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In materials and earth science, but also in chemistry, pharmaceutics and

engineering, the quantification of elements and crystal phases in solid samples is

often essential for a full characterization of materials. The most frequently used

techniques for this purpose are X-ray fluorescence (XRF) for elemental analysis

and X-ray powder diffraction (XRPD) for phase analysis. In both methods,

relations between signal and quantity do exist but they are expressed in terms of

complex equations including many parameters related to both sample and

instruments, and the dependence on the active element or phase amounts to be

determined is convoluted among those parameters. Often real-life samples hold

relations not suitable for a direct quantification and, therefore, estimations

based only on the values of the relative intensities are affected by large errors.

Preferred orientation (PO) and microabsorption (MA) in XRPD cannot usually

be avoided, and traditional corrections in Rietveld refinement, such as the

Brindley MA correction, are not able, in general, to restore the correct phase

quantification. In this work, a multivariate approach, where principal

component analysis is exploited alone or combined with regression methods,

is used on XRPD profiles collected on ad hoc designed mixtures to face and

overcome the typical problems of traditional approaches. Moreover, the partial

or no known crystal structure (PONKCS) method was tested on XRPD data, as

an example of a hybrid approach between Rietveld and multivariate

approaches, to correct for the MA effect. Particular attention is given to the

comparison and selection of both method and pre-process, the two key steps for

good performance when applying multivariate methods to obtain reliable

quantitative estimations from XRPD data, especially when MA and PO are

present. A similar approach was tested on XRF data to deal with matrix effects

and compared with the more classical fundamental-parameter approach. Finally,

useful indications to overcome the difficulties of the general user in managing

the parameters for a successful application of multivariate approaches for

XRPD and XRF data analysis are given.

1. Introduction

The quantification of elements and phases in solid-state

materials represents a very important issue in many fields of

science in both the academic and industrial world. X-ray

powder diffraction (XRPD) and X-ray fluorescence (XRF)

are widely used in this field to analyse crystalline phases and

atomic elements, respectively. The advantages of X-ray-based

techniques are many, since these techniques can be partially or

totally nondestructive and probe relatively large amounts

(grams) of samples with a statistical relevance. An additional
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advantage is measuring the sample ‘as received’, not altering

its natural conditions. X-ray techniques can also be exploited

in the field of portable instruments (Sarrazin et al., 1998) for

experiments under in situ (Eveno et al., 2011) or operando

(Urakawa, 2016) conditions. This approach was extended to its

extreme, carrying out XRPD in the extraterrestrial world on

the Moon (Vaniman et al., 1992) and on Martian soil (Delhez

et al., 2003; Bish et al., 2013).

Generally a whole profile fit approach is exploited, and a

profile calculated from the atomic crystal structure of each

pure component of the mixture is used to fit the whole

experimental XRPD pattern in order to calculate the corre-

sponding weight fractions, thus performing a Rietveld refine-

ment (RR) (Rietveld, 1969). In XRF analysis (X-ray emission

spectra), elements can be quantified by calibration with

standards or by the generic fundamental parameter (FP)

approach (Schönenberger et al., 2012). Some software, such as

MAUD or TOPAS (Lutterotti & Bortolotti, 2003; Coelho,

2018), can couple information from different techniques (e.g.

XRPD, XRF, reflectivity experiments . . . ) to exploit RR.

Multivariate statistical analysis (MSA), requiring no or little a

priori information, is a recently explored alternative

(Caliandro et al., 2013; Zappi et al., 2019; Guccione et al., 2021)

to the above-cited traditional approaches (widely described in

Appendix A) of XRPD and XRF data analysis. The MultiFit

regression procedure (Caliandro & Belviso, 2014) requires

only pure phase profiles, while principal component analysis

(PCA) is a completely blind approach (Jolliffe & Cadima,

2016); both approaches, available within RootProf (Caliandro

& Belviso, 2014), a software (free for academic use) built

specifically to manage XY profiles such as XRPD, XRF or

other typical instrumental data, are the topic of the present

contribution.

1.1. The potentialities and limitations of XRPD and XRF

The potentialities of XRPD in analytical chemistry were

already envisaged in the early days of X-ray diffraction (Hull,

1919) and in its full development in the second part of the 20th

century (Copeland & Bragg, 1958). More recently, new

applications have emerged in specific utilizations, such as in

the cultural heritage (Artioli et al., 2003, 2017; Dooryhee &

Colomban, 2008; Brunetti et al., 2016) and pharmaceutical

(Fawcett et al., 2019) fields. This approach has been widely

explored in recent decades (Madsen et al., 2001; Scarlett et al.,

2002; De la Torre & Aranda, 2003; León-Reina et al., 2009;

Ufer & Raven, 2017; Raven & Self, 2017). The need for

complete knowledge of the crystal structure was also over-

come by the PONKCS (Scarlett & Madsen, 2006; Madsen et

al., 2019) approach, which is able to apply RR to partial or no

known crystal structures.

One of the major critical issues in XRPD applications,

especially phase quantification, is the tendency of micro-

crystals to be oriented along a preferred direction, which is

favoured in the case of needle or platelet-like morphology

(Dickson, 1969; Sitepu et al., 2005; Monaco & Artioli, 2011).

Preferred orientation (PO) causes biased intensities for the

oriented phase (Madsen et al., 2019). Moreover, in the

presence of phases with large differences in linear absorption

coefficient (LAC) and particle diameter in coarse powders, the

heavily absorbing ones are underestimated as much as their

particles are large, because of the effect known as micro-

absorption (MA) (Madsen et al., 2019). This issue dramatically

affects quantification, especially in the presence of particles of

diameter above a few micrometres. MA in XRPD can be

considered a matrix effect (ME), since it can severely affect

the reliability of the results, in strict relation with sample

composition and morphology. In fact, when MA is present, the

relation between intensity of the signals and weight fractions

can be lost, since it depends on the volume subjected to the

incident flux in relation to particle size. In other words, the

more heavily absorbing phases will be less penetrated by the

X-rays, while phases with lower absorption coefficient are

much more transparent and are more likely to exhibit ‘volume

diffraction’ where the entire grain contributes to the diffrac-

tion process.

When constraining weight fractions to 1 according to

equation (7) in Appendix A, MA causes an underestimation of

the more absorbing crystalline phase and consequently an

overestimation of the less absorbing phase. To mitigate this

effect, costly and time-consuming procedures are required to

prepare the sample for the measurement and mitigate MA.

For instance, gentle milling allows the crystallites to be ground

without inducing defect formation and crystallinity reduction.

A widely used solution is the McCrone mill to reduce the

particle size of the powder from a maximum of 0.5 mm

particles to some micrometres, depending on the sample and

grinding conditions required for quantitative and qualitative

analytical methods, avoiding stress/strain/amorphization in the

crystallites. Sieving can be useful, but the combination of

milling and sieving can severely alter the sample, which is

totally destructive, time consuming and not applicable in many

fields. When MA and PO concur to affect diffracted intensities

in solid mixtures, quantitative phase analysis (QPA) becomes

even more complicated, if not impossible. Similarly, the main

obstacle hindering quantification by XRF is referred to as the

matrix effect (Bowers, 2019), again a signal enhancement and/

or reduction induced by the presence of other elements in the

analysed mixture. It is exacerbated if the sample is measured

‘as received’, without pearl fusion (time consuming and

destructive).

Widespread solutions are the FP approach and algorithms

based on the influence coefficients (Criss & Birks, 1968;

Rousseau, 1984a,b; Willis & Lachance, 2004), which take into

account the ME in XRF data, exploiting theoretical or

empirical influence coefficients that are specific to each

analyte–interferent pair. The full empirical calibration with

known standard is an alternative but is limited in small

concentration regions, with the additional limit of being

sample specific and very time consuming. The problem

becomes more complex when the sample is made of mixed

inorganic and organic materials. The K� line of carbon can be

measured both with high-end energy-dispersive XRF and with

wavelength-dispersive XRF, but only if carbon is present in
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relatively high concentrations (e.g. above 50%) (Parus et al.,

2000). Moreover, below such a threshold, the measured

intensity of the emission line of the heavy atom becomes

independent of its weight fraction, making the analysis

impossible (Grieken & Markowicz, 2001) unless the sample is

diluted with a lighter element. The aim of this article is to find

quick and reliable methods to process efficiently a large

number of samples while limiting, as much as possible, sample

preparation.

1.2. Multivariate statistical analysis

MSA is a collection of methods extensively used in analy-

tical chemistry and, in particular, in the ‘-omics’ sciences

(Sharaf et al., 1986; Varmuza & Filzmoser, 2016), such as

metabolomics and proteomics. In the MSA approach, the data

(of any kind) are organized in matrices and analysed using

algorithms that allow searching for correlations between the

variables (Anderson, 2003). This approach ensures that

important effects due to, for instance, the synergistic or

antagonistic interactions (i.e. positive or negative correlations)

between variables (for instance, intensities at different 2�
angles in the XRPD case), are efficiently and correctly iden-

tified. This multi-purpose approach is commonly exploited for

classification, regressions and pattern recognition, in which

unknown experimental domains are explored (Anderson,

2003; Johnson & Wichern, 2007). The peculiarity of MSA is

the capability to extract efficiently the useful information, with

background suppression and bias identification, possibly

without or with very little a priori information.

PCA is a well known method for experimental error

suppression applied to pattern recognition and dimensionality

reduction (Jolliffe & Cadima, 2016). The process consists of a

data decomposition in which samples, characterized by a

dimensionality p, equal to the number of descriptor values

(e.g. energies in XRF, 2� angles in XRPD), are projected in a

new space in which the directions of the new axes (named

‘principal components’, PCs) are defined by a linear combi-

nation of the starting variables (Jolliffe & Cadima, 2016).

These PCs are generated by maximizing the explained

variance, which means that they will be hierarchically gener-

ated depending on how much each PC describes the variance

of the system (PC1 will have the maximum explained variance,

PC2 will have less explained variance, and so on) (Jolliffe &

Cadima, 2016; Guccione et al., 2021). In a series of XRPD data

sets obtained from a group of samples with different compo-

sitions, the main differences, i.e. the variance, are associated

with the changes of the experimental intensities due to the

different phase weight fractions in different samples.

MSA applied to X-ray measurements has started to develop

in recent decades and is still a relatively novel field, as

described in a recent review (Guccione et al., 2021). PCA, in

particular, has been applied to both single-crystal and powder

X-ray diffraction for in situ experiments (Lopresti et al., 2021;

Conterosito et al., 2020; Palin et al., 2019; Matos et al., 2007;

Guccione et al., 2018), and when combining different techni-

ques such as XRPD and Raman spectroscopy (Urakawa et al.,

2011) or XRPD and pair distribution function (PDF)/UV–Vis

(Caliandro, Altamura et al., 2019; Caliandro, Toson et al.,

2019). Concerning XRF, the use of MSA is already a conso-

lidated practice. In particular, methods such as partial least

squares (Höskuldsson, 1988; Wold et al., 2001) and principal

component regression (Hotelling, 1957; Jolliffe, 1982) have

been widely reported in the scientific literature (Grieken &

Markowicz, 2001; Ghasemi et al., 2013). MSA-based methods

do not use crystal structure or other a priori known infor-

mation but do use a probe-independent approach to tackle the

same problem as the traditional methods, e.g. estimating scale

factors between experimental XRPD and XRF intensities

(typically the whole XRPD patterns and a sub-range of XRF

spectra are used as input) and phase or element weight frac-

tion in XRF [equation (2)] and XRPD [equations (6) and (7)],

respectively. No specific equations are used in MSA, and each

approach has specific data-analysis guidance criteria.

The multiple regression approach, fully described by

Caliandro & Belviso (2014), is a whole pattern regression

technique in which the experimental mixture profile ŷyðiÞ is

fitted with a model ymod(i) in the form of

ymodðiÞ ¼
Pq

j¼1

vj f̂fjðiþ ejÞ þ y0; ð1Þ

built using q pure phase profiles ( f̂f ). Mixture profiles are

therefore treated as a linear combination of pure phase

experimental profiles, and the parameters vj, ej and y0,

representing abundances of the q pure phases and the hori-

zontal and vertical offsets of the profiles, respectively, are

refined using the MINUIT libraries (James & Roos, 1997).

This algorithm is implemented in RootProf and takes the

name of MultiFit (Caliandro, 2020).

To prepare the data for PCA or regression procedures and

overcoming the lack of equations, as in RR and FP methods

for XRPD and XRF, respectively, it is often necessary to go

through an experimental pattern pre-processing phase, which

uses several mathematical tools (normalization, scaling,

raising to a power, among the many possibilities) to improve

the signal-to-noise ratio (Wehrens, 2011). This is a key step in

the scale-factor estimation and weight or element fraction

calculations, affecting the performances of all MSA methods.

Pre-processing is based on mathematical treatments

(Caliandro, 2020; Caliandro & Belviso, 2014) able to transform

a raw experimental pattern into a pattern where the infor-

mation needed for quantification is enhanced and background

and biased intensities are suppressed. The typical example is

the pre-processing of data sets showing PO, where the math-

ematical transformation suppresses the oriented peaks to

overcome such bias. The used pre-processing approaches are

described in Section 2.2, while their test, selection and opti-

mization for the XRPD and XRF cases are described in

Section 3.2.1. In this article, MSA was performed by using

three different approaches:

(a) Supervised multiple regression analysis (SMRA), in

which the scale factor for each phase composing the mixture is

estimated by multivariate linear regression methods using
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pure phase patterns for fitting and standard mixtures with

known composition for calibration and pre-process selection.

(b) Unsupervised multiple regression analysis (UMRA), in

which the same regression methods as SMRA are exploited on

samples, this time using pure phase patterns only. All the

mixture patterns are used for quantification.

(c) Blind analysis (BA), in which pre-processed data are

analysed by PCA without prior knowledge of mixture

composition or pure phases. The guidance towards phase

scales is given by the maximum data variance principle. The

quantification is performed not by regression methods but by

calculating the relative distances between the points in the PC

space. All the patterns, including pure ones, are used for

quantification.

1.3. Purpose of the work

Despite the fact that XRPD and XRF are often exploited

alone or together, no systematic study focused on the

performance of the MSA methods applied to XRPD and XRF

methods of analysis in the full composition range is available.

With the present article, we intend to fill the gap, assessing the

performances of PCA, multiple regression and hybrid

(PONKCS) approaches, in comparison with traditional

methods (FP and Rietveld). XRPD and XRF data sets are

analysed separately to assess the performances of the various

methods and give recipes for the application of MSA methods

to XRPD and XRF data. The goal is favouring the diffusion of

multivariate approaches in all academic and industrial envir-

onments where solid materials are of interest and a large

number of samples, in a wide range of compositions, must be

analysed, thus making complex preparation procedures such

as pearl fusion and milling impossible, or when the sample

must be analysed in a nondestructive way. Determining the

phase and element content in complex mixtures, such as the

ones used for instance in brake pads, is a challenging task in

quality control. Those mixtures are composed of reinforcing

fibres, binders, fillers, lubricants and abrasives. Reinforcing can

be carried out with ceramic materials such as potassium tita-

nates; commonly used lubricants are graphite (C) and metal-

sulfide (e.g. MoS), and commonly used fillers are barite

(BaSO4) or calcium carbonate (CaCO3), typically calcite.

Quantifying the phase content in these mixtures with strong

MA effects is very complex with XRPD and, due to the

presence of graphite, it is also very complex from the XRF

point of view.

Four sets of samples with PO and/or MA issues were

prepared and analysed by XRF and XRPD. Substances for the

mixtures were selected following different criteria in order to

simulate real examples of complex mixtures: (i) presence of

both organic and inorganic substances difficult to quantify by

traditional methods due to PO and/or MA phenomena; (ii)

non- or low-toxicity of the components so that they could be

easily handled; (iii) non-reactivity in mixture in standard

conditions; and (iv) wide use in general industry. In all the

mixtures, the two heavily absorbing phases are bismite

(Bi2O3) and barite (BaSO4) with LACs of 1978 and 924 cm�1,

respectively, using a Cu X-ray tube. A third lighter phase is

added to these two heavy phases to obtain four ternary

mixtures: sieved graphite (LAC of 10.18 cm�1) in specimen

D1; oriented graphite in specimen D2; zinc acetate, an organic

sample but with Zn K� recorded in XRF data (LAC of

40.97 cm�1), in specimen D3; and urea (LAC of 9.91 cm�1) in

specimen D4. The space represented by the mixture weight

fractions, i.e. the corresponding ternary phase diagram, is

commonly defined as the ‘experimental domain’ (Cornell,

2011).

The most efficient way to explore an experimental domain

is through the use of the design of experiments (DoE)

approach (Box et al., 1978; Cox & Reid, 2000; Cornell, 2011).

The DoE approach consists of a set of mathematical tools

allowing one to plan experiments to extract the maximum

possible amount of information contained in the experimental

domain with the least number of experiments. A DoE

approach was used to prepare the mixture samples, to cover all

the space represented by each possible combination of the

phases’ weight fractions in a controlled and efficient way as

described in detail elsewhere (Mangolini et al., 2021). Each set

of samples was then analysed by XRPD and XRF to produce

four data sets. The obtained XRPD/XRF data belong to a

collection of data stored in a online repository that we recently

created (https://doi.org/10.17632/js2nzwf5md.2). The database

is open to new contributions, with the aim of creating a large

data set for testing and calibrating XRPD and XRF techni-

ques. The features and instructions to exploit the current data

or for adding new data are given in a dedicated publication

(Mangolini et al., 2021).

In the present article, these data are analysed both by the

traditional approaches and by the above-described multi-

variate analysis approaches (SMRA, UMRA and BA). A

detailed description of the pre-processing optimization and

selection is given, being the key step to obtaining the best

QPA performances among all the adopted approaches. The

goal of these approaches is managing, with a reasonable

precision, complex mixtures to allow fast (and in principle

automatic) processing and analysis of a large number of

samples. Moreover, the hybrid method PONKCS was tested to

compare its performance with respect to RR and the pure

multivariate approach. PONKCS was originally developed to

refine with a Rietveld-like approach phases whose structure is

either not known or only partially known. In this work, we

exploit PONKCS to obtain better estimates for light phases in

samples affected by MA, even if their crystal structure is

known. Moreover, only one of the four data sets will be

analysed by XRF (i.e. data set D3) because both graphite and

urea lack elements that give an XRF signal detectable by the

used low-power benchtop instrument.

2. Materials and methods

2.1. Data collection

Sample preparation, morphological characterization,

instrumentation and data collection are described in a dedi-

cated publication (Mangolini et al., 2021). Ternary mixtures
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were prepared by a DoE (Cornell, 2011; Cox & Reid, 2000)

approach to properly sample their full compositional range.

All the data sets have been made available in an open online

database (Mangolini et al., 2021). Table 1 shows the main

features for each sample.

2.2. Software

FP analysis of XRF data was carried out by the proprietary

software installed in the XRF instrument (Rigaku, 2012). This

being a benchtop/portable instrument with a low-power (4 W)

X-ray tube, the K line for carbon cannot be observed. XRPD

data were analysed by the traditional RR approach using

TOPAS-Academic (V5) (Coelho, 2018, 2020). A whole profile

regression (using the MultiFit algorithm) and PCA-assisted

quantitative analysis were performed by using RootProf

version 14 (Caliandro & Belviso, 2014). This software includes

different pre-processing options organized into four classes

(named levels), and one action for each level is executed on

raw data one after the other. The levels of the modification

functions are profile modifications (level 1), rescaling (level 2),

background subtraction (level 3) and filtering (level 4)

(Caliandro & Belviso, 2014), whose use is documented in a

dedicated web page with dedicated tutorials for its efficient

learning and usage (Caliandro, 2020).

These pre-processing steps have the scope of transforming

raw data into modified data where background and bias are

suppressed and relevant information (phase or element

amounts in XRPD or XRF, respectively) is dominant. Some

useful and widely used raw-data pre-processings are still not

included in RootProf (Savitzky–Golay filtering and auto-

scaling), and were thus performed by using R base version

4.1.0 (R Core Team, 2013) and the prospectr package version

0.2.1 (Stevens & Ramirez-Lopez, 2021). The hybrid approach

(exploiting, at the same time, Rietveld refinement and a

MultiFit-like approach using the pure phase intensity infor-

mation) named PONKCS (Scarlett & Madsen, 2006), as

implemented in TOPAS-Academic (V5) (Coelho, 2018, 2020),

was used for a wide exploration of possible analytical solu-

tions.

3. Results

Eight data sets were built, collecting XRPD and XRF data on

four mixtures belonging to a ternary experimental domain,

whose features, as summarized in Table 1, were prepared in

the whole concentration range with the aid of an augmented

simplex-centroid DoE (Cornell, 2011), as introduced in

Section 2. The analysis of XRPD and XRF was carried out

comparing, in both cases, traditional (Rietveld for XRPD and

FP for XRF) and multivariate methods (SMRA, UMRA and

BA). Moreover, XRPD data were analysed by PONKCS, as

implemented in TOPAS V5 (Coelho, 2020).

3.1. Traditional methods

3.1.1. Rietveld analysis. The four XRPD data sets were

refined first by a normal RR with a one-direction March–

Dollase correction parameter for PO for graphite. The RR

data (Fig. 1) are represented with the following labelling

scheme: Each symbol is associated with one out of the four

data sets. Each composition is related to a specific colour: S4,

S5 and S6 are the binary mixtures with 50% in weight of each

component; S7 is the 33% equivalent weight ternary mixture;

and SA1, SA2 and SA3 are the augmented mixtures (66.6%,

16.7%, 16.7%), (16.7%, 66.6%, 16.7%) and (16.7%, 16.7%,
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Table 1
A summary of the characteristics of each sample analysed by XRPD and
XRF.

More details on the characteristics of the samples are given by Mangolini et al.
(2021).

Data set Phases A brief description of the mixture

D1 BaSO4, Bi2O3,
sieved C

Graphite has an average particle diameter of
�< 90 mm to introduce moderate PO effects.
There are large differences in density of the
three phases for an MA effect. There is absence
of characteristic XRF signal for graphite.

D2 BaSO4, Bi2O3,
mixed C

Same as sample D1 but this time graphite has a
30% in weight content with average particle
diameter larger than 90 mm with pronounced
PO effects.

D3 BaSO4, Bi2O3,
ZnC4H6O4

All phases have an XRF signal. Zinc acetate
introduces moderate PO and has a lower
density than graphite, enhancing MA effects.
Zinc acetate also has a larger unit cell, to
increase peak superposition in XRPD.

D4 BaSO4, Bi2O3,
CH4N2O

Absence of XRF signal, slight PO effect. Urea
presents larger average particle size and has a
lower density than zinc acetate, with increased
MA effects.

Figure 1
Results of the XRPD Rietveld analysis reported on the ternary graph
representing the mixtures’ experimental domain; S4–S7 are ternary and
binary mixtures of the simplex DoE, while SA1–SA3 are the augmented
simplex samples, highlighted in italic. Phase 3 is the lighter phase:
graphite, oriented graphite, zinc acetate and urea in data sets D1, D2, D3
and D4, respectively.



66.6%), respectively. With this scheme, the aggregation of

symbols of the same colour close to the circles (representing

the expected nominal values) indicates small deviations from

the nominal value. As expected, the symbols in Fig. 1 are

rather dispersed, highlighting large deviations in the weight

fractions estimated by the standard RR approach. The Riet-

veld profile fitting reaches a satisfactory agreement factor

(Rwp < 17); also, when strong MA is present, unless the analyst

knows the actual sample composition, there is no evidence

from the RR results that something should be improved or

changed (Fig. S1 of the supporting information).

In general, because of MA, high-absorbing barite and

bismite are underestimated and the lighter Phase 3 is over-

estimated in every data set. In sample S4, common to all data

sets, barite–bismite 50:50 MA is present and the barite content

is overestimated at 76:7%. Deviations due to strong MA are

highlighted for samples S5 of data sets D1 and D2, composed

of 50% barite and 50% graphite as the lighter phase, and for

samples S6 of all data sets, composed of bismite and a lighter

phase at 50% in weight. This behaviour affects the deviations

observed in the RR fit from the expected values of the ternary

mixture. The mean deviation computed on samples S7, SA1,

SA2 and SA3 for D1 is due to an underestimation for barite of

�5:8%, an underestimation for bismite of �18:8% and an

overestimation of þ24:6% for graphite. Similar behaviour is

seen in data set D2. In the case of D3, where zinc acetate

replaces graphite, the mean deviation computed on the

samples S7, SA1, SA2 and SA3 is lower and bismite is

underestimated by �18:6%, and barite and zinc acetate are

overestimated by þ4:7 and þ14:6%, respectively. A similar

behaviour is seen in data set D4, where urea is present.

The PONKCS approach (Appendix A3) is exploited to

‘calibrate’ and try to properly manage the MA effect, still by

using the RR approach. As seen in Fig. 2, the values are much

less dispersed compared with the classical RR case (Fig. 1). In

the case of data sets D1 and D2, the best approach is the single

PONKCS (see Appendix A3 for a detailed definition of single

and double PONKCS) calibrated on sample S6, with the

under- and overestimation of heavier and lighter phases much

more limited than for RR. Instead, for data sets D3 and D4,

the best approach is the double PONKCS calibrated with

respect to the bismite content on sample S7. In the case of

single PONKCS for data sets D1 and D2, the mean deviation

from the expected values decreases from 17.1 and 20:1% to

8.7 and 7:2%, respectively. In the case of double PONKCS for

data sets D3 and D4, the mean deviation decreases from 12.6

and 12:4% to 4.7 and 7:5%, respectively. The squared sum of

the residuals (SSR) of estimated phase abundances from the

RR and PONKCS with respect to the actual value is reported

in Table 2 (taking the sum of the phases as equal to 1).

3.1.2. XRF FPs result and measurement conditions. For

these kinds of mixtures, with phases with very different

absorption coefficients, XRF results are dependent on

measurement conditions. Measuring at 50 kV with an Ag

X-ray tube and an Ag filter placed between the tube and the

sample allows a smooth background at low energies, cutting

the L� of the Ag tube, but the NexQC low-power X-ray tube,

as a portable instrument, is not able to excite sufficiently and

record intensities of the K� of carbon, even in the presence of

a helium purge. With the classical FP quantification approach,

analysing the L� emission line of bismuth and the K� line of

barium, it is possible to quantify only the relative amount of

barium and bismuth in the mixture without the contribution of

the lighter phase. The presence of the lighter phase, graphite

or urea, does not affect the intensities of Ba L� and Bi K�.

Those intensities are independent of the lighter-phase

concentration (e.g. in mixtures S4, S7 and SA3 where the

integrated intensities of the fluorescence emission lines L� for

bismuth and K� for barium have a constant value). The case of

data set D3 with zinc acetate is more straightforward due to
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Figure 2
Results of the XRPD PONKCS analysis reported on the ternary graph
representing the mixtures’ experimental domain. Labelling and colour
scheme as in Fig. 1.



the presence of the Zn K� emission line, for both the classical

FP method and the MSA approach.

3.2. Multivariate analysis of XRPD/XRF data

3.2.1. Pre-process selection. The multivariate approach has

the great advantage of being probe independent, so it can be

applied in the same way to XRPD and XRF data, and it does

not require known crystal structures or other a priori infor-

mation. Moreover, no relations, such as those in equations

(4)–(7) (XRPD) or equation (2) (XRF), are assumed to relate

experimental intensities and phase or element fractions.

Therefore, the system can be analysed in an unbiased way,

driven by the specific features of the experimental profiles. As

a drawback, the lack of information about scale factors and

the absorption coefficients of each component of the mixture

must be compensated by the use of other guiding principles.

On the one hand, each approach has an intrinsic principle

underlying the multivariate analysis, e.g. variance in PCA-

based BA or the minimization of the SSR towards pure phase

patterns in multiple regression (SMRA and UMRA), as

described in Section 1.2. On the other hand, the power and

flexibility of the multivariate method rely on the almost infi-

nite combination of mathematical tools used to transform raw

patterns to suppress noise and bias and enhance the infor-

mation useful for quantification. These data pre-processings

might drastically transform the pattern, but this is the way to

obtain good quantitative results. In this mandatory preli-

minary analysis named ‘pre-process selection’ (see Section

1.2), before investigating unknown samples, the effects of

many parameters (such as the 2� data range, re-scaling of

intensities and re-sampling of the profiles by a smoothing

algorithm) must be evaluated. In this section, the adopted

approach for the chosen very difficult case study is presented,

while in Section 4 a guide for the best approach depending on

sample features and experimental needs is given. In fact, when

PO and MA are present and the whole experimental domain is

studied, the difficulty is at its maximum, and this preliminary

phase can be very time and resource demanding, requiring a

suitable training data set of known samples. Pre-process

selection is performed by RootProf in an automatic way

through its calibration process in supervised analysis

(Caliandro & Belviso, 2014).

For this study, additional, still not implemented within

RootProf, pre-processes were tested (Savitzky–Golay filtering

and mathematical derivative) using the R framework (R Core

Team, 2013). This external pre-process optimization followed

an experimental factor design approach of 25 (Box et al., 1978;

Cox & Reid, 2000), where the pre-processing parameters

smoothing window, derivative order and autoscaling were

combined with the 2� range of the pattern and the number of

skipped data in the RootProf calibration process. The SSR of

estimated phase abundances with respect to the measured one

was used to identify the best combination of pre-processing

parameters, and the optimization was performed on each

XRPD and XRF data set separately. For convenience, only the

best pre-process combinations have been reported in Table 3.

The details about all remaining pre-process combinations can

be found in the supporting information. Concerning XRPD

profiles, Table 3 shows that the best results are obtained by

analysing their full range and not subranges containing only

the highest-intensity peaks. However, the RootProf internal

pre-process showed the existence of a better option, which
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Table 2
To make comparable the performances of the exploited methods, the differences between the expected values and the predicted values for each mixture
belonging to each data set were calculated.

Overall performances were expressed as the SSR, commonly used to evaluate the agreement degree of the regression models.

Data set D1 Data set D2 Data set D3 Data set D4

Method SSRSA1–SA3 SSRTOT SSRSA1–SA3 SSRTOT SSRSA1–SA3 SSRTOT SSRSA1–SA3 SSRTOT

Rietveld 0.3557 1.046 0.4107 1.1642 0.2193 0.6393 0.2245 0.6798
Single PONKCS on barite 0.0899 – 0.1176 – 0.0741 – 0.1885 –
Single PONKCS on bismite 0.0934 – 0.0561 – 0.1831 – 0.5672 –
Double PONKCS on barite 0.1068 – 0.1109 – 0.0644 – 0.1613 –
Double PONKCS on bismite 0.1326 – 0.1787 – 0.038 – 0.0773 –
SMRA 0.0274 – 0.0263 – 0.0246 – 0.0243 –
UMRA 0.0292 0.0938 0.0263 0.0727 0.0246 0.0787 0.0259 0.0877
BA 0.0788 0.1678† 0.0161 0.0781† 0.0599 0.1129† 0.1528 0.3514†

† SSRTOT for BA was calculated without including pure phases.

Table 3
A summary of the best pre-process selection procedures for the analysis
of data sets D1–D4 for XRPD data and D3 for XRF data.

XRPD data.

External pre-process RootProf setup Results

Run
Smoothing
window

Derivative
order

Auto-
scaling 2� range Skipdata

Best pre-
process SSR

D1 5 0 No 10–120 3 3 2 0 3 0.027
D2 5 0 No 10–120 3 3 2 0 3 0.026
D3 5 0 No 10–120 3 4 2 0 3 0.025
D4 9 0 No 10–120 5 4 2 0 4 0.24

XRF data.

External pre-process RootProf setup Results

Run
Smoothing
window

Derivative
order

Auto-
scaling

Energy
range Skipdata

Best pre-
process SSR

D3 0 0 No 1.8–16.4 3 5 0 0 3 0.058



occurs more frequently among the XRPD data sets: L1 = 3

(logarithm in base 10 of the pattern intensities), L2 = 2

(normalization of the subtended area to 1), L3 = 0 (no back-

ground subtraction) and L4 = 3 (PC filtering). The powering of

the pattern intensities to 4/5 (L1 = 4) seems to be another good

alternative for profile modifications, while L4 = 4 is a variant of

PC filtering L4 = 3. The autoscaling performed by R did not

give any valuable result in the presence of PO and MA. The

same procedure was repeated without taking into account the

conditions found to be more unfavourable, such as the auto-

scaling, the first-order derivative and the 2� range reduction.

For XRF data, for data set D3 with zinc acetate, the internal

RootProf pre-process confirms that the best performing

combination has L4 = 3 (PCA filtering). Excluding the tail at

the beginning and end of the XRF spectra, where values are

going noisily to zero, is also crucial. Having determined the

best pre-processing options, we present the performance of

the multivariate approach on both XRPD and XRF data sets

in the following section, by using supervised and unsupervised

QPA and a completely blind analysis, where no information

(not even the pure phases) is supplied to the software.

3.2.2. Supervised quantitative analysis. SMRA was

performed using the three pure phases and the four other

simplex mixtures to calibrate the model, while the augmented

experiments SA1, SA2 and SA3 were used as unknown

samples to test the procedure. XRPD data sets were analysed

using the best pre-processes obtained by the selection proce-

dure described in the previous section. In Fig. 3, an example of

the performance of the MultiFit procedure on data set D1 is

given. In this figure, the goodness of the fit performed by

RootProf is evident, like the RR reported in the supporting

information (see Fig. S1). The results of the data analysis of

the four data sets are reported in Table S1 of the supporting

information and Fig. 4. The data are closer to the expected

value, even in comparison with the PONKCS calibrated

approach (Fig. 2).

Data set D1 has uncertainties on the estimations of up to

13%, as can be seen for sample S5. In data set D2, surprisingly

since the average particle size of graphite is larger than that in

data set D1, individual results are generally more precise than

those obtained for data set D1, and the SSR is reduced. In

these data sets showing PO and MA, SMRA appears to be
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Figure 3
A fit (red dashed line) produced by RootProf using the MultiFit algorithm during SMRA on sample SA1 of data set D1. The pattern (black continuous
line) has been pre-processed as reported in Table 3.

Figure 4
Results of the (a) SMRA and (b) UMRA performed on XRPD data,
reported on the ternary graph representing the mixtures’ experimental
domain. Labelling and colour scheme as in Fig. 1.



rather more robust than RR and PONKCS. In fact,

significantly lower SSR (see Table 2) values are observed

for the results obtained by multivariate analysis compared

with the best performing PONKCS (SSRD1–SMRA = 0.027,

SSRD1–PONKCS = 0.0899). Data sets D3 and D4 show errors

similar to the first two data sets, always below 10% in the

estimates. The error distributions are always normal and zero-

centred, a sign that systematic errors are absent, or very

limited (analyses of residuals are reported in the supporting

information), in contrast to PONKCS and RR. XRF data set

D3, the only data set with the presence of an XRF active

element in all three species, was analysed using the best pre-

processes obtained by the selection procedure described in the

previous section and using the XRF spectra obtained at 50 kV.

As expected, the FP algorithm performs better in the SA2

sample case where the lighter phase zinc acetate is the

minority phase. In the other two cases, the results of the

SMRA approach are comparable to those of the FP method.

Globally, very similar SSRs are observed, with a value of 0.104

for the FP method and 0.111 for SMRA. This approach

represents typical real-world use of the regression method,

especially in complex cases and when errors must be mini-

mized. After the pre-process selection and optimization have

been performed on a well defined series of samples, e.g.

clinker in a cement company or graphite in a lubricant plant,

the SMRA method can also be implemented for routine

analysis in a fully automatic approach.

3.2.3. Unsupervised quantitative analysis. UMRA was

performed on XRPD and XRF data by supplying to the

software information regarding the pure phases, while each

other mixture was used for testing the fitting method. A pre-

process combination was applied, exploiting general-use

recipes for samples without particular critical issues

(Caliandro, 2020), or using indications by a previous SMRA

calibration (Table 3), as carried out in the present article

because of the presence of MA and PO. Since UMRA is a

standardless method, it can be applied successfully when a

strong correlation between the scale parameters of the

experimental profiles after the pre-process and the quantities

in the mixtures is present, as demonstrated in the previous

section. In this case study, this was found to be true for XRPD

data but not for XRF data, and thus XRF data are not

reported for UMRA in the present work. The results of the

quantification are reported in Table S2. For data sets D1, D2

and D3, the estimations are very similar to those obtained by

performing SMRA, and the quantitative information can be

extracted from the data, since the pre-processing procedure is

already known after the calibration by SMRA in the previous

section. Similar pre-process options

were found for all data sets, suggesting

a rather general approach, as debated

in detail in Section 4. The range of the

errors spans from 0 to 12.4%, which is

still a good value for these kinds of

samples, and it represents the best

result among the three different QPA

approaches. As for supervised QPA,

the residual analysis does not show any

easily recognizable trend, and the

error distribution is normal and zero-

centred. Unsupervised QPA of XRF

data was not reported due to the large

errors (up to 57% error in quantifica-

tion of zinc acetate).

3.2.4. Blind analysis. BA was run on

each data set to test the limits of the

minimum required knowledge needed

by the MSA to perform a very fast

semi-quantitative analysis without any

a priori information. Differently from

SMRA and UMRA, no compositional

or pure pattern profile information was

given as input to the RootProf soft-

ware. BA relies only on the explained

variance extracted by PCA and will be

based on the relative distances

between the samples projected in the

PC spaces.

The results of BA are reported in

the form of a score plot for each data

set (Fig. 5) and as numerical values
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Figure 5
The results of the BA are reported in the form of score plots for each data set: (a) D1, (b) D2 , (c) D3
and (d) D4. The numbers represent the positions of the samples in Table S3 (0 is Ba, 9 is SA3).



(Table S3). In the former, the points represent each experi-

ment of the simplex projected in the space described by the

first two PCs. In every score plot, the disposition of the points

resembles the one designed by the simplex-centroid

augmented experimental design. In this case, the estimation of

the mixture’s content can be performed either by a geome-

trical approach, based on relative distances of each point from

the vertices (which can be identified as the pure phases), or by

the application of the transformation proposed by Cornell

(2011) in order to change from the Cartesian coordinate

system into the barycentric coordinate system of a ternary

plot. In this work, the second option was pursued, with a

custom code programmed in R language that projects the

sample points on a ternary graph space. Good accuracy in the

estimations can be achieved (SSR down to 0.078 for data set

D2), but when very evident MA or PO issues are present,

large errors in the phase quantification can be found using BA,

e.g. in mixture S4 of data set D4, urea is underestimated by

26.4%. However, if an accurate quantification is not required,

this is a fast method for efficient semi-quantitative analysis of

a set of unknown samples of similar origin without a priori

knowledge of any kind. This approach was not used to analyse

XRF data, as the results of UMRA already had large errors

and BA is, of course, even worse.

4. Discussion

The analysis and comparison of the results of the various

approaches on both XRPD and XRF data sets allowed us to

understand the potentialities and limitations of each method.

Moreover, it is possible to provide users with guidelines for

choosing the more suitable approach, taking into account both

sample features and expected analytical precision. To allow

such a comparison, a selection of SSR values has been

reported in the bar graph of Fig. 6 to better illustrate the

difference in the accuracy of the different quantification

methods. All the corresponding numerical results can be

found in Table 2, and the corresponding original quantifica-

tions for each technique and data set can be found in

Tables S1–S7 of the supporting information.

The multivariate methods, in some cases, outperformed the

traditional methods for XRPD data, while only SMRA was

comparable to classical FP results for XRF data (Table S7).

For this reason, only the XRPD data-analysis approach is

discussed in detail. As is well known, RR is the method of

choice if no standard is available, PO and MA are limited, and

all the crystal structures are known. Similarly, the PONKCS

approach is the option to choose when some crystal structures

are not known but pure phase patterns are available, and

SMRA is not suitable in the absence of the standard for the

calibration. The results of XRPD phase quantification from

classical RR in the presence of a strong MA effect showed

large errors, as expected. The PONKCS approach was

successfully applied, depending on the data set features in its

single and double versions (as described in Appendix A), with

much lower errors than RR. Interestingly, the multivariate

approach and, in particular, its supervised version (SMRA)

outperformed both PONKCS and RR for XRPD data and

obtained similar results to the FP method for XRF data.

Therefore, if both pure phases and standard mixtures are

available, the SMRA approach is the only approach able to

quantify the relative amount of each phase with minimal

errors, if MA and PO are present. In these difficult case

studies, at first the Savitzky–Golay filtering was effective in

reducing the noise in the data. This result is demonstrated by

comparing the errors on the phase estimation (SSR) during

the calibration of the pre-process (see the tables in the

supporting information .xlsx file). Moreover, key pre-

processing options for QPA turned out to be the PCA filtering

coupled to logarithmic scaling (preprocess 3 2 0 3 in

RootProf) or raising to the power 0.8 (preprocess 4 2 0 3),

which were able to suppress the intensity bias in the presence

of MA and/or PO.

UMRA can be a faster alternative to SMRA when an effi-

cient pre-process combination is already available, using

standard recipes (Caliandro, 2020) or from a previous SMRA

on similar samples, as in the case of PO and MA (Table 3), and

a fine control of errors is not needed. In fact, the lack of

calibration standards while calculating the model on unknown

samples makes the methods less time consuming but also less

robust and with larger expected errors. This approach repre-

sents the condition in which a strong correlation between the

scale parameter of the profile after the pre-process and the

quantities of the single components in the mixture exists. It

can be used when a high accuracy in the results is not required

or when it is impossible, for any reason, to produce standards

at known quantities. BA is the best solution to obtain semi-

quantitative analysis of XRPD data and is a fast approach to
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Figure 6
The exploited quantification methods’ performances are compared using
the resulting SSR obtained on each data set.



analyse many samples whose features are already known in a

minimal amount of time. Moreover, BA is the only possibility

when no structural knowledge or pure phase profiles are

available. Given the potentialities of these multivariate

approaches, in terms of outperforming RR and PONKCS in

both precision and efficiency of the analysis especially when

managing very large data sets, a discussion on the selection of

the data-analysis method and the pre-processing combination

is mandatory.

In Fig. 7, a possible flowchart for the application of multi-

variate methods, based on the available data, is given. Of

course, as discussed before, the aim of the analysis (precision,

number of samples, automation) should also be taken into

account. The more rigorous and suggested approach is repli-

cating the work carried out in the present case, i.e. SMRA

after measuring sample, standard and pure phase profiles with

the selection of the best pre-process (bottom of Fig. 7), as

described in Section 3.2.1. A number of known samples (three

to five or more depending on the complexity of the case study

and the size of the experimental domain) are necessary to

carry out a supervised analysis (SMRA) to assess the best pre-

process combination, with the exact number of standards

depending on sample complexity and accuracy expectations.

In this case, results with maximum precision and accurate

control of the errors, without external validation, can be

obtained. However, the SMRA approach with a full calibra-

tion can be unsuitable because it is not feasible (pure phases

and/or standards not available), not efficient (many samples to

be analysed) or not necessary (high precision not needed).

In one of these cases, the flowchart of Fig. 7 can be used

from top to bottom. A PCA-based BA approach can be

adopted, by using a suitable pre-process as discussed in

Section 1.2, to efficiently identify the number of possible

phases, and their estimated quantities and the results can be

validated against complementary information (elemental

analysis, sample history, microscopy evaluation). Moreover,

samples can be classified by BA into families, highlighting

similarities and differences. Then, if quantitative information

is needed and pure phase profiles have been measured,

UMRA, with the same pre-process as selected in the previous

BA, can be executed. In this case, the results need an external

validation like BA, but the average errors are in general much

smaller, as discussed in Section 3. Finally, to avoid external

validation, the user must adopt SMRA, typically combined

with pre-process optimization for each single case study or

family of samples. With Fig. 7 in mind, each user can find the

most suitable and efficient approach for their specific experi-

mental needs and sample number and complexity. The Root-

Prof tutorial page (Caliandro, 2020), or any other software

suitable for MSA, contains all the technical information to

start and carry out the analyses.

5. Conclusions

Four XRPD and four XRF data sets were produced, using a

DoE approach, by preparing ternary mixtures obtained by

combining low-density phases (organic as graphite and urea,

and hybrid as zinc acetate) with high-density materials (barite

and bismite). The purpose was exploring and comparing, in a

systematic and standardized way, data-analysis approaches for

quantitative phase evaluation in real-world-like situations, as

discussed in the Introduction. Simplex-centroid augmented

experiment design was used to explore the whole experi-

mental domain, and the obtained data sets were deposited in

an open database that is described in a separate publication

(Mangolini et al., 2021).

For XRF, only SMRA gave results comparable to tradi-

tional FP methods. Conversely, XRPD patterns showing MA

and/or PO were hard or impossible to refine by traditional

Rietveld methods without using the calibrated PONKCS

approach. Both supervised and unsupervised multiple

regression analyses performed better than the hybrid

PONKCS approach and significantly outperformed traditional

RR, whose average errors (SSR in Table 2) were much larger.

Also BA by PCA, recently introduced by some of us in the

XRPD field (Guccione et al., 2021), gave good estimations

(SSR down to 0.078). The good performances of multivariate

methods were obtained on samples recalcitrant to traditional

approaches, without costly and time-consuming sample

preparation, avoiding milling, and thus simulating real-world

usage with the analysis of many (hundreds per day) samples.

The possibility of automation and self-learning of multivariate

approaches offers new possibilities in quality-control proce-

dures when dealing with complex solid mixtures that are hard

or impossible to manage with the traditional Rietveld method.

Finally, to help widen the use of multivariate methods in

XRPD data analysis, a guide for the choice of the best

approach (see Fig. 7 and its discussion) and indications about

pre-process selection (see Section 1.2) have been given,

depending on both the user’s needs and goals and sample

features.
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Figure 7
A summary flowchart of the different ways in which quantitative analysis
on XRPD data can be approached, as proposed in the present work.



APPENDIX A
Physico-mathematical background on traditional data-
analysis approaches

In traditional XRPD and XRF data analysis, analytical rela-

tions between single-peak or whole profile intensities are

related to the weight fraction of a phase (XRPD) or the

concentration of an element (XRF). The precision in the

quantification relies on the adherence between used models

and measured intensities. Traditional approaches to XRPD

and XRF data analyses are well established; therefore, only

their main equations are recalled in the following subsections

to underline how weight fraction is related to experimental

variables. Conversely, a detailed background is given for the

multivariate methods in Section 1.2 to highlight similarities to

and differences from the traditional approaches and to help

the reader in understanding and exploiting the proposed MA

methods.

A1. FPs in XRF data analysis

The FP approach applied to XRF data allows one to obtain

quantitative elemental results by using equations borrowed

from the theory of X-ray interaction with matter (Criss &

Birks, 1968; Grieken & Markowicz, 2001). It represents a way

to determine approximate concentration results without the

need for empirical calibration (which is costly and time

consuming, requiring known assayed standards, and typically

valid in relatively small concentration ranges). FP equations

model the background, automatically deconvolute elemental-

peak overlap, estimate elemental-peak areas and model X-ray

absorption/enhancement effects by generating theoretical

alpha corrections (Rigaku, 2012). The calculation of sample

compositions is based on the general relationship between the

concentration of the analyte i (Ci) and its measured net

intensity (Ii), which is expressed by a very simple equation

(Rousseau, 2006, 1984a,b):

Ci ¼ kiIiMis; ð2Þ

where ki is the calibration constant for the ith analyte, Ii is its

measured intensity and Mis is the correction of the ME of the

sample s on the ith analyte. The determination of the para-

meter Mis is the critical point. Its general applicability to, in

principle, any sample represents a huge advantage, but the ME

(and then the quantification error) can limit the reliability of

the result. Different algorithms are used in modern manu-

facturers’ software and each will give, in principle, reliable

results (Willis & Lachance, 2004).

A2. RR in XRPD data analysis

RR is a method that was suggested by H. M. Rietveld

between 1967 and 1969 for the analysis of powder diffraction

data. It is a least-squares whole-pattern refinement that

minimizes the differences between the experimental pattern

and the calculated one, modelling the contributions coming

from instrumentation and from each crystal structure. The

refinement goes through a convergence algorithm that mini-

mizes the residuals, calculated as

R ¼
P

i

wiðyio � yicÞ
2; ð3Þ

where the sum is over the profile values, and yio and yic are the

observed and calculated values of the profile at the ith posi-

tion, respectively. Furthermore, wi represents a weight asso-

ciated with the experimental value, typically taken as the

reciprocal variances of the observed intensities (Dinnebier &

Billinge, 2008; Madsen et al., 2019). The RR least-square

procedure allows one to obtain the scale factor for each phase

�, which is bound to the weight fraction by the following

equation:

S� ¼
K

V2
�

W�

��

1

��m
; ð4Þ

where S� is the Rietveld scale factor for phase �, W� is the

weight fraction of the phase �, �� is the density of the phase �,

��m is the mass absorption coefficient of the mixture, V� is the

volume of the unit cell for phase �, and K is defined as the

‘experiment constant’ for the instrumental setup and data-

collection conditions.

Since the density can be defined as

�� ¼
ZM�

V�

1:66054; ð5Þ

where ZM is the mass of the unit-cell contents from Z (the

number of formula units per unit cell) and M (the mass of the

formula unit), equation (4) can be written as

W� ¼
S�ðZMVÞ��

�
m

K
: ð6Þ

RR is thus based on the best possible estimation of the scale

factor of each phase to obtain the weight factor by equation

(4). The main problem with this approach is that ��m and K are

unknown, but, under the assumption that all phases in the

mixture are crystalline, a simplification can be carried out

according to

W� ¼
S�ðZMVÞ�Pn
i¼1 SiðZMVÞi

: ð7Þ

Equation (7) allows elimination of the instrument constants

and the mass absorption coefficient (Madsen et al., 2019;

Dinnebier et al., 2018). The presence of PO introduces inac-

curacies in the scale-factor determination from the least-

square procedure. March–Dollase correction or spherical

harmonics functions can correct intensity for PO but great

care is needed in quantitative analysis (Madsen et al., 2001;

Scarlett et al., 2002). MA further complicates the quantifica-

tion, as detailed in Section 1.1. Factors like Brindley correction

can mitigate this effect but the assumption of spherical

particles of identical diameter is unrealistic (Scarlett &

Madsen, 2018; Pederson et al., 2003).

A3. The PONKCS method in XRPD data analysis

PONKCS (Scarlett & Madsen, 2006, 2018) was developed

for the specific goal of overcoming the intrinsic limitation of

RR, i.e. the knowledge of the crystal structures, while main-

taining its formalism in the least-square minimization between
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experimental and theoretical profiles. It uses the knowledge of

pure phase XRPD patterns for unknown phases and RR to

refine known phases. The advantage over ‘pure MultiFit’ by

RootProf (Caliandro & Belviso, 2014) is that known and

unknown phases can be refined together in the same pattern,

optimizing information extraction. For non-indexed phases,

ZMV is not known, while for indexed but not solved phases,

ZM is unknown and cell information is used to refine peak

positions. In the first case, ZMV is estimated using a pure

phase pattern to ‘calibrate’ the intensities of the phase of

interest.

ðZMÞ� ¼
W�

Ws

Ss

S�
ðZMVÞs: ð8Þ

When � is an unknown phase, (ZM)� is calculated using

equation (8), while, when known, it is calculated as in the

Rietveld approach by its crystal structure. Now (ZM)� has no

physical meaning and is only valid for the chosen experimental

configuration. If the cell is known, the approach is similar, and

the information is used to refine peak positions and calculate

ZM. In both cases, the calibration procedure allows one to

estimate the scale factor and can help manage MA and/or PO

effects, if they are similar in pure phases and in the analysed

mixture XRPD patterns. In principle, the number of PONKCS

phases is arbitrary and the ideal one can be chosen to optimize

the fit and phase estimation.

In this work, in order to compensate for the MA effect, the

PONKCS approach was first used to generate this empirical

(ZM)lighter phase for the lighter phase [thus not exploiting the

knowledge of its crystal structure, fitted by Pawley fit, using as

reference the sample with 50:50 composition (i.e. in data set

D1, S5 and S6 samples, both cases were tested) in order to get

from the fit the expected 50% weight]. After this calibration

step for the rest of the data set, the individual intensities of the

PONKCS ‘lighter phase’ were kept fixed and only the Rietveld

scale factor was left free in refinement, as done usually in

standard RR. We also tested a ‘double PONKCS’ approach

(one phase RR and two phases PONKCS fitted), in which

both the lighter phases and one of the heavier phases, barite or

bismite, were both PONKCS calibrated and Pawley fitted on

the 33:33:33 mixture, to get from the fit the exact 33.3 weight

percentage for each phase.
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Wold, S., Sjöström, M. & Eriksson, L. (2001). Chemom. Intell. Lab.

Syst. 58, 109–130.
Zappi, A., Maini, L., Galimberti, G., Caliandro, R. & Melucci, D.

(2019). Eur. J. Pharm. Sci. 130, 36–43.

research papers

850 Mattia Lopresti et al. � QPA of diffraction and fluorescence data J. Appl. Cryst. (2022). 55, 837–850

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB73
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB53
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB54
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB55
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB56
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB57
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB58
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB60
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB59
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB61
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB61
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB62
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB62
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB63
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB63
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB64
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB64
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB66
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB67
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB68
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB68
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB68
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB69
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB69
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB69
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB70
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB70
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB71
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB72
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB73
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB73
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB74
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=nb5320&bbid=BB74

