutarto, R., He, F., Cristiani, G., Wu, M.,
Benckiser, E., Habermeier, H. U., Logvenov, G., Gauquelin, N.,
Botton, G. A., Kajdos, A. P., Stemmer, S., Sawatzky, G. A.,
Haverkort, M. W., Keimer, B. & Hinkov, V. (2014). Adv. Mater. 26,
6554–6559.

Maranville, B. B. (2017). J. Res. Natl Inst. Standards Technol. 122, 34.
Marquardt, D. (1963). J. Soc. Ind. Appl. Math. 11, 431–441.
Mogi, M., Nakajima, T., Ukleev, V., Tsukazaki, A., Yoshimi, R.,

Kawamura, M., Takahashi, K. S., Hanashima, T., Kakurai, K.,
Arima, T. H., Kawasaki, M. & Tokura, Y. (2019). Phys. Rev. Lett.
123, 016804.

Nelson, A. R. J. & Prescott, S. W. (2019). J. Appl. Cryst. 52, 193–200.
Parratt, L. G. (1954). Phys. Rev. 95, 359–369.
Pospelov, G., Van Herck, W., Burle, J., Carmona Loaiza, J. M.,

Durniak, C., Fisher, J. M., Ganeva, M., Yurov, D. & Wuttke, J.
(2020). J. Appl. Cryst. 53, 262–276.

Schelten, J. & Mika, K. (1979). Nucl. Instrum. Methods, 160, 287–294.
Schlepütz, C. M. (2009). PhD thesis, University of Zurich, Switzer-

land.
Schoups, G. & Vrugt, J. A. (2010). Water Resour. Res. 46, W10531.
Spencer, C. S., Gayles, J., Porter, N. A., Sugimoto, S., Aslam, Z.,

Kinane, C. J., Charlton, T. R., Freimuth, F., Chadov, S., Langridge,
S., Sinova, J., Felser, C., Blügel, S., Mokrousov, Y. & Marrows, C. H.
(2018). Phys. Rev. B, 97, 214406.

Stepanov, S. A. & Sinha, S. K. (2000). Phys. Rev. B, 61, 15302–15311.
Vignaud, G. & Gibaud, A. (2019). J. Appl. Cryst. 52, 201–213.
Vrugt, J. A., ter Braak, C. J. F., Clark, M. P., Hyman, J. M. &

Robinson, B. A. (2008). Water Resour. Res. 44, W00B09.

computer programs

1070 Glavic and Björck � GenX 3 J. Appl. Cryst. (2022). 55, 1063–1071

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB24


Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G.,
Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos,
L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas,
M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R.,
Gonzalez-Beltran, A., Gray, A. J., Groth, P., Goble, C., Grethe, J. S.,
Heringa, J., ’t Hoen, P. A., Hooft, R., Kuhn, T., Kok, R., Kok, J.,
Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B.,

Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes,
E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson,
M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A.,
Wittenburg, P., Wolstencroft, K., Zhao, J. & Mons, B. (2016). Sci.
Data, 3, 160018.

Wormington, M., Panaccione, C., Matney, K. M. & Bowen, D. K.
(1999). Philos. Trans. R. Soc. London. Ser. A, 357, 2827–2848.

computer programs

J. Appl. Cryst. (2022). 55, 1063–1071 Glavic and Björck � GenX 3 1071

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5118&bbid=BB26

