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The design of X-ray optics based on diffraction from crystals depends on the

accurate calculation of the structure factors of their Bragg reflections over a

wide range of temperatures. In general, the temperature dependence of the

lattice parameters, the atomic positions and the atomic thermal vibrations is

both anisotropic and nonlinear. Implemented here is a software package for

precise and flexible calculation of structure factors for dynamical diffraction.

�-Quartz is used as an example because it presents the challenges mentioned

above and because it is being considered for use in high-resolution X-ray

spectroscopy. The package is designed to be extended easily to other crystals by

adding new material files, which are kept separate from the package’s stable

core. Python 3 was chosen as the language to allow the easy integration of this

code into existing packages. The importance of a correct anisotropic treatment

of the atomic thermal vibrations is demonstrated by comparison with an

isotropic Debye model. Discrepancies between the two models can be as much

as 5% for strong reflections and considerably larger (even to the level of 100%)

for weak reflections. A script for finding Bragg reflections that backscatter

X-rays of a given energy within a given temperature range is demonstrated. The

package and example scripts are available on request. Also discussed, in detail,

are the various conventions related to the proper description of chiral quartz.

1. Introduction

For decades, materials scientists, chemists and biologists have

obtained valuable and detailed information on the electronic

structure and phonon spectra of numerous materials by

applying different types of inelastic X-ray scattering, including

resonant inelastic X-ray scattering (RIXS) (Schülke, 2007;

Ament et al., 2011), X-ray nuclear resonant scattering (Gerdau

& de Waard, 1999, 2000) and millielectronvolt-resolution non-

resonant inelastic X-ray scattering (Baron, 2016). Different

approaches have been used to make the optics for these

experiments. For hard X-rays (>5 keV), optics typically

employ Bragg reflections in perfect crystals, as these have

sufficient energy resolution for inelastic measurements.

However, the acceptance of Bragg reflections in flat perfect

crystals is typically �1–100 mrad, which limits the solid angle

of scattered radiation that can be collected from a sample.

Thus, to improve rates, most inelastic scattering measurements

employ figured optics to increase the analyser acceptance. For

experiments with roughly electronvolt resolution, crystal

wafers can be directly bent into the desired shape (often either

cylindrical or spherical) while, for better resolution, some sort

of dicing is done, with many perfect crystallites attached to a
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figured substrate – the dicing avoids degradation of the reso-

lution due to the strain caused by bending. However, more

recently, it has also become possible to use a combination of a

collimating optic with a flat crystal (e.g. Shvyd’ko et al., 2014),

also called a ‘post-sample collimation’ or ‘PSC’ geometry

(Baron, 2016). This potentially offers advantages, especially

for high resolution, as one can avoid the difficulty of figuring

an optic without distorting it unacceptably.

It is useful to have access to different perfect crystal

materials. While the various geometries, including figured

analysers or post-sample collimation, improve the angular

acceptance, the efficiency for a given energy resolution is

improved if one can work near Bragg angles of 90�, that is

‘backscattering’. The crystal must then diffract from a set of

atomic planes whose spacing d is half the wavelength used in

the experiment, with a usually small range of tunability before

losses or spectral broadening become an issue. Therefore, it is

very convenient to have computational tools that deal easily

with different, and potentially complex, crystal types. In

particular, the high symmetry of the cubic diamond structure’s

space group Fd3m, in which silicon, the most common material

for X-ray optics, also crystallizes, results in a rather limited

number of possible d spacings and thus a restricted choice

among only a few energies. The high symmetry also increases

the chance that unwanted Bragg reflections can be simulta-

neously excited near backscattering and interfere with the

backscattering reflection (Sutter et al., 2001; Huang et al.,

2014). These parasitic reflections (also sometimes called

‘umweg’ or ‘multibeam’ conditions) can be very numerous: the

12 4 0 reflection, which reaches backscattering at 14 438 eV,

close to the Mössbauer resonance of the 57Fe nucleus, has 22 of

them. Germanium and diamond crystallize in the same space

group and therefore suffer from the same weaknesses as

silicon.

Materials with lower-symmetry structures are considered

for use in X-ray spectrometers, as they offer a better chance of

having a backscattering Bragg reflection close to a desired

energy. These materials must be available in large highly

perfect ingots so that variations in lattice-plane spacing do not

broaden the energy resolution. They must be able to be cut,

polished and etched, to bend elastically without fracture, and

to withstand intense radiation. Yavaş et al. (2017) have

reviewed some options, which all form trigonal crystal struc-

tures: �-quartz (SiO2), lithium niobate (LiNbO3) and sapphire

(Al2O3). Of these three, �-quartz offers the best crystal

quality, as well as the best choice of Bragg reflections when an

energy resolution below 60 meV for X-rays of 5–10 keV

energy is desired. �-Quartz wafers and ingots grown synthe-

tically by the hydrothermal process (Brice, 1985; Laudise,

1987) are commercially available. Sutter et al. (2005, 2006)

were the first to demonstrate their high quality, with 4 meV

resolution attained over 11 cm2 at 10 keV (�E/E = 4 � 10�7),

and Imai et al. (2007) quickly added further confirmation.

Hönnicke et al. (2013) have shown similar quality (�d/d = 5 �

10�7) over an area of 79 � 32 mm. �-Quartz crystals can

therefore be a useful addition to the X-ray optics developer’s

toolbox.

The development of both bent-crystal and flat-crystal X-ray

spectrometers that use �-quartz crystals has been actively

pursued during the past decade. Honnicke et al. (2016) have

constructed a diced quartz spherical analyser and used it to

examine the Ni K� emission spectrum around 7.47 keV. Their

analyser was curved to a radius of 1 m and had 360 crystal

blocks of area 1.5 � 1.5 mm, yielding a total collection area of

810 mm2. Said et al. (2018) used a similar quartz analyser to

perform RIXS on the 11.215 keV Ir L3 emission line with an

energy resolution of 10.53 meV. Their analyser was bent to a

2 m radius and was made from a quartz wafer of 25 mm

diameter, yielding a total area of 490 mm2. Kim et al. (2018)

improved the resolution at the Ir L3 emission line to an esti-

mated 3.9 meV by using a flat �-quartz crystal analyser with

post-sample collimation; Pereira et al. (2015) spherically bent

an �-quartz crystal of �0.1 mm thickness and 40 � 60 mm

cross section down to a radius of 672 mm. We note that

�-quartz is more susceptible than silicon to distortion under

thermal loads (having both lower thermal conductivity and

higher thermal expansion), as has been demonstrated for flat-

crystal high-resolution monochromators (Gog et al., 2018), but

the analyser crystals in X-ray spectrometers generally have

small or negligible thermal loads. Moreover, the large thermal

expansion of quartz makes it tunable in energy over wider

ranges than silicon can reach for the same temperature

change. Quartz is thus an important material for such optics.

The performance of an X-ray optic, particularly the band-

pass and the efficiency, depends sensitively on the structure

factor of the crystal’s Bragg reflection. When using back-

scattering Bragg reflections, it is also necessary to take the

temperature of the crystal into account, because the

temperature changes the interplanar spacing d and hence the

selected X-ray energy. Therefore, accurate calculation of the

structure factor for a wide range of Bragg reflections, X-ray

energies and crystal temperatures is necessary for the optimal

design of an X-ray spectrometer. This task is more complex for

�-quartz than for silicon because the positions of the atoms

of �-quartz within the unit cell depend on temperature, unlike

those of silicon, and because the thermal vibrations of the

atoms in �-quartz are strongly anisotropic. Moreover,

�-quartz has a chiral structure, being able to crystallize in

either left-handed or right-handed forms that are mirror

images of each other. The variety of methods used in the

literature to describe the crystal structures of �-quartz has led

to confusion that persists to this day (Huang et al., 2018;

Glazer, 2018). A practical algorithm for calculating the

structure factors of �-quartz not only must be able to

accommodate this diversity of conventions but also should

serve as a template for the rapid calculation of large numbers

of structure factors of Bragg reflections from even more

complex crystals.

We have written a new software package designed to

calculate the structure factors of Bragg reflections in �-quartz

at temperatures from 20 to 838 K while giving each user the

freedom to choose the description of the crystal structure. The

language used is Python 3, which permits both stand-alone

operation and easy integration into widely used software
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packages such as OASYS (Sánchez del Rı́o & Rebuffi, 2019)

and SRW (Chubar & Elleaume, 1998). The software is

constructed so that all information about the diffracting

crystal is contained in a material file separate from the code

that calculates the structure factor. Users may write a different

material file for any convention of �-quartz they wish. They

may also write separate material files for different models of

the thermal vibration in �-quartz (e.g. anisotropic displace-

ment ellipsoids versus Debye temperature). Two examples will

demonstrate the strong effect of the temperature dependence

of the atomic positions and thermal vibrations on the structure

factors, particularly on those of weak reflections. Even for

strong reflections, a full anisotropic treatment of the atomic

Debye–Waller factors can yield structure factors with magni-

tudes differing by as much as 5% from those calculated with

an isotropic Debye model. A script for finding Bragg reflec-

tions that reach backscattering at a given energy within a given

range of temperatures while providing suitable efficiency and

bandpass is also provided. This software package can be

extended to the calculation of structure factors of any other

crystal simply by writing an appropriate material file. As a

result, this software package is named PyCSFex (pronounced

‘pixfex’) for ‘Python crystal structure factor extensible’.

2. Crystal structure of a-quartz

�-Quartz, also called low quartz, is one of the many forms that

SiO2 can assume under various temperatures and pressures

(Frondel, 1962; Johnson & Foise, 1996), and it is the only

crystalline form that is thermodynamically stable at room

temperature and atmospheric pressure (although glass and

some other crystalline forms are metastable under these

conditions). At atmospheric pressure, SiO2 exists stably as

�-quartz up to 846 K, at which it undergoes a phase transition

to (high) �-quartz. On the way from there up to its melting

point of 1996 K, SiO2 passes through several other crystalline

phases (Brice, 1985).

Disagreements in the description of the �-quartz crystal

structure involve conflicting definitions of the crystal’s hand-

edness, the choice of using right-handed or left-handed coor-

dinate axes to describe the atomic positions, two different

ways of labelling the diffracting planes, and finally the choice

of coordinate origin. Donnay & Le Page (1978) reviewed the

various options and gave the atomic positions in each. Their

review may help improve currently available software

packages such as XOP (Sánchez del Rı́o & Dejus, 2004, 2011)

and the APS X-ray Server (Stepanov, 1997). Gross errors in

the structure factor calculation can occur if the software’s

conventions are not the ones that its users have in mind, as will

be seen below. In the following section, we will summarize the

various conventions that have been used to describe the

crystal structure of �-quartz. We will explain our preferences

but, as we wish to be inclusive, we will also explain how those

who prefer other conventions can convert ours into theirs with

minimal effort.

Crystals of �-quartz form a trigonal Bravais lattice in either

of two space groups, P3121 and P3221, that are mirror images

(enantiomorphs) of each other. They are composed of SiO4

tetrahedra that are linked together at their corners and are

slightly distorted so that one long type (1.6145 Å) and one

short type (1.6101 Å) of Si—O bond are present (Nuttall &

Weil, 1981). In this paper as in most others, a hexagonal unit

cell with three SiO2 formula units is used. The lattice coordi-

nate vectors a and b are of equal length a and form an angle of

120�, and the lattice coordinate vector c has length c and is

perpendicular to both a and b. The c axis is a threefold (not

sixfold) screw axis, which may be left-handed or right-handed

according to the following definition:

(i) Wrap the fingers of the right hand around the c axis while

extending the right thumb along the positive c direction.

(ii) Rotate the crystal structure by 120� in the direction in

which the fingers of the right hand curl.

(iii) If a translation of the rotated crystal structure by c/3

brings the crystal structure back to its original state, the screw

axis is right-handed.

(iv) If a translation of the rotated crystal structure by �c/3

brings the crystal structure back to its original state, the screw

axis is left-handed.

We repeat this definition to resolve the confusion that can

be caused by the existence of both a slightly distorted sixfold

helix of Si atoms and an exact threefold helix of Si atoms that

have opposite handedness (Glazer, 2018). Application of

these rules to either of these helices will yield the same result

for the handedness of the screw axis. Perpendicular to the

screw axis, there are three symmetrically related twofold axes

that are separated in angle by 120� and in height by c/3. One Si

atom lies on each of these three axes. The three Si atoms and

six O atoms of the hexagonal unit cell are at Wyckoff positions

(a) and (c), respectively.

Part of the confusion in the literature is that different

communities define a chiral crystal’s handedness in ways that

for �-quartz (though not for all chiral crystals) are directly

opposite.1 In this paper, we will therefore avoid the use of the

terms ‘left-handed quartz’ and ‘right-handed quartz,’ which

though simple are ambiguous. Instead, we will use the Latin

terms ‘dextro’ and ‘laevo,’ which are common in the literature

and are defined as follows (Donnay & Le Page, 1978):

Dextro: rotates the plane of polarization clockwise as seen

by an observer looking upstream. The screw axis c is left

handed. The space group as given by International Tables for

Crystallography (2016) is No. 154, P3221.

Laevo: rotates the plane of polarization counterclockwise as

seen by an observer looking upstream. The screw axis c is right

handed. The space group as given by International Tables for

Crystallography (2016) is No. 152, P3121.

The best choice of handedness for the coordinate axes has

also been much discussed over the years. Donnay & Le Page

(1978) cited numerous studies predating 1930 in which a left-

handed coordinate system was used, but they stated that since

then the right-handed coordinate system had become more
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common. However, they did support the idea of matching the

handedness of the coordinates to that of the screw: that is,

using a left-handed coordinate system for dextro quartz and a

right-handed coordinate system for laevo quartz. �-Quartz

crystals often appear in nature as mirror-imaged (Brazil)

twins, and this proposal would permit consistent Miller

indexing across both members of such a twin. This proposal

would also allow the atomic positions in both dextro quartz

and laevo quartz to be assigned the same set of values.

According to Glazer (2018), crystal growers have in fact

adopted this idea, but in the opposite sense, using a right-

handed coordinate system for dextro quartz and a left-handed

coordinate system for laevo quartz. However, Glazer himself

uses a right-handed coordinate system for both dextro and

laevo quartz, and we ourselves are accustomed to using right-

handed coordinate systems in our daily work; therefore, we

have chosen to use right-handed coordinate systems regard-

less of the quartz crystal’s handedness.

Even after these choices have been made, the directions of

the lattice vectors a and b remain to be determined. From the

beginning, these axes have been chosen to be parallel to two of

the three symmetrically equivalent twofold axes on which the

Si atoms are located, but this still does not specify which way

the positive a axis points. A crystal of �-quartz forms three

main types of flat faces with distinctly different appearances,

defined below. We will use the four-index Miller–Bravais

indices (hkil), where i = �(h + k), to describe each set of

atomic planes in the conventional hexagonal coordinate

system. The third index is of course redundant but brings out

the crystal symmetries more clearly.

(i) r faces: ‘major rhombohedra’, large and often shiny.

(ii) z faces: ‘minor rhombohedra’, smaller and duller than r

faces.

(iii) m faces: ‘prismatic’, Miller–Bravais indices f1010g and

f0110g.

Two settings exist for the assignment of Miller–Bravais

indices to the atomic planes:

(i) r (obverse) setting: r faces are f1011g and z faces are

f0111g. According to Glazer (2018), the 1011 reflection is

stronger than the 1011 reflection, and the 3031 reflection is

much stronger than the 3031 reflection.

(ii) z (reverse) setting: r faces are f0111g and z faces are

f1011g. The 1011 reflection is weaker than the 1011 reflection,

and the 3031 reflection is much weaker than the 3031 reflec-

tion.

The two settings differ by a rotation of the a and b axes by

180� about the c axis.

Though Glazer (2018) views the obverse setting as the

standard, and Donnay & Le Page (1978) cited several previous

authors who used it, the reverse setting is widely used in the

literature. Therefore, we have chosen the reverse setting for

our program code. Fortunately, material files written for the

reverse setting can be easily switched to the obverse setting, as

will be shown below.

With a right-handed coordinate system and the reverse

setting, laevo quartz is described by the z(�) setting and

dextro quartz by the z(+) setting of Donnay & Le Page (1978).

The plus and minus signs are those of the charge that develops

on the positive end of the a axis when the crystal is stretched

along that axis.

Finally, the literature contains multiple choices of the origin

of the coordinate system, which can be classified by the height

of the twofold axis that is parallel to the coordinate vector a.

Many authors, including Donnay & Le Page (1978) and Glazer

(2018), place the origin so that this height is zero; thus, the first

Si atom is located at coordinates (u, 0, 0) in both dextro and

laevo quartz. However, International Tables for Crystal-

lography (2016) sets this Si atom at ðu; 0; 2
3Þ in dextro quartz

and ðu; 0; 1
3Þ in laevo quartz. This is also the convention

followed by Parthé & Gelato (1984) in their standardized

notation. The decisive factor here is that, as pointed out by

Glazer (2018), dextro �-quartz of space group P3221 changes

above the transition temperature of 846 K into left-screw

�-quartz of space group P6222. This is No. 180 in International

Tables for Crystallography (2016), in which the Si atoms are at

Wyckoff position (c) and the first Si atom is at ð12 ; 0; 0Þ.

Likewise, laevo �-quartz of space group P3121 changes above

the transition temperature into right-screw �-quartz of space

group P6422. This is No. 181 in International Tables for

Crystallography (2016), where again the first Si atom is at

ð12 ; 0; 0Þ. We follow Glazer (2018) in using the convention of

Donnay & Le Page (1978) in order to maintain the continuity

of the atomic positions across the transition from �-quartz to

�-quartz.

Having now passed through the controversies surrounding

the �-quartz structure, we conclude this section with a few

uncontroversial statements. First, the interplanar spacing d of

a set of planes with Miller–Bravais indices (hkil) in a hexa-

gonal coordinate system is

d ¼
1

ð4=3a2Þðh2 þ k2 þ hkÞ þ ðl2=c2Þ½ �
1=2
: ð1Þ

Second, we consider sets of symmetrically equivalent

planes. In silicon and germanium, the large number of

symmetry operations permits the Miller indices to be

permuted arbitrarily and changed individually in sign without

altering the diffraction properties. A set of symmetrically

equivalent planes {hkl} in these cubic materials therefore

contains 48 planes (unless two or more of the Miller indices

are equal). In �-quartz, on the other hand, a general set of

symmetrically equivalent planes {hkil} contains at most only

six planes, as pointed out by Huang et al. (2018). These are

listed in Table 1.
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Table 1
Members of the set of symmetrically equivalent planes {hkil} in a
hexagonal coordinate system.

Miller–Bravais
indices Generated by symmetry operation

(hkil) Identity
(ihkl) 120� right-handed rotation about c
(kihl) 240� right-handed rotation about c
ðhiklÞ 180� rotation about a
ðikhlÞ 120� right-handed rotation about c, then 180� rotation about a
ðkhilÞ 240� right-handed rotation about c, then 180� rotation about a



Note that planes with the same spacing d need not always be

symmetrically equivalent in �-quartz and therefore need not

have the same structure factor. For example, {hkil} is not

equivalent to {khil} if h 6¼ k, and (hkil) is not equivalent to

ðhkilÞ if h, k 6¼ 0. The latter leads to violations of Friedel’s law

in cases where the form factors of the atoms have large

imaginary parts due to anomalous dispersion. Huang et al.

(2018) listed many such cases in their supplementary infor-

mation.

Finally, because of the low symmetry of the trigonal crystal,

very few planes of �-quartz yield forbidden reflections. In

International Tables for Crystallography (2016), it is shown

that the only forbidden reflections are 000l if l 6¼ 3n, where n is

a non-zero integer.

3. Thermal treatment and Debye–Waller factors of
a-quartz

For silicon and germanium, the amplitude of the thermal

vibrations of the atoms is usually calculated under the

assumption of an isotropic Debye model with Debye

temperatures of 543 and 290 K, respectively (Batterman &

Chipman, 1962). A similar model has been tried for �-quartz,

but different sources give widely different values for the

Debye temperature. Gray (1957) quotes a value of 470 K.

Berreman & Chang (1959) obtained similar values that were

dependent on direction: 508 � 16 K along the c axis and

452 � 15 K perpendicular to the c axis. On the other hand,

using the measurements of Le Page et al. (1980), Huang et al.

(2018) calculated entirely different Debye temperatures of

790.03 K for the Si atoms and 749.31 K for the O atoms. A

close look at the original measurements, however, shows that

the thermal vibrations are in fact strongly anisotropic. They

also show that the Debye model provides a poor fit to the

measured mean-square atomic displacements, even when

different Debye temperatures are permitted for vibrations

along different directions.

The strong anisotropy of the thermal vibrations of the

atoms in �-quartz cannot be ignored if the Debye–Waller

factors of the Bragg reflections are to be correctly calculated.

One must use the full displacement ellipsoids for this purpose.

Downs (2000) has provided a helpful review of this topic. The

dimensions and orientation of the displacement ellipsoid of an

atom are given in terms of the ellipsoid’s symmetric 3 � 3

matrix � such that the atom’s Debye–Waller factor D for a

Bragg reflection hkl is given by

D ¼

exp � �11h2
þ �22k2

þ �33l2
þ 2�12hkþ 2�13hl þ 2�23kl

� �� �
ð2Þ

and the mean-square displacement hu2
vi of the atom along

some specified vector v = v1a + v2b + v3c in real space is given

by

hu2
vi ¼

vtG�Gv

2�2vtGv
: ð3Þ

The superscript t denotes the transpose and G is the metric

matrix, which is also symmetric:

G ¼

a 	 a a 	 b a 	 c

b 	 a b 	 b b 	 c

c 	 a c 	 b c 	 c

2
4

3
5: ð4Þ

If the atomic thermal motion is isotropic, hu2
vi is the same

for all real-space vectors v. This is fulfilled if � = �G�1, for

which hu2
vi ¼ �=2�2.

4. Definitions and values

In Tables 2, 3, 6 and 7, values at 298 K are provided from

Kihara (1990) as examples. These measurements were made

on natural clear �-quartz samples. The lattice parameters of

other natural and synthetic �-quartz crystals in the literature

fall either within or very nearly within the experimental error

of Kihara’s measurements (Brice, 1985; Kihara, 1990). This

good agreement gives confidence that the data presented here

are generally applicable. The lattice coordinate system is right-

handed and hexagonal. Table 2 shows the lattice parameters

and Table 3 shows the atomic positions in the lattice coordi-

nate system. The prototype Si atom is located at coordinates

(u, 0, 0) and the prototype O atom is located at coordinates

(x, y, z).

The lattice coordinates of the other Si and O atoms can be

generated from those of the prototype atoms by the applica-

tion of the following symmetry operations:

Dextro: ‘left screw about c’. This is a right-handed 120�

rotation about c followed by a translation of �c/3. It trans-

forms a point (x, y, z) into another point (x0, y0, z0) given by

x0

y0

z0

2
4

3
5¼ 0 �1 0

1 �1 0

0 0 1

2
4

3
5 x

y

z

2
4

3
5� 0

0

1=3

2
4

3
5 ¼ M3c

x

y

z

2
4

3
5� 0

0

1=3

2
4

3
5:
ð5Þ

Laevo: ‘right screw about c’. This is a right-handed 120�

rotation about c followed by a translation of c/3. It transforms

a point (x, y, z) into another point (x0, y0, z0) given by
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Table 2
Lattice parameters of �-quartz.

Symbol Meaning Value at 298 K

a Length of lattice vectors a and b 4.9137 Å
c Length of lattice vector c 5.4047 Å

Table 3
Atomic positions in �-quartz.

D = dextro, z(+) setting. L = laevo, z(�) setting. The laevo values are equal to
one minus the dextro values.

Symbol Meaning
Value at
298 K (D)

Value at
298 K (L)

u a coordinate of prototype Si atom 0.4697 0.5303
x a coordinate of prototype O atom 0.4133 0.5867
y b coordinate of prototype O atom 0.2672 0.7328
z c coordinate of prototype O atom 0.1188 0.8812



x0

y0

z0

2
4

3
5¼ 0 �1 0

1 �1 0

0 0 1

2
4

3
5 x

y
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Dextro and laevo: ‘180� rotation about a’. This transforms a
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For dextro �-quartz in the z(+) setting, the atomic positions

and the sequence of symmetry operations by which each

atom’s coordinates are generated from those of the prototypes

Si1 and O1 are shown in Table 4, while Table 5 shows the same

information for laevo �-quartz in the z(�) setting. In both

tables, the rotation matrix S, which is the product of all rota-

tion matrices required to obtain each atom’s coordinates from

those of its prototype, is provided for the treatment of the

displacement ellipsoids and hence the Debye–Waller factor.

The elements of the � matrices of the displacement ellip-

soids of the prototype Si atom and the prototype O atom are

shown in Tables 6 and 7, respectively. Because each Si atom is

located on a twofold axis, only �11 , �22 , �33 and �23 are shown

for the silicon prototype. The twofold symmetry imposes the

relations �12 = �22/2 and �13 = �23/2. The elements of the �
matrix of the prototype O atom are all independent except

that this matrix is symmetric. These values are the same for

both dextro �-quartz in the z(+) setting and laevo �-quartz in

the z(�) setting.

To calculate the displacement ellipsoid matrix � 0 of another

atom from the displacement ellipsoid matrix of its prototype,

one uses the equation

� 0 ¼ S�St; ð8Þ

where the value of the rotation matrix S for each atom is given

in Table 4 for dextro �-quartz and Table 5 for laevo �-quartz.

5. Conversions between obverse and reverse settings

If a right-handed lattice coordinate system is used, dextro

�-quartz can be described in either the reverse z(+) setting or

the obverse r(�) setting of Donnay & Le Page (1978). Simi-

larly, laevo �-quartz can be described in either the reverse

z(�) setting or the obverse r(+) setting. The switch between

reverse and obverse settings is carried out by a 180� rotation of

the lattice vectors a and b about the axis c. The parameters

listed above must then be converted as in Table 8.

The importance of sticking to one particular setting when

running design calculations for an �-quartz backscattering

analyser should be clear from this discussion, since (hkil)obverse

is not equivalent to ðhkilÞobverse , nor is (hkil)reverse equivalent to

ðhkilÞreverse , even though these reflecting planes have the same

spacing d.

As long as one is consistent in the choice of setting, the

structure factor of a reflection hkil from dextro �-quartz is

equal to the structure factor of the reflection hkil from laevo

�-quartz:

FðhkilÞlaevo=zð�Þ ¼ FðhkilÞdextro=zðþÞ; ð9aÞ

FðhkilÞlaevo=rðþÞ ¼ FðhkilÞdextro=rð�Þ: ð9bÞ
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Table 4
Full list of atomic positions for dextro �-quartz in the z(+) setting.

Si1 and O1 are, respectively, the prototype Si and O atoms. u, x, y and z are
given the dextro values in Table 3.

Atom Atomic positions Symmetry operations
Rotation
matrix S

Si1 (u, 0, 0) Identity I
Si2 (0, u, 2/3) Si1: 1 � left screw about c M3c

Si3 (�u, �u, 1/3) Si1: 2 � left screw about c M2
3c

O1 (x, y, z) Identity I
O2 (�y, x � y, z + 2/3) O1: 1 � left screw about c M3c

O3 (y � x, �x, z + 1/3) O1: 2 � left screw about c M2
3c

O4 (x � y, �y, �z) O1: 180� rotation about a M2a

O5 (�x, y � x, �z + 1/3) O2: 180� rotation about a M2aM3c

O6 (y, x, �z + 2/3) O3: 180� rotation about a M2aM2
3c

Table 5
Full list of atomic positions for laevo �-quartz in the z(�) setting.

Si1 and O1 are, respectively, the prototype Si and O atoms. u, x, y and z are
given the laevo values in Table 3.

Atom Atomic positions Symmetry operations
Rotation
matrix S

Si1 (u, 0, 0) Identity I
Si2 (0, u, 1/3) Si1: 1 � right screw about c M3c

Si3 (�u, �u, 2/3) Si1: 2 � right screw about c M2
3c

O1 (x, y, z) Identity I
O2 (�y, x � y, z + 1/3) O1: 1 � right screw about c M3c

O3 (y � x, �x, z + 2/3) O1: 2 � right screw about c M2
3c

O4 (x � y, �y, �z) O1: 180� rotation about a M2a

O5 (�x, y � x, �z + 2/3) O2: 180� rotation about a M2aM3c

O6 (y, x, �z + 1/3) O3: 180� rotation about a M2aM2
3c

Table 6
Elements of the �matrix of the displacement ellipsoid of the prototype Si
atom and their values at 298 K as provided by Kihara (1990) for dextro �-
quartz in the z(+) setting; also valid for laevo �-quartz in the z(�) setting.

�11 80 � 10�4

�22 61 � 10�4

�33 45 � 10�4

�23 �3 � 10�4

Table 7
Elements of the �matrix of the displacement ellipsoid of the prototype O
atom and their values at 298 K as provided by Kihara (1990) for dextro �-
quartz in the z(+) setting; also valid for laevo �-quartz in the z(�) setting.

�11 179 � 10�4

�22 130 � 10�4

�33 85 � 10�4

�12 102 � 10�4

�13 �26 � 10�4

�23 �41 � 10�4



6. Temperature dependence of the a-quartz structure

X-ray crystallographic data showing the temperature depen-

dence of the lattice parameters, atomic positions and displa-

cement ellipsoids of �-quartz are scattered across many

papers. Table 9 shows the references selected for this article.

Errors are not clearly given in the data of Barron et al.

(1982) but have been estimated here as �0.0005 Å, since the

errors given by Kihara (1990) for high-temperature lattice

parameters are at least this large.

All these experimentally measured temperature depen-

dencies show a common pattern over the temperature range

from 13 to 838 K:

(i) A low-temperature region of very small variation with

temperature.

(ii) A mid-temperature region of approximately linear

variation with temperature.

(iii) A high-temperature region in which the rate of varia-

tion with temperature increases rapidly up to the �-quartz!

�-quartz transition.

It is desirable to fit the data in all these regions to a single

function so that the lattice parameters, atomic positions and

displacement ellipsoids can be accurately interpolated from

the published data points to any required temperature.

However, polynomials of fourth order or below, although they

can provide good fits within limited temperature ranges, fail to

fit the data well over the full range. Polynomials of fifth order

or higher have unphysical oscillations between the data points.

An exponential–logarithmic fit function, inspired by the idea

of critical exponents, ultimately provided much better fits to

the full range of measured data:

f ðTÞ ¼ f0 þ P exp
�Q

ln Tc=ðTc � TÞ
� �� �n

 !
; ð10Þ

where T is the absolute temperature in kelvin and Tc = 846 K

is the transition temperature from �-quartz to �-quartz. f(T) is

the quantity to be fitted (lattice parameters a and c, Si atomic

position u, O atomic position x, y, z, displacement ellipsoid �
matrix components). The free parameters are f0 , P, Q and n.

The conditions Q > 0 and n > 0 are imposed. Note that the

limits of this function are finite:

lim
T!0þ

f ðTÞ ¼ f0; ð11aÞ

lim
T!T�c

f ðTÞ ¼ f0 þ P: ð11bÞ

Although this fitting function requires the use of a nonlinear

curve-fitting algorithm to determine the optimal parameters,

the least-squares Levenberg–Marquardt algorithm (Leven-

berg, 1944; Marquardt, 1963) brings it to a rapid convergence
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Table 8
Conversion table from the reverse setting to the obverse setting.

For dextro �-quartz, this converts from the z(+) to the r(�) setting. For laevo
�-quartz, this converts from the z(�) to the r(+) setting. The displacement
ellipsoid matrix �ij is converted in the same way for both the Si atoms and the
O atoms.

(hkil)obverse = ðhkilÞreverse

uobverse = �ureverse

xobverse = �xreverse

yobverse = �yreverse

zobverse = zreverse

(�11)obverse = (�11)reverse

(�22)obverse = (�22)reverse

(�33)obverse = (�33)reverse

(�12)obverse = (�12)reverse

(�13)obverse = (��13)reverse

(�23)obverse = (��23)reverse

Table 9
Selected references for the temperature dependence of the �-quartz
structure.

Lattice parameters a and c, 5–298 K Integrated from thermal expansion
coefficients of Barron et al. (1982),
Table 1

Lattice parameters a and c, 298–838 K Kihara (1990), Table 1
Atomic positions and displacement

ellipsoids, 94–298 K
Le Page et al. (1980), Table 1

Atomic positions and displacement
ellipsoids, 298–838 K

Kihara (1990), Table 3

Lattice parameters, atomic positions
and displacement ellipsoids at 13,
78 and 296 K

Lager et al. (1982), Table I

Figure 1
Temperature fits of the lattice parameters (a) a and (b) c of �-quartz over the temperature range 13–838 K.



with the measured data. The calculation of the best-fit free

parameters was performed using the commercially available

software program OriginPro (OriginLab, 2017).

The O-atom position x varies too little for a good fit to be

made on it alone. More stable fits are achieved by fitting the

dependence of the atomic position of the O atom with

temperature to a line as follows. The values of x, y, z are

converted to Cartesian coordinates using Kihara’s values a =

4.9137 Å and c = 5.4047 Å at 298 K. The best-fit line to the

measured positions of the O atom passes through their

centroid C. The unit direction vector V̂V of the best-fit line to

the measured positions is determined using standard linear

algebra. The equation of the line which gives the best-fit value

r(T) of the O atom’s position in Cartesian coordinates is

therefore

rðTÞ ¼ Cþ tðTÞV̂V: ð12Þ

The length t(T) from the centroid to the point on the best-fit

line that is nearest to the O atom’s position at temperature T is

calculated. The values of t(T) are fitted using equation (10) to

generate an interpolating function that can be evaluated at

any temperature within the chosen range. The resulting

Cartesian coordinates of the O atom at any temperature are

then converted back into the hexagonal coordinates of the

�-quartz unit cell. It will be shown that this procedure yields

good fits to the experimental values of x, y and z.

The optimal values of the fitting parameters for the lattice

parameters, atomic positions and displacement ellipsoids are

shown in Table 10 for dextro �-quartz in the z(+) setting. For
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Figure 2
Temperature fits over 13–838 K of the prototype atomic positions (a) Si u and (b) O x, (c) O y and (d) O z of dextro �-quartz in the z(+) setting. For laevo
�-quartz in the z(�) setting, switch the signs of all these values. See Table 8 for conversion to the obverse settings r(�) for dextro �-quartz and r(+) for
laevo �-quartz.

Table 10
Optimal values of the fitting parameters for the lattice parameters, the
prototype atomic positions and the prototype displacement ellipsoids of
dextro �-quartz in the z(+) setting over the temperature range 13–838 K.

The fits were made to the measured data reported in the publications listed in
Table 9.

Value f0 P Q n

a 4.90137 Å 0.19290 Å 1.80380 0.49873
c 5.39806 Å 0.10774 Å 1.72837 0.56369
Si u 0.46796 0.14030 3.34189 0.30790
O t �0.05454 2.09511 3.50034 0.28351
Si 104

� �11 33.80581 316.85367 1.15728 0.63590
Si 104

� �22 35.46433 234.81469 1.24881 0.70758
Si 104

� �33 16.72506 166.37647 1.07478 0.61059
Si 104

� �23 �1.98183 22.36979 3.52304 0.65136
O 104

� �11 80.23419 619.20673 1.00988 0.71444
O 104

� �22 55.09116 910.22226 1.66614 0.50506
O 104

� �33 29.84124 650.47191 1.75296 0.45406
O 104

� �12 43.81216 409.36732 1.13880 0.65112
O 104

� �13 �5.35134 �52.36748 0.43392 0.84086
O 104

� �23 �11.15409 �718.15015 2.39901 0.33189



laevo �-quartz in the z(�) setting, it is only necessary to

change the signs of u for the Si atoms and of x, y and z for the

O atoms. As mentioned before, a right-handed hexagonal

lattice coordinate system is being used for both dextro and

laevo �-quartz.

Note that the zero-temperature values obtained from the

best fit to the measured lattice parameters agree well with

those estimated by Barron et al. (1982): a0 = 4.9006 � 0.0005 Å

and c0 = 5.3979 � 0.0005 Å. The values measured for the

lattice parameters by Lager et al. (1982) have been compared

with those determined from the best fit. Their relative devia-

tions from the best fit are 
2.1 � 10�4 for a and 
3.1 � 10�4

for c.

The best-fit line along which the prototype O atom moves as

the temperature varies is

ðx; y; zÞ ¼ ð0:414147; 0:263209; 0:122435Þ

þ tðTÞ ð0:023053;�0:143842; 0:118118Þ; ð13Þ

where the best-fit parameters for t(T) are provided in Table 10.

The temperature fits over 13–838 K of the measured data

cited in Table 9 to equation (10) using the optimal free

parameter values in Table 10 are shown in Fig. 1 (lattice

parameters a and c), Fig. 2 (atomic positions), Fig. 3 (Si

displacement ellipsoid) and Fig. 4 (O displacement ellipsoid).

The deviation of the best-fit function from the measured data

lies within twice the estimated errors provided by the refer-

ences and is usually much less.

7. Atomic form factors

The non-anomalous X-ray scattering factors f0 of the Si and O

atoms were calculated as a function of s = sin�/�, where � is

the Bragg angle and � is the X-ray wavelength, from the five-

Gaussian neutral atom fits of Waasmaier & Kirfel (1995):2

f0 ¼ C þ
P5

i¼1

Ai exp �Bis
2ð Þ: ð14Þ

Ai , Bi and C are the fitting parameters, and s is in units of Å�1.

This fitting function was chosen for high accuracy at large

values of s up to 6.0 Å�1, which are especially important when

backscattering Bragg reflections are being considered. Fig. 5

shows the values of f0 for Si and O.

The values for anomalous dispersion were calculated using

the abs program of Brennan & Cowan (1992), which was

originally written in Fortran77 but is now available in a public-

domain Python 3 version that was provided by Brennan and is
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Figure 3
Temperature fits over 13–838 K of the independent displacement ellipsoid matrix elements of the prototype Si atom. They are the same for dextro
�-quartz in the z(+) setting and for laevo �-quartz in the z(�) setting. Because of the twofold site symmetry, �12 = �22/2 and �13 = �23/2. To convert to the
obverse r settings, switch the signs of �13 and �23 as shown in Table 8.

2 We distinguish s = sin�/� from the also frequently used quantity q =
4� sin�/�.



included with our software package. The method published by

Cromer & Liberman (1981) was used to determine the real

part f 0 and the imaginary part f 00, which is related to the

photoelectric absorption cross section. The abs program was

also used to determine the contribution to the imaginary part

of the scattering factor that arises from Rayleigh and Compton

scattering (McMaster et al., 1969). These are labelled here as

fR and fC, respectively. Note that the Compton scattering may

not be negligible when X-ray diffraction from light atoms is

treated, as is the case in �-quartz. The total atomic scattering

factor f is therefore

f ¼ f0 þ f 0ð Þ þ i f 00 þ fR þ fC

� �
: ð15Þ

Note that the calculated anomalous dispersion will not be

correct near an absorption edge and that the effects of crystal

structure on absorption are neglected. This is not a serious

problem for �-quartz or sapphire because the absorption

edges of silicon, aluminium and oxygen are all far below the

energies at which backscattering crystal spectrometers would

normally be used. However, for other potentially useful

crystals like lithium niobate that contain atoms of higher

atomic number, more care might need to be taken if the
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Figure 4
Temperature fits over 13–838 K of the displacement ellipsoid matrix elements of the prototype O atom. They are the same for dextro �-quartz in the z(+)
setting and for laevo �-quartz in the z(�) setting. To convert to the obverse r settings, switch the sign of �13 and �23 as shown in Table 8.



selected X-ray energy is near an absorption edge of one of the

atoms.

8. Calculation of the structure factor

In the following, we take the convention that the phase term of

a plane wave is exp(�2�ik 	r), where k is the wavevector and r

is a position. This convention is used in many standard texts on

X-ray diffraction, such as Zachariasen (1945), Batterman &

Cole (1964) and Authier (2006). It is also used in standard

software packages such as XOP (Sánchez del Rı́o & Dejus,

2004, 2011). However, other software packages such as the

APS X-ray Server (Stepanov, 1997) and SRW (Chubar &

Elleaume, 1998) define the phase term of a plane wave as

exp(+2�ik 	r). Unfortunately, confusion can arise if a structure

factor calculated under one of these conventions is input to a

program that uses the other.

If the phase term of a plane wave is exp(�2�ik 	r) as we

assume, the structure factor F(hkl) for diffraction from the

(hkl) atomic planes of a crystal is determined by the formula

FðhklÞ ¼
P

j

fj Dj exp 2�i hXj þ kYj þ lZj

� �� �
; ð16Þ

where the index j designates a particular atom within the unit

cell. fj is the total atomic scattering factor of the j th atom. Dj is

the Debye–Waller factor of the j th atom as given by equation

(2). (Xj, Yj, Zj) are the coordinates of the j th atom in the

lattice coordinate system (a, b, c). The atomic coordinates in

the reverse z setting are given in Table 4 for dextro �-quartz

and in Table 5 for laevo �-quartz. See Table 8 for conversion to

the obverse r setting.

If the phase term of a plane wave is exp(+2�ik 	r), the

scattering factors fj and the exponential terms exp[2�i(hXj +

kYj + lZj)] are replaced by their complex conjugates.

9. Structure of the program

9.1. Requirements

The package requires a Python 3 interpreter with the

modules __future__, abc, h5py, importlib, math,

matplotlib, numpy, os, pandas, pkgutil, re, sys and

xlrd.

9.2. Code structure and use

9.2.1. Directories. The code is contained within the direc-

tory SFC and contains the Python packages general_

crystals and Structure_Factor_Calculator. Note

that each of these packages contains its own file

__init__.py as Python programming rules require.

The directory also contains the following files:

(i) An Excel spreadsheet Form_factor_coefficients.

xlsx, which contains the fitting parameters for the atomic

scattering factors of Waasmaier & Kirfel (1995) [see equation

(14)].

(ii) Any Python 3 scripts written by the user that apply the

modules above.

9.2.2. Definition of the crystal. The crystal is defined in the

Python package general_crystals, which contains the

module general_crystal.py and all material files. The

material files may be named according to each user’s wishes.

For maximum flexibility, an abstract base class called

GeneralCrystal is defined in the module general_

crystal.py. This includes a basic set of attributes and

methods that are useful for any type of crystal:

(i) Crystal system (cubic, tetragonal, orthorhombic, hexa-

gonal, rhombohedral/trigonal, monoclinic, triclinic).

(ii) Unit-cell parameters (sides and angles).

(iii) Determination of lattice vectors (module latt_

vec_A).

(iv) Determination of the metric matrix defined in equation

(4) (module G_matrix_A2).

(v) Determination of the wavelength, interplanar spacing

and Bragg angle for Bragg reflection of X-rays of a given

energy from atomic planes of given Miller indices (hkl)

(module angle_finder).

GeneralCrystal also includes a set of abstract methods

that are named but not implemented:

(i) information: to print out important details about the

crystal.

(ii) lattice_unit_cell_params: to set the lattice

parameters of the crystal.

(iii) refatom_coordinates: to set the position of the

prototype atom in the crystal.

(iv) atoms_init_and_update: to set the element types

and determine the positions and thermal vibrations of all the

atoms in the crystal.

Instances of an abstract base class cannot be produced, but

each material file in the Python package general_

crystals defines a subclass of GeneralCrystal from

which instances can be created. For example, in the file

alphaquartz_dextro_zp.py that defines dextro �-quartz

in the z(+) setting, we define class AlphaQuartz_

Dextro_zp(GeneralCrystal).

In each material file, an implementation for the abstract

methods in GeneralCrystal must be provided, but users

are free to decide what implementation best suits them. Users

may also use the material file to add new model-dependent
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Figure 5
Values of the non-anomalous atomic scattering factor f0 of Si and O as
calculated from the fits of Waasmaier & Kirfel (1995).



attributes and methods not provided by GeneralCrystal.

Each material file should include the lines

import numpy as np

from .general_crystal import GeneralCrystal

and should also access the modules in Structure_

Factor_Calculator as follows:

from Structure_Factor_Calculator.checks import

Check

from Structure_Factor_Calculator.atom import

Atom

from Structure_Factor_Calculator.diffraction_

environment import Diff_Environment

from Structure_Factor_Calculator.tools import

Tools

The module general_crystal.py also includes a class

CrystalFactory. The module __init__.py in the

Python package general_crystals imports this class so

that all material files in general_crystals can be read.

Each module of user-written code in the main directory SFC

must include the line

from general_crystals import CrystalFactory

and must also import the definition of the crystal. For example,

in our case, the user-written code in SFC contains the line

from general_crystals.alphaquartz_dextro_zp

import AlphaQuartz_Dextro_zp

In order to minimize confusion between dextro and laevo

�-quartz, we chose to define them in separate material files.

Additionally, for quartz of either handedness, we made one

material file that includes the full treatment of the displace-

ment ellipsoids, and another material file that treats the ther-

mal vibrations using an isotropic Debye model with a Debye

temperature of 470 K for both Si and O atoms. The full list of

material files provided for �-quartz is therefore as follows:

(i) alphaquartz_dextro_zp.py: dextro �-quartz in

the z(+) setting with displacement ellipsoids. Defines class

AlphaQuartz_Dextro_zp(GeneralCrystal).

(ii) alphaquartz_dextro_zp_isodwf.py: dextro

�-quartz in the z(+) setting with the isotropic Debye

model. Defines class AlphaQuartz_Dextro_zp_isodwf

(GeneralCrystal).

(iii) alphaquartz_laevo_zm.py: laevo �-quartz in the

z(�) setting with displacement ellipsoids. Defines class

AlphaQuartz_Laevo_zm(GeneralCrystal).

(iv) alphaquartz_laevo_zm_isodwf.py: laevo

�-quartz in the z(�) setting with the isotropic Debye

model. Defines class AlphaQuartz_Laevo_zm_isodwf

(GeneralCrystal).

Those who prefer the r settings will have little difficulty

modifying the files above using the conversions in Table 8.

The class attributes defined in the material files for �-quartz

are listed in Table 11. Other attributes may be added for data

checking at the user’s discretion.

Objects of these classes are initialized with the arguments in

Table 12.

When an object of these classes is initialized, the class

methodset_temp_miller_energy(self,temperature_K,

hkl, energy_eV) is called to set the crystal’s temperature

and then to determine the unit-cell parameters, the atomic

positions, the diffraction parameters, and the atomic species

and scattering factors. This method must subsequently be

called whenever the crystal’s temperature is changed. When

the temperature is unchanged but a different diffracting plane

or photon energy is desired, a simpler updating method

set_miller_energy(self, hkl, energy_eV) can be

called so that temperature-dependent parameters do not need

to be recalculated, thus saving time if a large number of Bragg

reflections are calculated at the same temperature.

The next set of class methods are specific to our model of

�-quartz and may be replaced by more suitable methods

for other crystals. The fitting equation (10) is implemented in

the class method fitting_equation(self, temp_K,

f0, P, Q, n). The symmetry operations of �-quartz are

implemented in the class methods screw_matrix(self,
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Table 11
Attributes of Python 3 classes that describe �-quartz.

Attribute Definition

description Brief definition of the class
TminK Minimum temperature in kelvin at

which the model for the crystal is valid
TmaxK Maximum temperature in kelvin at

which the model for the crystal is valid
temperature_K Temperature of the crystal in kelvin
crystal_system Defined here as hexagonal to match the

coordinate system
element_list List showing the element and order of

each atom in the crystal’s unit cell
environment Object of class Diff_Environment

describing diffraction parameters (see
text)

atoms List of objects of class Atom describing
each atom in the unit cell (see text)

fit_coefficients Dictionary containing the temperature
fitting parameters in Table 10

Tc_K Temperature of the phase transition
from �-quartz to �-quartz

O_Reference_Line_Start Starting point of the prototype O atom’s
position in equation (13)

O_Reference_Line_Vector Vector in equation (13) along which the
prototype O atom moves with
temperature

Si_T_Debye_K, O_T_Debye_K
(isodwf material files only)

Debye temperatures for vibrations of Si
and O atoms, respectively

Table 12
Arguments used to initialize Python classes that define �-quartz crystals
in the material files.

Argument Definition

temperature_K Temperature of the crystal in kelvin
hkl Miller indices of the desired Bragg reflection
energy_eV Photon energy of the X-rays in electronvolts



atom_coord), two_fold_matrix(self) and three_

fold_matrix(self). When displacement ellipsoids are used,

the class method beta_matrix_gen(self, element,

beta_list = None) organizes the ellipsoid parameters into

the full symmetric 3 � 3 matrix for later processing.

The remaining class methods are implementations of the

abstract methods of the abstract base class GeneralCrystal.

In our material files, these implementations are supported by

the set of crystal-specific class methods defined above.

9.2.3. Structure factor code. The structure factor code is

contained in the Python package Structure_Factor_

Calculator, which consists of the following:

(i) atom.py: defines the class Atom that contains the

atomic properties.

(ii) checks.py: defines a simple class Check containing a

set of methods for input checking.

(iii) diffraction_environment.py: defines the class

Diff_Environment that contains the diffraction para-

meters.

(iv) physical_constants.py: defines a set of physical

constants.

(v) structure_factor_calc.py: defines the class

Structure_Factor, which contains the methods for

calculating the structure factor.

(vi) tools.py: defines a set of miscellaneous methods that

are useful for the other files.

(vii) xrpy: the Python package that contains the methods

of Brennan & Cowan (1992) for calculating the anomalous

terms of the atomic scattering factors. This includes anomalous

dispersion, Compton scattering and Rayleigh scattering.

Especially important are the treatment of the atom, the

environment and the structure factor calculation, which are as

follows.

9.2.4. Definition of the atom. Each atom is treated as an

object of class Atom, which has the attributes in Table 13. Note

that the thermal atomic vibration is treated by inputting either

beta_matrix for a displacement ellipsoid or M_and_TD for

an isotropic Debye model, but not both.

Objects of class Atom are initialized with the arguments in

Table 14. beta_matrix and M_and_TD are keyword argu-

ments whose default values are None. One but not both of

these arguments must be supplied by the user.

An already existing object of class Atom may be updated

with the method update, which saves time by skipping the

element definition and the reading of the fitting parameters

form_factor_coefficients. Class Atom also includes a

method information, which prints out the values of the

object’s attributes. data_selecter is the method that reads

the values of form_factor_coefficients from the pro-

vided Excel spreadsheet Form_factor_coefficients.

xlsx. The method scattering_factor calculates form_

factor, f0 and form_factor_fwd for the atom described.

9.2.5. Definition of the environment. The environment

includes the parameters that describe the Bragg reflection of

X-rays from the crystal at a specified temperature. Class

Diff_Environment contains the attributes in Table 15.

Objects of this class are initialized by the arguments in

Table 16.

An existing object of class Diff_Environment can be

updated by calling its method update with the current values

of these arguments. Method information prints out the

current values of the object’s attributes. Method d_hkl

calculates the interplanar spacing for the given Miller indices

hkl, and method cell_volume calculates the volume of the

unit cell. Note that these methods have been written with all
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Table 13
Attributes of class Atom.

Attribute Definition

element Element of atom (e.g. Si or O)
coordinates Fractional coordinates of atom in unit

cell
cartesian_coordinates Coordinates in a Cartesian system in

ångströms
Environment Object of class Diff_Environment

describing diffraction parameters
(see text)

form_factor_coefficients Fitting parameters for the atomic scat-
tering factor excluding anomalous
dispersion, Compton scattering,
Rayleigh scattering and Debye–
Waller factor; read from the provided
Excel spreadsheet Form_factor_
coefficients.xlsx

form_factor Total atomic scattering factor for scat-
tering into the diffracted beam
(without Debye–Waller factor)

f0 Atomic scattering factor for scattering
into the diffracted beam, excluding
anomalous dispersion, Compton
scattering, Rayleigh scattering and
Debye–Waller factor

form_factor_fwd Total atomic scattering factor for scat-
tering into the forward direction

beta_matrix Matrix � of displacement ellipsoid if
given

M_and_TD Atomic mass in atomic mass units and
Debye temperature in kelvin if given

Table 14
Arguments used to initialize objects of class Atom.

Argument Definition

element Element of atom (e.g. Si or O)
coord Fractional coordinates of atom in unit cell
environment_obj Object of class Diff_Environment describing

diffraction parameters (see text)
latt_vec_A Lattice vectors given in Cartesian coordinates in

ångströms
beta_matrix Matrix � of displacement ellipsoid if given
M_and_TD Atomic mass in atomic mass units and Debye

temperature in kelvin if given

Table 15
Attributes of class Diff_Environment.

Attribute Definition

temp_K Crystal temperature in kelvin
angle_rad Bragg angle in radians
angle_deg Bragg angle in degrees
hkl Miller indices of Bragg reflection
wavelength_A Wavelength of X-rays in ångströms
d_A Interplanar spacing of (hkl) atomic planes



types of crystal structures in mind and not just that of

�-quartz.

9.2.6. Structure factor calculation. Class Structure_

Factor contains several methods used for determining the

structure factor from the description of the crystal, the atoms

and the environment:

(i) debye_waller: calculates the Debye–Waller factor of

a particular atom in the given crystal for the specified Bragg

reflection using displacement ellipsoids.

(ii) isotropic_debye_waller: calculates the Debye–

Waller factor of a particular atom in the given crystal for the

specified Bragg reflection using an isotropic Debye model.

(iii) atom_scat_phase_DW: multiplies an atom’s atomic

scattering factor by the Debye–Waller factor and the phase

term in equation (16). This includes a check to avoid un-

necessary repetition of calculations for identical atoms.

(iv) F_hkl: calculates the structure factor of the specified

Bragg reflection hkl, for the Bragg reflection hkl and for

forward scattering. Dynamical diffraction calculations of

reflectivity generally require all these quantities as inputs, and

therefore it is convenient to calculate them all at once.

(v) SF_output: prints out the value of the structure factor

along with accompanying information.

10. Results

Three examples will show how the structure factor code can

provide large numbers of structure factors of �-quartz with

minimal effort.

10.1. Comparison of ð1011Þdextro-zðþÞ and ð1011Þdextro-zðþÞ

A Python 3 script SF-vs-T_Dextro-z+_101.py was

saved in the main directory SFC. Its first purpose is to calculate

the structure factors of ð1011Þdextro-zðþÞ and ð1011Þdextro-zðþÞ over

the entire range of valid temperatures 20–838 K in steps of

1 K. Its second purpose is to compare the structure factors

obtained from the full anisotropic displacement ellipsoids with

those obtained by assuming an isotropic Debye model of

Debye temperature 470 K for both Si and O atoms. An X-ray

energy of 10 000 eV was chosen. At each temperature, the

script writes the following in a text file:

(i) The Bragg angle �B = arcsin(�/2d) in degrees (� is the

wavelength of the X-rays and d is the spacing of the diffracting

atomic planes).

(ii) The squared magnitude and the phase of the structure

factor F(hkl) of the given Bragg reflection.

(iii) The squared magnitude and the phase of the structure

factor FðhklÞ of the negative of the given Bragg reflection.

(iv) The squared magnitude and the phase of the structure

factor F0 for forward scattering.

The script is given in the supporting information.

The Bragg angle is 10.707� at 20 K and decreases to 10.556�

at 838 K. The properties of the structure factors are shown in

Fig. 6. The plot in Fig. 6(a) correctly shows that the

ð1011Þdextro-zðþÞ reflection is weaker than the ð1011Þdextro-zðþÞ
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Table 16
Arguments used to initialize objects of class Diff_Environment.

Argument Definition

temperature_K Crystal temperature in kelvin
crystal_system Type of unit cell (‘Hexagonal’ for �-quartz)
unit_cell_params Lattice parameters (sides and angles of the

unit cell)
angle_plane_wavelength List containing the Bragg angle in radians,

the Miller indices and the X-ray wave-
length in ångströms

Figure 6
Plots over temperature from 20 to 838 K for �-quartz using both
anisotropic displacement ellipsoids (‘anisotropic DW’) and an isotropic
Debye model with Debye temperature 470 K for all atoms (‘isotropic
DW’). DW stands for Debye–Waller. X-rays of 10 000 eV energy are used.
(a) The squared magnitude of the structure factors of ð1011Þdextro-zðþÞ and
ð1011Þdextro-zðþÞ . (b) The phase angle in radians of the structure factor
of ð1011Þdextro-zðþÞ . (c) The phase angle in radians of the structure factor of
ð1011Þdextro-zðþÞ .



reflection, as pointed out by Glazer (2018). It also shows,

however, that the magnitudes of the two structure factors

approach each other as the transition from �-quartz to

�-quartz is approached. This is to be expected because, at the

transition, the threefold screw axis becomes a sixfold screw

axis and these two Bragg reflections therefore become

symmetrically equivalent. The isotropic thermal model

consistently yields larger squared magnitudes of the structure

factors than the anisotropic model, but the two models remain

within 1% up to 530 K for ð1011Þdextro-zðþÞ and up to 412 K for

ð1011Þdextro-zðþÞ. However, above these temperatures, the

isotropic thermal model deviates progressively more from the

anisotropic model as the transition is approached. At 838 K,

the squared magnitudes of the structure factors calculated by

the isotropic model are 5.3% greater than those calculated by

the anisotropic model. The phase angles of the structure

factors calculated by both thermal models agree to within

0.014%, as shown in Figs. 6(b) and 6(c).

10.2. Comparison of ð3031Þdextro-zðþÞ and ð3031Þdextro-zðþÞ

A Python 3 script SF-vs-T_Dextro-z+_301.py was

saved in the main directory SFC. Its first purpose is to calculate

the structure factors of ð3031Þdextro-zðþÞ and ð3031Þdextro-zðþÞ over

the entire range of valid temperatures 20–838 K in steps of

1 K. Its second purpose is to compare the structure factors

obtained from the full anisotropic displacement ellipsoids with

those obtained by assuming an isotropic Debye model of

Debye temperature 470 K for both Si and O atoms. An X-ray

energy of 10 000 eV was chosen. At each temperature, the

script writes the following in a text file:

(i) The Bragg angle in degrees as defined in the previous

example.

(ii) The squared magnitude and the phase of the structure

factor F(hkl) of the given Bragg reflection.

(iii) The squared magnitude and the phase of the structure

factor FðhklÞ of the negative of the given Bragg reflection.

(iv) The squared magnitude and the phase of the structure

factor F0 for forward scattering.

This script is exactly the same as SF-vs-T_Dextro-z+_

101.py except that the Miller indices and the names of the

output text files have been updated.

The Bragg angle is 26.932� at 20 K and decreases to 26.459�

at 838 K. The properties of the structure factors are shown in

Fig. 7. The plot in Fig. 7(a) correctly shows that the

ð3031Þdextro-zðþÞ reflection is much weaker than the

ð3031Þdextro-zðþÞ reflection, as pointed out by Glazer (2018). As

in the previous example, these two reflections become

symmetrically equivalent in �-quartz; therefore, it is not
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Figure 7
Plots over temperature from 20 to 838 K for �-quartz using both anisotropic displacement ellipsoids (‘anisotropic DW’) and an isotropic Debye model
with Debye temperature 470 K for all atoms (‘isotropic DW’). DW stands for Debye–Waller. X-rays of 10 000 eV energy are used. (a) The squared
magnitude of the structure factors of ð3031Þdextro-zðþÞ and ð3031Þdextro-zðþÞ . (b) The squared magnitude of the structure factor of ð3031Þdextro-zðþÞ , plotted
alone to show where it drops almost to zero and then recovers. (c) The phase angle in radians of the structure factor of ð3031Þdextro-zðþÞ . (d) The phase
angle in radians of the structure factor of ð3031Þdextro-zðþÞ .



surprising that the squared magnitudes of their structure

factors approach each other just below the transition

temperature. With increasing temperature, the squared

magnitude of the structure factor of the very weak

ð3031Þdextro-zðþÞ reflection falls almost to zero before re-

covering, as seen in Fig. 7(b). This occurs because the total

scattering from the three Si atoms very nearly cancels out the

total scattering from the six O atoms. At lower temperatures

the scattering from the O atoms dominates, while at higher

temperatures the scattering from the Si atoms dominates. The

minimum value is 0.02533 at 536 K if the anisotropic thermal

model is used and 0.02424 at 562 K if the isotropic model is

used. In Fig. 7(d), one sees that the minimum in the squared

magnitude of this structure factor is accompanied by a change

in the phase angle of 3.02 rad, which amounts to almost a

complete phase reversal. Finally, Fig. 7(c) shows the phase

angle of the stronger reflection ð3031Þdextro-zðþÞ, which is very

similar in both the anisotropic model and the isotropic model.

The deviation of the isotropic model from the anisotropic

model behaves very differently with temperature from that

observed in the previous example. For the stronger reflection

ð3031Þdextro-zðþÞ, the isotropic model yields a consistently

weaker structure factor than the anisotropic model, with the

largest deviation being 4.26% at 643 K. The phase angle of the

structure factor of this reflection is the same in both thermal

models to within 0.006%. For the very weak reflection

ð3031Þdextro-zðþÞ, the disagreement between the two thermal

models is very large. This example demonstrates the impor-

tance of accurate models of the temperature dependence of a

crystal’s atomic positions and thermal vibrations when calcu-

lating structure factors of weak reflections.

For three of these four reflections, the isotropic Debye

model agrees well with the anisotropic model of thermal

vibrations for temperatures below about 450 K, but matches

less well as the temperature increases from there to the �! �
transition. The only exception is the strong reflection

ð3031Þdextro-zðþÞ, where the two models agree within less than

5% throughout.

10.3. Finding Bragg reflections of a-quartz that backscatter
X-rays of a specified energy

This last example, given in the Python script find_

back_ref_Search.py, shows that backscattering Bragg

reflections suitable for X-rays of a specified energy can be

found and selected. Dextro �-quartz in the z(+) setting at

temperatures between 20 and 600 K is assumed. When a

backscattering Bragg reflection hkl is found, the following

parameters are evaluated:

(i) The temperature at which the spacing of the diffracting

atomic planes (hkl) becomes equal to half the X-ray wave-

length.

(ii) The peak reflectivity of the rocking curve in energy.

(iii) The FWHM of the rocking curve in energy.

(iv) The temperature change required to shift the back-

scattered X-ray energy by 1 meV.

Items (ii) and (iii) are calculated from F(hkl), FðhklÞ and F0

using the dynamical diffraction formulas of Batterman & Cole

(1964). Duplicate Bragg reflections related by symmetry are

excluded. The results are displayed in Table 17 for 10 keV

X-rays, in Table 18 for 8.048 keV X-rays (Cu K�1) and in

Table 19 for 17.479 keV X-rays (Mo K�1).

11. Conclusion

�-Quartz is one of the most promising alternatives to silicon

and germanium for the manufacture of X-ray optics. Although
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Table 17
Backscattering reflections hkil of dextro �-quartz in the z(+) setting for
10 keV X-rays.

Tback is the temperature at which each set of diffracting atomic planes has a
spacing equal to half the X-ray wavelength. Rpk is the peak reflectivity. FWHM
is the full width at half-maximum in terms of energy. mK/meV is the change in
temperature in millikelvin required to change the backscattered energy by
1 meV.

hkil Tback (K) Rpk FWHM (meV) mK/meV

7344 77 0.86 10.88 �24.8
7344 77 0.57 3.07 �24.8
4374 77 0.45 3.07 �24.8
5056 459 0.18 1.40 �7.2

Table 18
Backscattering reflections hkil of dextro �-quartz in the z(+) setting for
8.048 keV X-rays.

Tback is the temperature at which each set of diffracting atomic planes has a
spacing equal to half the X-ray wavelength. Rpk is the peak reflectivity. FWHM
is the full width at half-maximum in terms of energy. mK/meV is the change in
temperature in millikelvin required to change the backscattered energy by
1 meV.

hkil Tback (K) Rpk FWHM (meV) mK/meV

6242 246 0.61 8.48 �9.5
6242 246 0.83 17.96 �9.5
4262 246 0.67 8.48 �9.5
5053 364 0.40 4.34 �8.6

Table 19
Backscattering reflections hkil of dextro �-quartz in the z(+) setting for
17.479 keV X-rays.

Tback is the temperature at which each set of diffracting atomic planes has a
spacing equal to half the X-ray wavelength. Rpk is the peak reflectivity. FWHM
is the full width at half-maximum in terms of energy. mK/meV is the change in
temperature in millikelvin required to change the backscattered energy by
1 meV.

hkil Tback (K) Rpk FWHM (meV) mK/meV

11 0 11 6 70 0.85 2.29 �15.9
11 0 11 6 70 0.79 1.64 �15.9
7 2 5 13 222 0.63 0.89 �6.7
7 2 5 13 222 0.70 1.08 �6.7
12 0 12 0 304 0.15 0.26 �3.9
13 5 8 5 420 0.52 0.63 �3.6
13 5 8 5 420 0.29 0.36 �3.6
8 5 13 5 420 0.32 0.36 �3.6
13 3 10 3 434 0.32 0.38 �3.5
13 3 10 3 434 0.27 0.34 �3.5
10 3 13 3 434 0.34 0.38 �3.5
10 3 13 3 434 0.28 0.34 �3.5
12 0 12 1 441 0.71 1.16 �3.4



�-quartz has a relatively low thermal conductivity compared

with silicon, it has already been used successfully in applica-

tions where a high heat load is not imposed, particularly as a

material for X-ray spectrometers that are operated near

backscattering for high energy resolution. Because the

trigonal lattice of �-quartz has lower symmetry than the face-

centred cubic lattice of silicon, germanium and diamond,

�-quartz offers a greater density of backscattering reflections

within a given energy range and thus a better match to X-rays

of specified energy, such as an emission line. Recent

measurements have shown that synthetic �-quartz crystals

with a high degree of crystalline perfection can be obtained.

The design of a diffracting crystal X-ray optic requires

accurate knowledge of the crystal’s structure factors because

these determine its efficiency and bandwidth. For high-

resolution X-ray spectrometers, where temperature is used as

a tuning parameter, it is important to have a full under-

standing of its effect on the crystal structure, atomic vibrations

and lattice parameters. The temperature dependence of the

�-quartz crystal structure is more complex than that of silicon,

germanium or diamond because of the anisotropic thermal

expansion, the atoms’ movement within the unit cell and their

strongly anisotropic thermal vibration. Furthermore, multiple

incompatible conventions exist for describing the �-quartz

structure.

Building on the careful work of many previous researchers,

we have treated the calculation of the structure factors of

�-quartz. This treatment includes a full temperature depen-

dence from 20 to 838 K, just short of the 846 K transition to

�-quartz. It also accounts for the anisotropy of both the crystal

structure and the thermal vibrations of the atoms. For the

calculation of large numbers of structure factors, a small set of

Python 3 modules has been provided. Python 3 was chosen as

the coding language because of its widespread use in X-ray

optics software packages and the variety of functionalities

offered by its libraries. Different ways of describing and

modelling �-quartz can be handled by separate material files,

also written in Python 3. Thus, the unresolved question of

which convention is best for describing �-quartz is avoided.

Tables are provided to convert one convention into another.

Several examples have been provided to illustrate the utility

of this code for �-quartz. First, two comparisons of two closely

related Bragg reflections, one strong and one weak, as a

function of temperature serve to check that the results make

sense. In both examples, the full anisotropic treatment of the

atomic Debye–Waller factors was compared with an isotropic

Debye model. It was shown that the relative discrepancy in the

calculated intensity can be significant – several percent if the

reflection is strong, and even more if it is weak. The third

example was motivated by the intended design of X-ray

spectrometers. Here, a desired energy is input, and a list of

�-quartz Bragg reflections that reach backscattering at that

energy within a given temperature range is printed out, along

with their peak reflectivities and FWHM bandpasses. Scripts

for the performance of these calculations for backscattering

Bragg reflections are shown as models for users and are

included in the source distribution (the names of the example

scripts and the package containing them may differ slightly

from what is described in the paper).

New crystal materials, including the already mentioned

sapphire and lithium niobate, can be accommodated with

new material files; no change in the basic package is required.

Material files for silicon, germanium and diamond are also

included in the source distribution. The code can be down-

loaded from https://github.com/DiamondLightSource/PyCSFex.
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Yavaş, H., Sutter, J. P., Gog, T., Wille, H.-C. & Baron, A. Q. R. (2017).
MRS Bull. 42, 424–429.

Zachariasen, W. H. (1945). Theory of X-ray Diffraction in Crystals.
New York: John Wiley & Sons.

research papers

1028 John P. Sutter et al. � Calculating temperature-dependent X-ray structure factors J. Appl. Cryst. (2022). 55, 1011–1028

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB44
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB45
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB46
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB47
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB48
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB49
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB51
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB52
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=te5094&bbid=BB52

