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A general method to invert parameter distributions of a polydisperse system

using data acquired from a small-angle scattering (SAS) experiment is

presented. The forward problem, i.e. calculating the scattering intensity given

the distributions of any causal parameters of a theoretical model, is generalized

as a multi-linear map, characterized by a high-dimensional Green tensor that

represents the complete scattering physics. The inverse problem, i.e. finding the

maximum-likelihood estimation of the parameter distributions (in free form)

given the scattering intensity (either a curve or an image) acquired from an

experiment, is formulated as a constrained nonlinear programming (NLP)

problem. This NLP problem is solved with high accuracy and efficiency via

several theoretical and computational enhancements, such as an automatic data

scaling for accuracy preservation and GPU acceleration for large-scale multi-

parameter systems. Six numerical examples are presented, including both

synthetic tests and solutions to real neutron and X-ray data sets, where the

method is compared with several existing methods in terms of their generality,

accuracy and computational cost. These examples show that SAS inversion is

subject to a high degree of non-uniqueness of solution or structural ambiguity.

With an ultra-high accuracy, the method can yield a series of near-optimal

solutions that fit data to different acceptable levels.

1. Introduction

Small-angle scattering (SAS) is an experimental technique to

probe the microstructure of a material sample by analysing the

scattering pattern arising from the diffraction of incident

radiation observed at small angles of emergence. As a

stochastic approach, SAS can deliver statistically significant

information about the shape, size, orientation and contrast of

inhomogeneities from nano- to micrometre scales. Commonly

used radiation sources include X-rays (SAXS, for a structural

scale from 1 to 100 nm), neutrons (SANS, also from 1 to

100 nm) and light (SALS, from 100 nm to 1 mm). See Guinier

& Fournet (1955), Feigin & Svergun (1987), Brumberger

(2013), Lombardo et al. (2020) and Jeffries et al. (2021) for

detailed overviews on SAS experimentation, data analysis and

applications.

Since Lord Rayleigh described the scattering amplitude of a

uniform sphere in the early 1900s (Rayleigh, 1914), an abun-

dance of theoretical SAS models have been developed based

on deterministic or stochastic wave-scattering theory. The aim

of SAS data analysis can be summarized as being to determine

a theoretical model that best explains the observed scattering

intensity. This task can be roughly divided into two steps:

model-type selection and parameter inversion.
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In model-type selection, one attempts to classify the

observed data under a correct model type. The solution is

mostly empirical, facilitated by one’s past experience and a

priori knowledge about the test sample. Providing a way of

gathering ‘experience’ and ‘knowledge’ on a computer,

machine learning has recently been employed to solve such

classification problems, e.g. by Franke et al. (2018), Archibald

et al. (2020), Do et al. (2020), Ikemoto et al. (2020) and

Tomaszewski et al. (2021). In these studies, an end-to-end

machine-learning model (either classical or a deep neural

network) is trained with synthetic data generated by surrogate

modelling; the trained model can then be used to classify

experimental data within the regimes of the training set.

This article is concerned with the second task, parameter

inversion, i.e. finding the best data-fitting parameters of a

selected theoretical model. Depending on whether the para-

meters are scalar valued or distributional, we are dealing with

a monodisperse or a polydisperse system, respectively. Poly-

dispersity is naturally implied in the context of parameter

inversion, as a perfect monodisperse system can be trivially

optimized by a brute-force search. Technically, we can cate-

gorize the existing methods for SAS inversion into three kinds:

(i) physics driven, (ii) inversion driven, and (iii) data driven or

machine-learning based.

The physics-driven methods refer to those proposed in the

earlier days that focus on mathematical explorations (parti-

cularly functional approximations) of the scattering physics.

Some representative examples include the indirect Fourier

transformation (Glatter, 1977; Moore, 1980; Hansen &

Pedersen, 1991; Svergun, 1991; Brunner-Popela & Glatter,

1997; Weyerich et al., 1999), direct structural analysis (Glatter,

1988; Mittelbach & Glatter, 1998), the Fedorova–Schmidt

analytical method for dilute systems (Fedorova & Schmidt,

1978; Botet & Cabane, 2012; Ciccariello, 2014), and the

maximum entropy method or MaxEnt (Potton et al., 1988a,b).

These methods are mostly aimed at size-distribution inversion,

while a few are also available for shape and orientation

determination. Some of them are still in active use, as facili-

tated by their visual implementations in software packages

such as SASfit (Breßler et al., 2015), ATSAS (Manalastas-

Cantos et al., 2021), Irena (Ilavsky & Jemian, 2009) and

GSAS-II (Toby & Von Dreele, 2013). They also clarify some

fundamental questions in SAS data analysis, such as particle

interaction in a high-concentration system (Brunner-Popela &

Glatter, 1997; Weyerich et al., 1999). Nevertheless, relying on

the scattering physics, these methods are mostly model based,

i.e. applicable to a certain model (such as polydisperse

spheres) or data type (such as 1D intensity curves). Mean-

while, their recent development towards more complex

models (such as coupled size and orientation inversion) and

data types (such as 2D intensity images) has notably slowed

down, with attention shifting to model-free methods that

utilize state-of-the-art general-purpose optimization techniques.

The inversion-driven methods are those emphasizing a

physics-independent formulation of the inverse problem.

Disentangling physics (or forward modelling) from inversion

benefits both developers and users. As a developer, one can

focus on solving one inverse problem with modern optimiza-

tion techniques while implementing all kinds of models in a

unified manner; while as a user, one no longer relies on some

abstruse theory to understand and use these methods. Two

community software packages are of this kind: SasView

(Doucet et al., 2021) and McSAS (Bressler et al., 2015).

SasView is built on a comprehensive Python library

(SasModels) for SAS modelling and inversion. It solves the

inverse problem by nonlinear programming (NLP),

supporting both gradient-based and non-gradient optimiza-

tion techniques. However, SasView requires the parameter

distributions to take certain functional forms, such as Gaus-

sian, log-normal and their combinations, whereby only a

handful of variables are optimized (e.g. the mean and variance

of a Gaussian). Such a restriction significantly reduces the

scale of the inverse problem compared with free-form inver-

sion, but at the cost of its data-fitting ability and ease of use (as

users must correctly guess the functional forms). McSAS is a

Python program used to invert the parameter distributions in

free form by means of Monte Carlo sampling. Given infinite

time, the Monte Carlo method can deliver the true posterior

distributions of the variables. However, it suffers from a search

space (and thus a computational cost) that quickly explodes as

the number of variables grows. Furthernore, even given a long

search time, the Monte Carlo method is unlikely to find the

optimal solution without being guided by any gradient infor-

mation. These general pitfalls limit the computational

performance and accuracy of McSAS.

The data-driven methods are those based on machine-

learning techniques. Regarding SAS inversion as a high-

dimensional nonlinear regression problem, one can train a

supervised model with its input and output being the scat-

tering intensity and the model parameters, respectively, using

synthetic data generated by surrogate modelling. Such a

workflow has been adopted in a few recent studies (Archibald

et al., 2020; Demerdash et al., 2019; He et al., 2020; Van Herck

et al., 2021). Clearly, a supervised learning-based solution is

highly problem specific, not only model based but also

restricted to a finite sub-parameter space from which the

training set is sampled. This sub-parameter space must cover

the real data of interest but cannot grow very large, to avoid an

exploding training set. Though lacking some generality,

machine learning is still a promising tool for problem solving

in SAS experimentation and data analysis (Chen et al., 2021).

In this article, we describe our new method for SAS para-

meter inversion, which belongs to the inversion-driven kind.

Our formulation of the inverse problem is physics indepen-

dent, covering theoretical models with an arbitrary number of

polydisperse parameters and both 1D and 2D intensity

observations. Employing a versatile trust-region method as the

underlying NLP solver, we simultaneously optimize all the

polydisperse parameters in free form, achieving high accuracy

and efficiency based on a series of theoretical and computa-

tional enhancements.

Our method has been implemented as an open-source

Python library called FFSAS (https://github.com/stfc-sciml/

ffsas, including the code and data to reproduce all the figures
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mentioned in Examples) (FF standing for free form). After

describing our method, we will conduct synthetic tests and

solutions to real data sets acquired from X-ray and neutron

experiments, comparing FFSAS with Irena (Ilavsky & Jemian,

2009), SasView (Doucet et al., 2021) and McSAS (Bressler et

al., 2015) from many aspects.

2. Methods

2.1. Forward problem

Our forward problem is to calculate the scattering intensity

given a theoretical SAS model and its parameter distributions.

We generalize this problem as a high-dimensional multi-linear

map so as to benefit from a physics-independent formulation

of the inverse problem.

Consider a SAS model with N polydisperse parameters: 1p,
2p, . . . , Np. For instance, N = 1 for spheres (the only parameter

being radius) and N = 4 for cylinders (the four parameters

being radius, length and two angles of orientation with respect

to the beam). We discretize the parameter space of kp by a

vector of size nk, kp ¼ fkp1;
kp2; . . . ; kpnk

g 2 R
nk . Let

kw ¼ fkw1;
kw2; . . . ; kwnk

g 2 R
nk be the density distribution of

kp, that is, kwi being the number fraction of kpi, subject to kwi�

0 and
P

i
kwi ¼ 1. The N density distributions, kw, are input for

the forward problem and output for the inverse problem.

The scattering intensity I is a function of M scattering

vectors, that is, I ¼ Ið1q; 2q; . . . ;MqÞ. Discretizing kq by

vectors kq ¼ fkq1;
kq2; . . . ; kqmk

g 2 R
mk, we obtain a discre-

tized intensity as an Mth rank tensor, I 2 Rm1�m2�����mM with

Ii1i2...iM
¼ Ið1qi1

; 2qi2
; . . . ;MqiM

Þ. In real SAS experiments, M

can be 1 or 2, corresponding to I being a 1D curve or a 2D

image, respectively.

Having the above definitions, the forward problem can be

formulated as the following multi-linear map (Einstein

summation convention is not adopted in this article):

Ii1i2...iM
¼ �

P
j�

Gi1i2...iM j1 j2...jN
1wj1

2wj2
. . . NwjN

þ b; ð1Þ

where � and b are two scalars, and Gi1i2...iM j1 j2...jN
is a tensor of

rank (M + N). Physically, G represents the square of the

scattering amplitude, normally denoted by F 2. For a dilute

system, Gi1i2...iM j1 j2...jN
equates to the F 2 produced by a mono-

disperse system with parameters ð1pj1
; 2pj2

; . . . ; NpjN
Þ and

observed at point ð1qi1
; 2qi2

; . . . ;MqiM
Þ in the q space, also

known as the form factor. Because G defines the local beha-

viour of a linear reaction system, we call it the Green tensor of

polydispersity. Scalar � is the total volume fraction of inho-

mogeneities divided by the average volume of inhomogene-

ities and scalar b is the source background. In the inverse

problem, we will solve kw, � and b as variables, assuming that G

provides a complete representation of the scattering physics.

Take polydisperse spheres with 1D data, for example: we

have M = N = 1, with radius r being the only model parameter.

Green’s tensor for a dilute system (Rayleigh, 1914) can be

shown as (with 1p and 1q written as r and q, respectively)

Gij ¼ 3��vj

sin qirj

� �
� qirj cos qirj

� �
qirj

� �3

" #2

; ð2Þ

where vj is the volume of a sphere, vj ¼ ð4=3Þ�r3
j , and �� is the

difference between the scattering-length density of the sphe-

rical inclusions and that of the matrix. When the contrast ��2

is unknown (as is often the case in practice), one can ‘merge’ it

into � for inversion by computing G with �� = 1; in that case,

the contrast and the total volume fraction form a pair of non-

separable trade-offs via their product �.
Our forward formulation (and thus the subsequent inverse

formulation) can cover any physical or experimental effects

conveyable by the Green tensor. In particular, we emphasize

the following four effects:

(a) Particle interaction. In a high-concentration system, the

multi-scattering effects among particles become unignorable.

According to one of the early established decoupling theories,

such multi-scattering effects can be built into equation (1) via

certain analytical corrections of the G determined by local

monodispersity. The most commonly used theory is the ‘G =

PS’ factorization (Brunner-Popela & Glatter, 1997; Weyerich

et al., 1999), where P is the form factor and S is the structure

factor. For a high-concentration system, G may no longer be a

constant but involve a few extra variables to be inverted

jointly with kw, � and b, such as the effective size and volume

fraction of the inclusions.

(b) Resolution functions. To compensate for the experi-

mental effect of q-resolution smearing, one can apply a reso-

lution function to correct the theoretical intensity prediction

(Pedersen et al., 1990). Obviously, any correction of the

intensity prediction can be directly integrated into G. In

practice, a linear correction is usually applied: assuming M = 1

for simplicity, G0ij1j2...jN
¼
P

k WikGkj1j2...jN
, where the coeffi-

cients Wik are determined by the q vector (and its variance if

available) in several ways; see the SasView (Doucet et al.,

2021) documentation for details.

(c) Contrast-varying systems. From an inversion viewpoint,

equation (1) also covers a polydisperse system with a varying

contrast because the intensity I simply scales with the contrast

�. For example, given a system with two populations of spheres

characterized by (�A, wA) and (�B, wB), one can always find its

‘uniform-contrast equivalence’ (�U, wU) such that �UwU =

�AwA + �BwB, where �U ¼
P
ð�AwA þ �BwBÞ and wU = (�AwA +

�BwB)/�U. In short, a uniform-contrast system can be inter-

preted as an infinite number of contrast-varying systems (if

only comparing their induced intensities), so an inversion with

multiple contrasts (� values) is extremely underdetermined

and makes little sense. It does make sense, however, for a

heterogeneous system that involves two or more forward

models (e.g. a mixture of spheres and cylinders) because their

Green tensors differ. Such heterogeneous systems are not

considered in this article.

(d) Non-uniform background. Sometimes a non-uniform

source background may be required to better fit the

intensity data. For such cases, instead of having a scalar b in

equation (1), we can write the background as a function of the
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scattering vectors, i.e. bi1i2...iM
¼ bð1qi1

; 2qi2
; . . . ;MqiM

Þ. Such a

background function cannot be too expressive; otherwise, the

intensity data may be fitted solely by the background without

optimizing the parameter distributions. In practice, a power

law is frequently used (Ilavsky & Jemian, 2009), i.e.

log bi ¼ A log qi þ B for M = 1, where the coefficients A and B

can be given by the user or inverted jointly with kw and �.

2.2. Inverse problem

From a SAS experiment, one can observe the mean and

standard deviation of the scattering intensity, i.e. �i1i2 ...iM
and

�i1i2...iM
at ð1qi1

; 2qi2
; . . . ;MqiM

Þ. Given a target SAS model and

its parameter space kp, the Green tensor G can be determined.

The inverse problem is to optimize kw, � and b so that Ii1i2...iM

determined by equation (1) can best explain the observations,

given l, r and G as input data.

To quantify the goodness of fit, it is natural to maximize the

following likelihood function PNðl;r2ÞðIÞ:

PNðl;r2ÞðIÞ ¼
Y

i�

1

�i1i2...iM
2�ð Þ1=2

exp �
�2

i1i2...iM

2

� �
: ð3Þ

Here �i1i2...iM
denotes the r-normalized intensity misfit,

�i1i2...iM
¼

Ii1i2...iM
� �i1i2...iM

�i1i2...iM

; ð4Þ

with Ii1i2...iM
given by equation (1). The normalization by r

takes uncertainty of the data into account: points with larger

variances will contribute less to the likelihood. It also serves

the purpose of regularization: the values of I may span several

orders of magnitude for widely ranged scattering vectors,

making the absolute error kI� lk2 insensitive to the smaller

values. When r is unavailable from an experiment, one can use

l to take its place in equation (4); doing so, one assumes that

the measurement error scales with the measured amplitude at

a detector.

By taking the logarithm of PNðl;r2ÞðIÞ, one can show that the

above maximum-likelihood problem is equivalent to mini-

mizing the squared Frobenius norm of ���, k���k2
¼
P

i�
�2

i1i2...iM
,

also known as the �2 error. Eventually, the inverse problem

can be formulated as the following constrained NLP, here

named NLP-w:

min
kw2Rnk ;8k;�;b2R

k���k2; ð5aÞ

subject to

kwi � 0; 8k; i; ð5bÞ

P
i

kwi ¼ 1; 8k; ð5cÞ

where ��� is determined by equation (4). Equation (5a) means

that we aim to find the values of kw, � and b that minimize

k���k2, subject to the constraints in equations (5b) and (5c) that

require each kw to have non-negative elements summing to 1.

The presence of a structure factor or a non-uniform back-

ground may introduce extra variables into NLP-w, which can

be handled by a general optimization algorithm in the same

manner as kw, � and b. The minimizer of NLP-w is called the

maximum-likelihood estimator (MLE), in light of equation (3).

NLP-w is an ill-posed large-scale NLP with mixed equality

and inequality constraints. To solve it with high accuracy and

efficiency, we have implemented several theoretical and

computational enhancements. They are all elaborated in

Appendix A; here we only take a quick tour. To make NLP-w

solvable, we first introduce a slack variable to eliminate the

inequality constraints in equation (5b), turning NLP-w into

another NLP named NLP-s (Appendix A1). Next, we intro-

duce an automatic approach to rescale the input data for

accuracy preservation (Appendix A2). This makes our method

highly accurate, as we will show in Examples. Finally, to solve

NLP-s with the auto-scaled data, we use the Byrd–Omojokun

trust-region method (Lalee et al., 1998) implemented in SciPy

(Virtanen et al., 2020), with its computational performance

boosted by two techniques: GPU-accelerated chunk compu-

tation (Appendix A3) and on-the-fly dimension reduction

(Appendix A4). A GPU is needed only for large-scale multi-

parameter problems; for a low-dimensional problem such as

size-distribution inversion of polydisperse spheres (N = 1),

even at an ultra-high resolution, our runtime is usually a few

seconds on a CPU.

2.3. Sensitivity and uncertainty

Once the MLE is found, we can further conduct sensitivity

and uncertainty analysis, both delivering important char-

acteristics of the solution. The sensitivity can indicate which

model parameters or parameter ranges are dominating the

locality of the MLE, while the uncertainty shows our confi-

dence in the MLE.

For sensitivity analysis, let X denote the flattened vector

containing all the variables, X = {kw, �, b} (with sizeP
k nk þ 2), and let J and H denote the Jacobian and Hessian

vectors, respectively, of k���k2 with respect to X, i.e.

J ¼ @k���k2=@X and H = @J/@X. Let X� be the minimizer of

NLP-w or the MLE. The normalized sensitivity at X� is then

determined by

Si ¼
X

j

HijXj

Jj

�����
X¼X�

: ð6Þ

With uncertainty analysis, we aim to determine the error bar

for each variable by back-propagating the observational error.

For a general nonlinear problem, a Monte Carlo sampling is

usually required to find the joint-posterior distribution of the

variables; linearizing this joint posterior at the MLE will give a

covariance matrix whose diagonal can be used as the error

bars (Tarantola, 2005). However, the forward problem of SAS,

equation (1), is special in that the intensity is a linear function

of each kw at the MLE, which enables us to determine this

linearized covariance matrix analytically.

Let kr denote the standard deviation (or error bar) of kw,

which can be computed using the following equation [see

equation (3.56) of Tarantola (2005)]:
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kr ¼
1

��
diag kGT C�1 kG

� ��1
h in o1=2

: ð7Þ

Here kG ¼ ½@G=@ðkwÞ�jX¼X� , i.e. the inner product of G with

all the MLE weights except kw�,

kGijk
¼

P
j�; j� 6¼ jk

Gij1 j2...jN
1w�j1

2w�j2 . . . Nw�jN ; ð8Þ

and C is the covariance matrix of the intensity observation,

which is diagonal with Cii ¼ �
2
i . In equation (8), the q

dimensions i1i2 . . . iM are flattened into one dimension i.

3. Examples

We implement our method as an open-source Python library

named FFSAS. In this section, we will present six examples to

demonstrate its usage and features, including three synthetic

recovery tests and three real data sets acquired from a SANS

or SAXS experiment. We will compare the solutions given by

FFSAS with those by three existing software packages: Irena

(Ilavsky & Jemian, 2009), SasView (Doucet et al., 2021) and

McSAS (Bressler et al., 2015).

3.1. Benchmark: spheres with an analytical bi-model size
distribution

In this example, we conduct a benchmark solution for

polydisperse spheres with a size distribution composed of two

analytical functions, one Gaussian and one Boltzmann, as

shown in Fig. 1(a) as the ‘Truth’. We compute the scattering

intensity using this size distribution, then assume a 20–30%

error at each data point to create a complete intensity

observation, as shown in Fig. 1(b) as the ‘Truth’. Regardless of

the assumed observational error, the MLE of the size distri-

bution is always the bi-model truth. Our task is to recover the

true w(r) from the true I(q) using FFSAS and the other three

codes. More details of the problem are given in the caption of

Fig. 1.

The solutions yielded by the four codes are shown in Fig. 1,

with their fitting errors and computational cost given in

Table 1. Generally speaking, the four solutions all deliver a

good intensity fit, as shown in Fig. 1(b). Let us evaluate them

more closely. The MaxEnt solution from Irena has the largest

�2 error, which is understandable as the objective function of

MaxEnt is not exactly �2 but the sum of it and another entropy

term. The largest misfits occur near the two peaks of w(r). To

achieve this reported accuracy, we need to decrease the

assumed observational error to 1%. The SasView solution is

more accurate in terms of both I(q) and w(r). It is the fastest

solution among the four, since we have informed SasView that

the target size distribution must contain a Gaussian and a

Boltzmann, so it only needs to optimize their peak locations

and widths. Similarly to SasView, McSAS achieves an inter-

mediate-high accuracy, with some large misfits occurring near

the two peaks; being sampling based, this solution is much

more expensive than the others. In comparison, FFSAS deli-

vers the highest-quality solution to this benchmark problem,

diminishing �2 to a near machine-epsilon level at a fast speed

while requiring no prior information or data simplification.

As a recovery test with a simple ground truth, this example

shows that FFSAS has the strongest data-fitting capability,

owing to our algorithmic enhancements (see Appendix A)

that have not been considered before. However, a solution

that better fits the data is not necessarily more physically
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Figure 1
A benchmark for size-distribution inversion of polydisperse spheres. (a)
shows the true and inverted size distributions; the truth is composed of
two analytical parts, a Gaussian on the left and a Boltzmann on the right,
with the radius ranging from 400 to 800 Å and discretized by 500 points.
(b) shows the true and fitted intensity curves, with q ranging from 10�3 to
1 Å�1 and discretized by 200 points in logarithmic scale; we add a 20–30%
error to the intensity observation (we use 3� for the error bars in this
plot). To obtain the SasView solution, we need to create a user-defined
model combining a Gaussian and a Boltzmann distribution, and set their
initial peaks close enough to the truth. For Irena (MaxEnt), we need to
decrease the observational error to 1% to achieve an accuracy
comparable to that of the other three solutions. The metrics are
summarized in Table 1.

Table 1
Fitting errors and computational cost of solutions given by the four codes.

The benchmark problem and the prerequisites for some of the solutions are
described in Fig. 1. The wt values were measured on a CPU.

Method �2
k�wk maxðj�wjÞ wt (s)

Irena (MaxEnt) 7 � 10�1 6 � 10�3 2 � 10�3 2
SasView 2 � 10�3 4 � 10�4 8 � 10�5 0.1
McSAS 2 � 10�4 7 � 10�3 2 � 10�3 200
FFSAS (ours) 9 � 10�13 4 � 10�4 2 � 10�4 3



sound. The reason for this is that SAS inversion is subject to a

high degree of structural ambiguity, which we will visualize

and discuss in later examples.

3.2. Spheres with a drastically varying size distribution

Much like the previous one, this example is a recovery test

for polydisperse spheres. However, here we make the problem

much more challenging by using a drastically varying

stochastic size distribution. The ground truth of the radius

distribution, wtrueðrÞ, and its induced scattering intensity,

ItrueðqÞ, are shown in Fig. 2. We attempt to recover wtrueðrÞ

using ItrueðqÞ as both the mean and standard deviation of the

intensity observation. Dominated by a short-wavelength large-

amplitude white noise, wtrueðrÞ can be recovered only with a

highly accurate inverse solver.

With FFSAS, we try four different resolutions (or bin

numbers) of the inverted radius distribution wfitðrÞ. The results

are shown in Fig. 2. Let us first compare the wfitðrÞ curves in

the left column. Using the resolution of wtrueðrÞ for wfitðrÞ,

FFSAS can exactly recover wtrueðrÞ (the third row). The wfitðrÞ

curves obtained at the lower resolutions behave well as

smooth interpolations of wtrueðrÞ; but those obtained at the

higher resolutions exhibit some overshooting. Even using the

resolution of wtrueðrÞ, Irena and McSAS can only yield a much

smoother wfitðrÞ (the last row). Now we look at the intensity fit

in the right column. Though the wfitðrÞ curves look quite

different, their quality of intensity fits visually look the same.

For example, the �2 error of the FFSAS solution is smaller

than that of the Irena solution by 1012, but their predicted

IfitðqÞ curves look similar.

The fact that distinct w(r) curves predict very similar I(q)

curves indicates the ill-posedness of the inverse problem: the

neighbourhood of the MLE is nearly flat (though convex),

leading to a high degree of non-uniqueness of solution or

structural ambiguity. This has important practical implications.

First, given an intensity observation with a certain noise level,

a solution closer to the MLE (or with a smaller �2) could be

less physically plausible because of overfitting. Regularizing

the �2 error with some additional constraints is one way of

selecting a solution near the MLE, such as MaxEnt (Potton et

al., 1988a,b), but regularization is also a subjective non-

physical choice. What we recommend is to provide a series of

solutions that fit the data to different acceptable levels, from

underfitting to overfitting, so that the user can select a solution
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Figure 2
A multi-resolution synthetic test on size-distribution inversion of polydisperse spheres. The left and right columns show the radius distribution w(r) and
the scattering intensity I(q), respectively. The resolutions of wtrueðrÞ and ItrueðqÞ are 300 and 2000, respectively. With FFSAS, we use four different
resolutions of the inverted radius distribution wfitðrÞ, and the results are shown in the first four rows. The last row shows the solutions from Irena
(MaxEnt) and McSAS, both using 300 as the resolution of wfitðrÞ. The wt values are measured on a CPU.



on the basis of other physical or empirical considerations.

However, entering the overfitting regime requires a highly

accurate inverse solver, and the lower the noise level is,

the more accurate the inverse solver needs to be. In this

example, our intensity data are noise free, for which only

FFSAS can approach the overfitting regime (�2
’ 10�12),

whereas the other codes mainly work in an underfitting regime

(10�4 < �2 < 100).

3.3. Cylinders with four polydisperse parameters

In this example, we demonstrate the solution of a large-

scale problem. Consider polydisperse cylinders with four

parameters: length l, radius r, angle from cylinder axis to beam

	 and rotation of cylinder axis about beam 
, all discretized by

40 points. The intensity observation is a 2D image, I = I(qx, qy),

with qx and qy both discretized by 120 points. Consequently,

the shape of the Green tensor is 120 � 120 � 40 � 40 � 40 �

40, occupying 295 GB of memory in double-precision floats.

So far as we know, this problem cannot be solved by any of the

existing codes for SAS data analysis.

We solve this problem in two steps. First, we conduct a

preparatory solution with a lower-resolution qx and qy (i.e.

using a decimated intensity image as the input), which can

provide a good initial guess for the original problem. Next,

starting from this initial guess, we conduct the high-resolution

inversion with on-the-fly dimension reduction (see Appendix

A4). The results in Fig. 3 show that the four parameter

distributions are all recovered with high accuracy. The solving

process has undergone reductions of dimension in the

sequence of 
, r, l and 	; after each reduction, a trust-region

iteration becomes roughly 40 times faster. The wall-clock time

(wt) is 	2.2 h using a GPU (including the preparatory solu-

tion), which would be increased by one to two orders of

magnitude without on-the-fly dimension reduction.

3.4. SANS from polydisperse spheres

This SANS data set is acquired from a 0.5%(v/v) charge-

stabilized polystyrene latex dispersed in a 1 mM aqueous

sodium chloride buffer made up in heavy water (Hellsing et al.,

2012). On the basis of a SasView model fit assuming poly-

disperse spheres, the authors reported a Gaussian distribution

ofNð724; 292ÞÅ for the particle sizes. They carried out certain

instrumental corrections in processing their data which,

because they do not elucidate them, we have been unable to

replicate here. Therefore, our results from SasView may

slightly differ from the published ones; however, this does not

hinder our purpose of method demonstration and comparison.

In this and the next example, we will use the volume-

weighted density distribution, as denoted by ŵwðrÞ,

ŵwðriÞ ¼ wðriÞvðriÞ=
P

j wðrjÞvðrjÞ, i.e. the normalized volume

fraction of inclusions. Compared with the number fraction

w(r), ŵwðrÞ is more physically meaningful (as it approximately

scales with the scattering amplitude) and is thus presented

more frequently as the final outcome of size-distribution

inversion. One can also directly use ŵwðrÞ as the variable for

inversion; in FFSAS, for example, one can do so simply by

using Gij /vj as the Green tensor, with Gij given by equation (2).

Whether w(r) or ŵwðrÞ will serve better as the inverse variables

depends on which of them is more regular across the radius

range of interest.

The intensity data and our results are shown in Fig. 4. Let

us first examine the radius distributions in Figs. 4(a) and

4(b). Fig. 4(a) displays the convergence of ŵwðrÞ in one FFSAS

run: as the trust-region iterations proceed, ŵwðrÞ becomes
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Figure 3
A large-scale synthetic test on size- and orientation-distribution inversion of polydisperse cylinders. The parameter distributions (truth and inverted) are
shown on the left, all discretized by 40 points. The intensity image is shown on the right (truth and fitted look identical), with qx and qy both ranging from
�1 to 1 Å�1 and discretized by 120 points. A preparatory solution with a low-resolution qx and qy (40 � 40) is first conducted to provide a good initial
guess for the high-resolution inversion. During the high-resolution inversion, we monitor the parameter distributions every ten trust-region iterations
and compute the L1 distance between two records to decide whether any of them have converged. The parameters converge in the sequence of 
, r, l and
	, as indicated by the circled number in each title; a converged parameter is fixed for further iterations. The wt values are measured on a NVIDIA Tesla
V100 GPU.



increasingly more localized or spiky and finally converges to a

four-population distribution dominated by Nð710; 12ÞÅ.

Comparing our final ŵwðrÞ (after 1000 iterations) with the

published one (Hellsing et al., 2012) we see that, while both

yield a mean value near 700 Å, our standard deviation (1 Å) is

much smaller, which seems more consistent with the reported

low dispersity of the particles. The other three minor popu-

lations (centred at 461, 539 and 637 Å) significantly improve

the goodness of fit near the turning points of the intensity

curve, as compared with the baseline solution of perfect

monodispersity at 710 Å in Fig. 4(c). We cannot explain these

minor populations physically, although they could result from

experimental artefacts or model imperfection. Anyway, we do

not claim that our solution is more physically sound than the

reported one.

In Fig. 4(b), we compare the ŵwðrÞ curves obtained by the

four codes. Because Irena, SasView and McSAS all yield a

highly dispersive or flat ŵwðrÞ, we compare their solutions with

one of the early FFSAS solutions (after 25 iterations). Fig. 4(b)

shows that the McSAS and FFSAS solutions are in good

agreement, while the SasView solution (as it is assumed to be a

Gaussian) is far away from the others. Though being form free,

the Irena and McSAS approaches cannot obtain any of the

localized or spiky distributions seen in Fig. 4(a), because, once

the �2 error has reached some small value, they cannot keep

minimizing it at a higher precision. The area under all the ŵwðrÞ

curves is 1, so the y-axis scale of Fig. 4(b) is much smaller than

that of Fig. 4(a).

Next, we examine the intensity fit in Fig. 4(c). Though the

ŵwðrÞ curves in Figs. 4(a) and 4(b) look very different, they all

predict similar intensity curves, as shown in Fig. 4(c). Again,

this displays the effect of structural ambiguity in SAS inver-

sion. We show in the previous example that, by changing the

parameter resolution, FFSAS can provide the user with a

series of good solutions for further consideration. In this

example, we show that the solutions at different trust-region

iterations from a single run can also serve this purpose.

3.5. SAXS from a bimodal mixture of polydisperse spheres

This SAXS data set was obtained from a dispersion

composed of two known calibrants, verified against NIST

SRMs 1690 and 1691. The sample was a 50/50 (v/v) mixture of

commercially purchased polystyrene nanoparticles possessing

radii of 625 
 25 and 1025 
 30 Å, as per their certificates of

analysis.

The intensity data and our results are shown in Fig. 5. For a

known experimental reason, the original data suffer from an

upward drifting across the mid-q and high-q ranges; to correct

for this artefact, we use a power-law source background

instead of a flat one (Ilavsky & Jemian, 2009). The ŵwðrÞ curves

found by Irena, SasView, McSAS and FFSAS are in good
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Figure 4
Size-distribution inversion of polydisperse spheres using a SANS data set. The intensity data contain 986 points; we cut off its noisy high-q end to keep
285 points for inversion. The radius r ranges from 400 to 800 Å, discretized by 1000 points. (a) shows the convergence of ŵwðrÞ in one FFSAS run through
the trust-region iterations; the final one suggests four populations, as annotated by their Gaussian approximations. (b) compares the ŵwðrÞ curves obtained
by the four codes; for SasView, we use one Gaussian as the functional form. Because Irena (MaxEnt), SasView and McSAS all yield a flat ŵwðrÞ, we choose
one of the early FFSAS solutions (after 25 iterations) for the comparison. The area under all the ŵwðrÞ curves is 1, so the y-axis scale of (b) (dispersive or
flat) is much smaller than that of (a) (localized or spiky). (c) shows the intensity observation and the I(q) curves predicted by the ŵwðrÞ curves given in (b),
plus one for perfect monodispersity at 710 Å as a baseline.



agreement, all identifying two populations centred around 620

and 1060 Å with a volume ratio near 60/40. These numbers are

consistent with our prior knowledge of the sample: the

inverted radii lie within their certificated ranges and the

volume ratio deviates from the truth by less than 10%.

However, the ŵwðrÞ curves from FFSAS and SasView are highly

localized at the two centres, while those from Irena and

McSAS are more dispersive. The localized solutions are more

consistent with the truth that the sample only contains two

types of uni-size particles. To obtain such localized solutions

again requires an accurate inverse solver.

3.6. Non-dilute systems of polydisperse spheres

Our final example demonstrates the inversion of a non-

dilute system with a structure factor. We used an ultra-small-

angle X-ray scattering (USAXS) data set for LUDOX

colloidal silica in a range of dilutions, created as part of

the GSAS-II package (Toby & Von Dreele, 2013) for a

tutorial (https://subversion.xray.aps.anl.gov/pyGSAS/Tutorials/

SAseqref/). Furthermore, we used the ‘hard-sphere’ structure

factor. Fig. 6 shows our results, which are similar to those

obtained from GSAS-II and SasView (both, however, assume

an analytical size distribution).

The hard-sphere structure factor introduces two variables

to our Green tensor: the effective radius (reff) and the volume

fraction (Vf). These variables will break the convexity of the

inverse problem, making the solution dependent on the initial

guess of the two variables. In the GSAS-II tutorial, this diffi-

culty is tackled by hand-tuning the initial guess utilizing a

GUI; here we conduct a brute-force search over a coarse grid

for five effective radii and seven volume fractions – in other

words, we try 35 initial guesses. In a future version of FFSAS,

we will provide the option to use a global optimization algo-

rithm to handle non-convex problems such as this one.
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Figure 5
Size-distribution inversion of polydisperse spheres using a SAXS data set. The intensity data contain 1024 points, all used for inversion (except for Irena).
To account for an experimental artefact, we apply a power-law correction to the mean of the intensity data across the mid-q and high-q ranges (namely,
we use a power-law background); the mean curve before this correction is plotted in grey. The radius r ranges from 400 to 1200 Å, discretized by 1000
points. We do not show the inverted ŵwðrÞ curves here; instead, their bimodal Gaussian approximations are given in the legend. For SasView, we assume
that the functional form of w(r) is composed of two Gaussians. To obtain a stable solution from Irena, we had to truncate the noisy high-q end and switch
from MaxEnt to the IPG/TNNLS (interior point gradient/total non-negative least squares) algorithm.

Figure 6
Non-dilute systems of polydisperse spheres from a USAXS data set for LUDOX colloidal silica in a range of dilutions. The intensity curves contain 160–
260 points, uniformly distributed between 10�3 and 0.2 Å�1 in logarithmic scale. Our radius parameter ranges between 1 and 102.5 Å, uniformly
discretized by 1000 points in logarithmic scale. We use the hard-sphere structure factor, which includes two variables, the effective radius (reff) and the
volume fraction (Vf). To handle the non-convexity of the inverse problem, we conduct a brute-force search for their initial guess, considering five
effective radii ranging from 100 to 300 Å and seven volume fractions from 1 to 50%. We do not show the inverted w(r) curves here; instead, their
Gaussian approximations are given in the legend.



4. Conclusions

The method described in this article is developed for free-form

parameter inversion of a polydisperse system in SAS. We

formulate the forward problem of SAS modelling with poly-

dispersity as a multi-linear map characterized by a high-

dimensional Green tensor. The inverse problem then emerges

as a constrained NLP targeted at the MLE of the model

parameters. Our forward and inverse formulation is general

enough to consider (1) any theoretical model with multiple

polydisperse parameters, (2) 1D and 2D scattering intensity

observations, and (3) any physical or experimental effects that

can be built into the Green tensor (such as the structure

factors and resolution functions). We solve the inverse

problem with high accuracy and efficiency based on several

theoretical and computational enhancements, such as accuracy

preservation via an automatic data scaling and GPU-acceler-

ated chunk computation for large-scale problems.

Our method is implemented as a Python library called

FFSAS. Our numerical examples show two advantages of

FFSAS compared with the existing codes we have tested. First,

its ultra-high accuracy allows it to deliver solutions in an

overfitting regime, which cannot be found by any of the

previous methods (we will elaborate this in the following

subsection). Second, thanks to its high computational perfor-

mance, it can efficiently solve large-scale multi-parameter

problems in free form; among the compared codes, only

McSAS can solve problems of this kind, which is, however,

slower than FFSAS by at least one to two orders of magnitude.

4.1. Structural ambiguity

As shown by our numerical examples, SAS inversion is ill-

posed, subject to a high degree of non-uniqueness of solutions

or structural ambiguity. The neighbourhood of the MLE is

convex but nearly flat, from which the different-looking

parameter distributions can predict an ‘identical’ scattering

intensity as measured in reference to data uncertainty. An

estimator closer to the MLE (or giving a smaller fitting error)

may not necessarily be more physically plausible due to

overfitting of the noise. Regularizing the fitting error with

some additional constraints (such as MaxEnt) can provide a

means of solution selection, which, however, is also subjective

and non-physical. As we recommend, the most reliable way of

handling structural ambiguity is to provide a series of solutions

that fit the data to different acceptable levels, across the

transition from underfitting to overfitting, from which the user

can select one based on other physical or empirical consid-

erations.

To approach the overfitting regime, however, the inverse

solver needs to be highly accurate to minimize the fitting error

for more significant digits. The lower the noise level is, the

more accurate the inverse solver needs to be. For example, at

the limit of a noise-free intensity observation, the inverse

solver must be able to reduce the fitting error to a machine-

epsilon level. In light of the continuous effort to improve SAS

experimentation for higher-quality observations, developing

more accurate methods for SAS data analysis should also

become increasingly important.

Based on our algorithmic enhancements, FFSAS proves to

be sufficiently accurate to approach the overfitting regime,

while the other form-free methods we have tested mostly work

in an underfitting regime. For instance, in Fig. 4, FFSAS can

deliver a series of solutions from dispersive (underfitting) to

localized (overfitting) for a single run, while the other form-

free methods can only yield a dispersive one.

APPENDIX A
Solving NLP-w

Solving NLP-w, equations (5a)–(5c), is not straightforward. It

is an ill-posed large-scale NLP with mixed equality and

inequality constraints. In this appendix, we introduce several

techniques that make NLP-w solvable with high accuracy and

efficiency.

A1. Elimination of inequality constraints

The first difficulty we must overcome is that equation (5b)

contains
P

k nk inequality constraints, significantly slowing

down the solution for a high-resolution or multi-parameter

problem. This is because the state-of-the-art NLP solvers are

still not highly efficient in handling a large number of

inequality constraints. Here we eliminate the inequality

constraints by introducing a slack variable ks, such that
kwi ¼

ks2
i , turning NLP-w into the following NLP named

NLP-s:E

min
ks2Rnk ;8k;�;b2R

k���k2; ð9aÞ

subject to P
i

ks2
i ¼ 1; 8k; ð9bÞ

with equation (1) reformed as a function of ks,

Ii1i2...iM
¼ �

P
j�

Gi1i2...iM j1 j2...jN
1s2

j1
2s2

j2
. . . Ns2

jN
þ b: ð10Þ

Containing only N equality constraints, NLP-s has much lower

algorithmic complexity than NLP-w, even with the polynomial

order of k���k2 increased from quadratic to quartic.

A2. Accuracy preservation

In NLP, the orders of magnitude of the variables cannot

vary too drastically; otherwise, the Hessian of the objective

function will become ill conditioned, leading to inaccurate or

incorrect results. In NLP-w, the kw values are dimensionless,

ranging between 0 and 1, while b and � have the base units of

intensity and intensity divided by the Green tensor, respec-

tively. One can easily show that the base units of � and b differ

by m6, and their numerical values can differ by up to 1020 for a

typical neutron or X-ray data set using a length unit near

nanometres. To avoid this large gap, one workaround is to

handcraft a unit convention based on typical use cases, such as

the one adopted by SasView (Doucet et al., 2021) and many

other codes. This is, however, inflexible and may still fail for a

non-typical application.
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For the inverse problem, we aim to preserve the numerical

accuracy of forward modelling given any unit system of the

input data (l, r and G). The idea is to find an intermediate

unit system under which � and b become dimensionless and

numerically close to 1. Clearly, such an intermediate unit

system must be a function of l, r and G. Let us assume that all

the parameter distributions are uniform, i.e. kwi = 1/nk. Under

this assumption, NLP-w degenerates to a standard quadratic

problem of � and b. Let (�0, b0) be the minimizer of this

quadratic NLP, which should be a good approximation to the

real minimizer of NLP-w as measured by their orders of

magnitude. Therefore, we can make � and b dimensionless and

close to 1 by using b0 as the new unit for intensity and b0/�0 as

that for the Green tensor. In summary, we feed l=b0, r=b0 and

G�0/b0 into NLP-s to solve variables ks, �/�0 and b/b0. The

closed-form expressions for �0 and b0 can be easily shown as

A�� A�b

A�b 1

� �
�0

b0

� �
¼

y�
yb

� �
; ð11Þ

where

A�� ¼
P
i�

�GG2
i1i2...iM

; A�b ¼
P
i�

�GGi1i2...iM
;

y� ¼
P
i�

�GGi1i2...iM
�i1 i2...iM

and yb ¼
P
i�

�i1i2...iM
:

ð12Þ

�GG is the mean of G along the parameter ranks,

�GGi1i2...iM
¼

1

n1n2 . . . nN

X
j�

Gi1i2...iM j1 j2...jN
: ð13Þ

Note that kwi = 1/nk, � = �0 and b = b0 also make a good initial

guess for NLP-w.

A3. Trust-region method

We solve the inverse problem NLP-s using the Byrd–

Omojokun trust-region method (Lalee et al., 1998) imple-

mented in SciPy (Virtanen et al., 2020). According to the SciPy

documentation, ‘it is the most versatile constrained mini-

mization algorithm implemented in SciPy and the most

appropriate for large-scale problems’. Using the nonlinear

conjugate-gradient method as the underlying solver for

unconstrained NLP, the trust-region method demands the

Jacobian and Hessian of k���k2 with respect to {ks, �, b}, as

denoted by Js and Hs, respectively. Using equations (4) and

(10), the closed-form expressions of Js and Hs can be derived,

which can significantly speed up the solution process

compared with computing them by finite difference. Because

k���k2 is a quartic function of ks, these closed-form expressions

are lengthy and omitted from the article.

Two computational challenges remain. First, the size of

the Green tensor G can grow exceedingly large for a multi-

parameter model; for example, given a model with M = 2 and

N = 4, and 1q, 2q, 1p, 2p, 3p and 4p all discretized by 50 points, G

has 506 elements, requiring 125 GB of memory in double-

precision floats. Second, the trust-region solver needs to

calculate k���k2, Js and Hs hundreds of times in one inversion;

despite their closed-form expressions, such calculations can

still be computationally expensive owing to the successive

inner products in equation (10). We overcome these two

difficulties using the strategy of GPU-accelerated chunk

computation, based on the deep-learning library PyTorch

(Paszke et al., 2019). Our computational architecture is

elaborated in Fig. 7. A GPU is needed only for large-scale

multi-parameter problems; for a low-dimensional problem,

such as size-distribution inversion of polydisperse spheres (N =

1), even at an ultra-high resolution, our runtime is usually a

few seconds on a CPU.

A4. On-the-fly dimension reduction

As governed by the successive inner products in equations

(1) or (10), the algorithmic complexity of the inverse problem

is bounded by Oðm1m2 . . . mMn1n2 . . . nNÞ. Even with the

GPU-accelerated chunk computation, the solution can still be

time consuming for a multi-parameter model with a large

parameter space. In view of the multiplication ðn1n2 . . . nNÞ,

the runtime can be significantly decreased if one or some of

the parameter dimensions can be reduced on the fly. For most

multi-parameter SAS models, such dimension reduction is

theoretically permitted because their intensity function should

be more sensitive to some of the parameters than to others,
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Figure 7
Architecture of GPU-accelerated chunk computation for large-scale multi-parameter problems. In this figure, we assume M = 2 and denote the two
scattering vectors by qx and qy. Chunking is performed along these two dimensions. All the model-parameter dimensions are conceptually represented
by the p dimension. Left: given a SAS model and its parameter space, we compute G in chunks on a GPU and store it on disk if needed. Right: to
compute any term in k���k2, Js or Hs that requires successive inner products with G, we chunk it along the q dimensions and load the corresponding chunk
of G on a GPU to perform the inner products; the assembled results are then fed to the trust-region method to update the variables.



and these parameters will converge quicker during the trust-

region iterations. For example, considering polydisperse

cylinders with randomly oriented axes, the radius distribution

will converge much faster than the length distribution because

the volume of a cylinder (and thus the scattering amplitude)

scales with length but with radius squared. All we need to do is

to monitor the convergence of each parameter distribution

after each trust-region iteration, marking any converged

parameters as constants for further iterations.
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