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Cavities are a ubiquitous feature of chemical structures encountered in various

fields ranging from supramolecular chemistry to molecular biology. They are

involved in the encapsulation, transport and transformation of guest molecules,

thus necessitating a precise and accessible tool for estimating and visualizing

their size and shape. MoloVol, a free user-parametrizable open-source software,

developed for calculating a range of geometric features for both unit-cell and

isolated structures, is presented here. MoloVol utilizes up to two spherical

probes to define cavities, surfaces and volumes. The program was optimized by

combining an octree data structure with voxel-partitioned space, allowing for

even high-resolution protein structure calculations on reasonable timescales.

MoloVol comes with a user-friendly graphic interface along with a command-

line interface for high-throughput calculations. It was written in C++ and is

available on Windows, macOS and Linux distributions.

1. Introduction

A variety of chemical structures contain enclosed sections that

are either partially or completely accessible by smaller mol-

ecules. Such enclosures are known as ‘void spaces’ or ‘cavities’

and are found in a multitude of compound classes, such as

enzymes, cage compounds and cavitands (Albrecht & Hahn,

2012), as well as porous solid materials (Van Der Voort et al.,

2019). In many cases, cavities are integral to the unique

features of these compounds. Cage compounds and cavitands

are, for instance, able to accommodate a single guest molecule

within their cavities that can then be transformed (Fang et al.,

2019), transported (Zhang et al., 2021) or sequestered

(Lavendomme et al., 2017). Porous structures, on the other

hand, can additionally act as molecular sponges and accom-

modate large amounts of guest species (Li et al., 2009).

Furthermore, the effectiveness of many catalysts is tied inti-

mately to their porosity (Sudarsanam et al., 2019).

One of the most, if not the most, important criterion to

determine whether one or several guests can enter a cavity is

the geometrical match between the cavity and the guest

molecule. There are a plethora of computer programs that aid

in calculating geometrical features of cavities such as their

volume or surface area: PLATON with its CALC VOID and

CALC SOLV commands (Spek, 2009), VOIDOO (Kleywegt &

Jones, 1994), GRASP (Nicholls et al., 1991), CAST (Liang et

al., 1998), HOLLOW (Ho & Gruswitz, 2008), Volarea

(Ribeiro et al., 2013), McVOL (Till & Ullmann, 2010),

MDpocket (Schmidtke et al., 2011), ProteinVolume (Chen &

Makhatadze, 2015), 3V (Voss & Gerstein, 2010), Voronoia
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(Rother et al., 2009), PoreBlazer (Sarkisov & Harrison, 2011;

Sarkisov et al., 2020), Zeo++ (Willems et al., 2012), PyMOL

(The PyMOL Molecular Graphics System, Version 2.0,

Schrödinger, LLC), Mercury (Macrae et al., 2020), Materials

Studio (BIOVIA, Dassault Systèmes, San Diego, USA), and

the ironically named Another Void Program or AVP (Cuff &

Martin, 2004). This list is not exhaustive and yet, despite this

wide choice of applications, each with its own uses and perks,

we could not find an application meeting the following char-

acteristics: (i) allows for freely parametrizable calculations, (ii)

exports results in an easily visualizable format, (iii) provides

all desired types of volumes and surfaces (e.g. van der Waals,

probe accessible and probe excluded surfaces), (iv) is able to

analyze both unit cells and isolated molecules, and (v) oper-

ates through an easy-to-use intuitive graphic user interface

(GUI).

Here we present MoloVol, a free user-friendly application

available on all major operating systems, developed to deliver

the above list of features and more. A comparative study

demonstrates that MoloVol provides a wider range of volume

and surface-area types with higher accuracy than other

programs.

2. Accessibility and availability

MoloVol is an open-source application written in C++. The

entire source code is available in a repository hosted on

GitHub (https://github.com/molovol/MoloVol) and is free to

use and modify under the MIT license. The user interface was

built using the cross-platform GUI library wxWidgets, but the

application is also fully functional from the command line.

MoloVol is being actively developed and has been tested on

Windows 10, macOS (10.14 and above) and Ubuntu 20.04 LTS.

Additionally, we offer installation packages for Windows 7

and 8, macOS 10.11 and above, and Debian. On macOS, we

provide native support for both Apple silicon and Intel

processors. Current and past releases are available as

precompiled binaries or as source code at https://molovol.com.

Future releases will be made available through the same web

page.

3. Overview of features

3.1. Method

3.1.1. Volume definitions in single-probe mode. MoloVol

can determine different types of volumes that may be defined

for a chemical structure. The simplest volume is the van der

Waals (vdW) volume, where each atom is assumed to occupy a

spherical volume (defined by its vdW radius) with its center at

the atom position. The vdW volume includes any space that is

occupied by atoms (orange section in Fig. 1). MoloVol is also

able to distinguish between ‘probe accessible void’ (blue/green

section in Fig. 1) and ‘probe excluded void’ volume (gray

section in Fig. 1) by using a spherical probe. This ‘single-probe

mode’ again assumes spherical atoms and treats them as

impenetrable by the probe. Within probe accessible void

volume, MoloVol differentiates between ‘probe core’ volume,

i.e. sections of space reachable by the probe center (blue

section in Fig. 1), and ‘probe shell’ volume, i.e. sections

reachable by the probe but not by its center (green section in

Fig. 1). Cavities are defined by spatially isolated core volume

sections. For a given cavity, its total volume is the sum of the

isolated core volume and all connected shell volume within

one probe radius distance. However, when two cavities are

close enough, they may compete for the same shell volume. In

this case, the shell volume is attributed to the closest core

volume, so that no shell volume is counted twice (dashed line

in Fig. 1).

3.1.2. Surfaces and rolling probe. In addition to volumes,

MoloVol can be used to analyze various surfaces. The vdW

surface is defined as the surface enclosing the vdW volume

(red line in Fig. 1). Two more values are obtained using a

spherical probe, where the probe may be imagined as ‘rolling’

over the entire structure while recording the position of the

probe center and outer bound. This method was originally

described by Lee and Richards (Lee & Richards, 1971;

Richards, 1977) and then further developed by Connolly

(1983). The ‘probe excluded surface’ is the surface traced by

the probe’s outer bound and encloses the vdW volume and

probe excluded void (green line in Fig. 1). The ‘probe acces-

sible surface’ is traced by the probe’s core and additionally

encloses the probe shell volume (blue line in Fig. 1). These

surfaces are often referred to as ‘solvent accessible surface’

and ‘solvent excluded surface’ when the probe approximates a

solvent molecule.

3.1.3. Blocking open cavities in two-probe mode. A cavity

is considered ‘closed’ or ‘isolated’ when a probe can neither

enter nor exit, i.e. all entrances are smaller than the probe

diameter. In proteins, isolated cavities may be considered part

of the molecular volume because guest molecules do not have

access to the enclosed space unless access is given through

conformational motion. Using a spherical probe as described

in Section 3.1.1, it is straightforward to identify isolated
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Figure 1
2D analog of a potential structure analysis with MoloVol. Types of
volumes and surfaces obtained from single-probe mode. Both cavities #1
and #2 are isolated. The Connolly surface for the outside space is the
molecular open surface. Dashed line: separation between cavity #2 and
outside space.



cavities. Open cavities that are connected to the outside such

as protein tunnels, cavities of open-cage compounds and deep

cavitands are, however, more difficult to analyze because there

is no physical limit between the inside and outside of the

molecule.

Several methods have been used to define the volumes of

these open cavities, such as (i) calculating the largest sphere

(Ke et al., 2005; Pasquale et al., 2012) or polyhedron (Liu et al.,

2007) that fits inside the cavity, (ii) using a larger spherical

probe that cannot exit the cavity (Ronson et al., 2014), (iii)

arbitrarily blocking the entrances (Yamashina et al., 2019), (iv)

generating the convex hull of the molecule as the outside limit

(Petřek et al., 2006), and (v) using the probe algorithm with a

probe too large to reside in the molecule to thereby define the

‘outside’ (Voss & Gerstein, 2010).

All these options involve arbitrary decisions and there is no

absolute best solution. Using a large sphere or polyhedron [i.e.

methods (i) and (ii)] artificially reduces the cavity volume by

neglecting asperity within the molecule. Blocking the

entrances appears the most arbitrary method and may lead to

the least reproducible results if details on the blockage are not

provided, but it does account for asperity. Generating a

convex hull may create undesired supplementary cavities if

the original structure has large concave surface regions.

For MoloVol, we have opted for the fifth method using two

probes: one large probe to define the outside space and one

small probe to define inside cavities (see Fig. 2). In our

opinion, this solution is the most elegant, as it allows defining

the shape of the cavities clearly and in an easily reproducible

manner using a minimal set of parameters. There are,

however, two major limitations: first, in the case of very large

open cavities such as for giant polyhedral structures (Fujita et

al., 2016), the large probe used to define the outside space

must be extremely large, thereby missing the fine details of the

outer shape of the molecule; second, the separation between

the outside and inside space as desired by a user might not be

obtainable for some intricate structures (e.g. in the case of

protuberant spikes surrounding the entrance of cavities).

Using a single large sphere or artificial blockage to define

open cavities [i.e. methods (ii) and (iii)] can also be realized in

MoloVol, if preferred by the user, by changing the probe

radius or loading a modified closed structure.

Owing to the translational symmetry in crystal structures, a

molecule and its cavities may be translated arbitrarily within

the unit cell and thereby may appear split by its edge. Thus,

‘outside’ and ‘inside’ are not as easily defined within a crystal

unit cell. Nonetheless, the two-probe mode in MoloVol can

still be of use in crystal structure analysis. For example, using

two probes allows differentiation of pores of different sizes in

porous materials: a large probe to explore the mesopores and

a small probe to explore the micropores. The two-probe mode

implemented in MoloVol thus has a variety of uses depending

on the type of structure analyzed and the information desired.

Further development for porous crystal characterization is

planned (see Section 5).

3.2. Calculation output

As described in Section 3.1 and as seen in Figs. 1 and 2,

several volumes and surfaces can be defined for a structure.

This section details the types of volumes and surface areas that

can be obtained from a MoloVol calculation. An example

calculation performed on an open-cage compound (Yama-

shina et al., 2019) with the corresponding main volumes and

surface areas is shown in Fig. 3.

3.2.1. Volumes. The default calculation of MoloVol

provides the vdW (Vvdw), probe excluded void (Vvoid), probe

core or accessible (Vcore), and probe shell (Vshell) volumes.

Combinations of these volumes are also calculated: molecular

volume (Vmol = Vvdw + Vvoid), probe occupied volume (Vocc =

Vcore + Vshell) and molecular volume with isolated cavities

(Vmol-isolated = Vmol + Vocc-isolated-cavities), defined as the volume

that cannot be accessed from the outside. Each cavity is

characterized by an individual Vcore and Vocc and a cavity type

based on the number of entrances (only in non-unit-cell

mode). In single-probe mode, MoloVol only differentiates

between ‘Outside’ and ‘Isolated’ cavities, where the former is

the probe core that reaches the boundaries of the analyzed

space and the latter is every remaining cavity. In two-probe

mode, the cavity type is determined from the number of

entrances to the cavity from the outside defined by the large

probe. It may be ‘Isolated’ for none, ‘Pocket’ for one, or

‘Tunnel’ for two or more entrances. All volume values are

provided both on the molecular scale in cubic ångström and

on the macroscopic scale in cubic centimetre per gram, which

may be useful for comparison with experimental pore volumes

in porous materials (Ongari et al., 2017).

3.2.2. Surface areas. In addition to volumes, surface areas

can be calculated if the corresponding option is enabled.

MoloVol provides the vdW (Svdw), probe excluded (Sexc) and

probe accessible (Sacc) surface areas. In single-probe mode, the

molecular surface area may be considered equivalent either to

the total probe excluded surface (Smol = Sexc), which is
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Figure 2
2D analog of a potential structure analysis with MoloVol. Types of
volumes and surfaces analyzed in MoloVol using two-probe mode to
detect internal cavities. Detected cavities are numbered. Dashed line:
separation between the two touching but separate cavities #2 and #3. #3
and #4 are pockets that appear due to the large probe.



redundant and therefore not explicitly given, or to the surface

area that is only open to the outside (Smol-open = Sexc-outside) and

encloses Vmol-isolated. In two-probe mode, Smol is defined by

both probes’ excluded surfaces, but the value obtained in

single-probe mode should be preferred as it better represents

the asperities defined by the small probe. For each cavity,

individual values for Sexc and Sacc are also given. These values

are provided both on the molecular scale in square ångström

and on the macroscopic scale in square metre per gram for

comparison with experimental pore surface areas in porous

materials (Ongari et al., 2017).

3.2.3. Surface maps. It is often important to visualize the

surfaces belonging to the calculated volumes, to confirm by

shape that the values calculated correspond to the desired

volumetric objects and to share visual information. MoloVol

does not yet provide a built-in viewer for three-dimensional

models, but it is possible to export ‘surface maps’: i.e. volu-

metric maps in the OpenDX format that can be opened to

visualize isosurfaces in popular and powerful rendering

programs for chemistry such as PyMOL (The PyMOL Mol-

ecular Graphics System, Version 2.0, Schrödinger, LLC),

Chimera (Pettersen et al., 2004) and ChimeraX (Pettersen et

al., 2021). A detailed guide on how to display the surfaces in

these programs is provided in MoloVol’s user manual. The

user can export both the surface map of the total structure and

separate surface maps for each cavity. The map file contains all

information needed to display each surface and volume type

calculated by MoloVol.

3.3. Input files and parameters

3.3.1. Structure files. Chemical structures can be loaded

from XYZ, PDB and CIF files. XYZ files contain only a list of

atoms with their symbol and Cartesian coordinates in

ångström. They are often most convenient for chemical

structures with no crystallographic information. Protein Data

Bank (PDB) and Crystallographic Information Framework

(CIF) files may contain more information, notably crystal-

lographic information. Consequently, crystal-unit-cell analysis

in MoloVol requires either PDB or CIF files.

3.3.2. Element file. A file containing element radii and

atomic weights is provided with the program binaries. Element

radii were taken from a study by Alvarez (2013) because the

list was more extensive than other references that we found.

Atomic weights were taken from an IUPAC technical report

(Meija et al., 2016). These values might slightly diverge from

the ones used in other programs. This file with element

properties is loaded by default, but it is possible to select a

different file generated by the user with other values or

custom elements if needed.

3.3.3. Calculation parameters. After a structure file has

been imported, all atoms are listed along with their radii in a

table. The radii are read from a provided element file (see

Section 3.3.2). It is possible to change the radii from the

default in two ways: either by changing the values in the

element table directly or by loading a custom element file.

Using the former method, the radii will be reset when loading

a new structure. The latter method may be used if changes

should apply to multiple calculations.

Furthermore, loading a custom element

file allows defining custom element

symbols. We do not expect this function

to be heavily used, but it might be useful

in certain cases. Potential applications

may be, for instance, setting different

radii for aromatic and aliphatic carbons

or for different oxidation states of the

same element, or to increase the size of

carbon atoms to compensate for missing

hydrogen atoms in the structure as is

common practice for large biomacro-

molecules. Custom element symbols

may only contain alphabetic characters.

The following options can be toggled

easily through tick boxes in the user

interface: (i) include HETATM lines in

PDB files (i.e. atoms not belonging to

the biomolecule, such as solvent), (ii)

analyze the crystal unit cell, (iii) calcu-

late surface areas (by default, only

volumes are calculated), and (iv) switch

between single- and two-probe mode.

The probe radii can be modified to

meet the user’s needs. Common probe

radii (e.g. hydrogen atom, water mol-

ecule, argon atom) are accessible via a

dropdown menu, but any value can be
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Figure 3
Example of the output from MoloVol calculations performed on an open-cage compound. The
resulting surfaces were rendered in ChimeraX on the basis of the surface maps generated by
MoloVol. ‘grid’ refers to the grid resolution; subscripts ‘small_p’ and ‘large_p’ correspond to the
small and large probe, respectively.



entered manually. Increasing the probe radii leads to an

increase in calculation time (see Section 4 for the algorithmic

complexity).

MoloVol analyzes space by partitioning it into discrete

cubes or voxels (see details in Section 4). Each voxel is placed

on a cubic grid. The grid resolution is defined as the voxel side

length and can be changed. A smaller grid-resolution value

will increase the accuracy of the calculated values but also

increase the calculation time (see Section 4 for the algorithmic

complexity).

Finally, a parameter named ‘optimization depth’ can be

chosen. This parameter is linked to the speed of the calcula-

tion and does not influence the calculated values. This para-

meter does not typically need to be modified by users for

common calculations but is nonetheless available to give full

control of calculation parameters if desired. The effect of this

parameter is detailed in Section 4.5.1.

3.3.4. Graphic interface. MoloVol was designed to provide

a user-friendly GUI. Its current version is shown in Fig. 4. The

GUI is divided into panels that serve to spatially separate

input and output. The input panel allows changing all para-

meters discussed above in a compact way. The element list

provides the opportunity for the user to review whether all

atoms were correctly imported from the structure file and

allows including or excluding specific elements, as well as

changing their radii before starting the calculation. The output

panel contains a summary of the most important calculation

results, a list of cavities sorted by decreasing volume, and a

section for automatic or manual export of the complete results

report and surface maps. The GUI also contains a progress bar

(in green) and a status bar (at the bottom) to show the

progress at different stages of the calculations.

3.3.5. Command-line interface. Providing only a graphic

user interface limits the throughput of calculations and makes

it difficult to communicate with other applications. To avoid

this, MoloVol provides a fully functional command-line

interface (CLI), usable with the Windows command prompt or

Linux/macOS terminal. This allows automating calculations

and thereby increasing the throughput. A guide on how to use

the CLI is provided in the user manual of MoloVol.

4. Algorithms

4.1. General

MoloVol analyzes the section of space containing a

chemical structure by partitioning it in discrete sections. The

space is divided into a 3D grid of small cubes (i.e. voxels). With
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Figure 4
Graphic user interface of MoloVol v1.0.0 after running a calculation. The
different sections of the interface are outlined and labeled. This interface
is shown as a reference but may change in upcoming versions.

Figure 5
Flow chart presenting an overview of the volume calculation algorithm.
Voxel types are printed in italics. The flow chart for the algorithm used for
calculating surfaces is shown in Fig. S3.



respect to computational cost, this voxel approach is more

scalable than analytical calculations. Moreover, once each

voxel is identified, a variety of physical values, such as volume

and surface types, can be derived with minimal supplementary

computational time. A voxelated space also allows tuning the

grid resolution (i.e. the side length of the voxels) to find a

compromise between accuracy and calculation time. With this

approach, the calculation time increases with the inverse cube

of the grid resolution g [i.e. complexity O(g–3)], as the number

of voxels increases in each spatial dimension. However, we

employ optimizations to reduce the average complexity to

sub-cubic and achieve reasonable calculation times even at a

high resolution (e.g. 0.1 Å, corresponding to 1000 voxels per

Å3) for structures as large as proteins. For clarity, voxels are

presented as pixels in subsequent figures, but the text may

refer to them as voxels.

A schematic overview of the program is presented in the

form of a flow chart in Fig. 5. The algorithms are detailed in

the following sections and additional flow charts are presented

in the supporting information (Figs. S1–S3)

4.2. Determining voxel types

Voxels are evaluated one by one to determine whether they

belong to an atom, the probe core, the probe shell or the probe

excluded void volume. In single-probe mode, two subsequent

algorithms evaluate voxels: the first loop determines whether a

voxel is of atom type or probe core type or whether its type

cannot yet be identified; the second loop evaluates the

remaining unidentified voxels to determine whether a voxel is

of probe shell or probe excluded void type. These algorithms

are described in Sections 4.2.1 and 4.2.2. In two-probe mode,

there are four loops to identify (i) atom and large probe core

types, (ii) large probe shell type, (iii) small probe core type,

and (iv) small probe shell and probe excluded void types.

Despite the additional loops, the same two algorithms as for

the single-probe mode are used.

4.2.1. Atom and probe core types. For each voxel, its

distance to each nearby atom is calculated. If, for any atom,

the distance is smaller than the atom radius ratom then the

voxel is de facto inside an atom and set to atom type (orange in

Fig. 6). Otherwise, if, for any atom, the distance d is smaller

than ratom + rprobe then the voxel is either of probe excluded

void or probe shell type and remains undefined at this stage. If,

after going through all nearby atoms, no distance matches

these conditions then the voxel is assigned probe core type

(light blue in Fig. 6). Nearby atoms are found using a k-d tree

(see Section 4.5.2) to reduce the average algorithmic

complexity from O(mn) to O(m logn), where n is the number

of atoms and m is the number of voxels. A flow chart for this

algorithm is shown in Fig. S1.

This is the only algorithm where the distance between

voxels and atoms needs to be calculated.

4.2.2. Probe shell and probe excluded void. For all voxels

that remain unassigned after the first algorithm, a second

algorithm determines whether the voxel is of probe shell type

(light green in Fig. 6) or probe excluded void type (gray in

Fig. 6) by evaluating its relationship to surrounding voxels. If

the voxel has any probe core neighbor within a spherical

distance rsearch then it is set to probe shell type [Fig. 7(a)].

Otherwise, the voxel is set to probe excluded void type

[Fig. 7(b)].

Beginning from a central voxel, whose type is yet to be

determined, its neighbor voxels are evaluated in order of

increasing distance. In preparation for this, the program first

generates a list of relative neighbor indices sorted by the

distance from the center. Absolute neighbor voxel indices are

obtained through vector addition of a relative index to the

center voxel index. For each unassigned voxel, the neighbors

are evaluated up to the limit distance of the rsearch value. The

search continues until a probe core voxel is found or all

relevant neighbors have been evaluated. This procedure (i)

avoids calculating voxel distances, which would have a

significant computational cost, (ii) ensures that only voxels in

the useful range are checked, and (iii) allows the newly

assigned probe shell voxel to be associated with its nearest

probe core voxel, which is used for assigning shell type voxels

computer programs
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Figure 6
Necessary parameters and measures for determining voxel types in
MoloVol algorithms. Voxel types: atom is orange, probe core is light blue,
probe shell is light green, probe excluded void is gray.

Figure 7
2D analog of neighbor search algorithm. Neighbor voxels are evaluated
with increasing distance to the central voxel within the search radius
rsearch (blue circle). The square Euclidian distances between the central
voxel and neighbor voxel are given in voxel units. (a) A core type voxel
(light blue) is located within the search radius; therefore, the central voxel
is assigned the shell volume type (light green). (b) There are no core type
voxels within the search radius; therefore, the central voxel is assigned the
probe excluded void type (gray).



to cavities as explained in Section 4.3. A flow chart for this

algorithm is shown in Fig. S2.

Owing to the discrete nature of the voxelated space, the

distances between voxels are not continuous. This introduces

spatial anisotropy with respect to the voxel grid. This is

demonstrated in Fig. 7, as the furthest square Euclidian

distance from the center is 16 horizontally but 18 diagonally.

Another related issue stems from a propagated error in the

first evaluation loop. When representing a solid in voxelated

space, the voxels at the solid’s boundary will virtually always

be slightly displaced. After atom and core type voxels are

assigned, this displacement on both sides can lead to the gap

containing unidentified voxels being significantly larger than

the probe radius. Since the neighbor search algorithm checks

for probe core voxels and not for the actual probe accessible

surface (Fig. 8), it is necessary to increase the search radius,

such that rsearch = (rprobe + �). We found that � = 0 led to false

negative checks, i.e. voxels that should be probe shell type

were assigned probe excluded void type [Fig. 8(b)]. This was

tested by analyzing single-atom structures in which no probe

excluded void volume should be present. The ideal value of �
that eliminates false negatives entirely but does not introduce

false positives depends on the grid resolution and rprobe. We

found no analytical value for �. However, empirical tests with

parameters expected to be used for chemical structure analysis

(i.e. grid resolution in the range 0.05–1.0 Å and rprobe in the

range 0–10 Å) have shown that � = 21/2/4, given in units of

voxel side length, yielded the best results.

This part of the algorithm is typically the most time

consuming in a MoloVol calculation. The complexity is O(ms3)

with s being the ratio between rprobe and grid resolution and m

being the number of unidentified voxels, which itself depends

on s. Calculations performed with a small probe radius run

extremely fast at this stage and other parts become more time

consuming.

4.3. Identifying separate cavities

One important feature of the application is to identify

separate cavities and calculate their corresponding volumes

and surface areas. Separate cavities are defined by portions of

space between which a probe cannot travel. Thus, to identify

each cavity, a flood-fill algorithm is applied to voxels with

probe core type. The flood-fill algorithm evaluates all 26

neighbors to a voxel that share at least a vertex. Conducting

the algorithm with only the six direct neighbors led to incor-

rectly isolated cavities. Indeed, the discrete voxelated space

can lead to small separate islands of voxels of probe core type

for cavities with sharp geometrical features that would be

connected in a continuous space. This flood-fill algorithm is

performed in-between the steps outlined in Sections 4.2.1 and

4.2.2. Thus, when probe shell voxels are identified by finding

their nearest probe core voxel neighbor, they are directly

assigned to the same cavity. Consequently, separate cavities

whose shell volumes overlap are properly segmented at

equidistance of their probe core regions (see cavities #2 and #3

in Fig. 2).

4.4. Calculating volumes and surface areas

4.4.1. Volumes. Calculating volumes is trivial once voxel

types and separate cavities are identified. Each type of volume

is simply calculated by summing all corresponding voxels and

multiplying the tally by the volume of a single voxel.

4.4.2. Surface areas. Within a voxelated space, calculating

surface areas is complicated by the fact that surfaces not

aligned with the voxel grid will show rough steps instead of

being smooth. If the surface area was calculated by simply

adding the surface area of the voxels, then a voxelated sphere,

for instance, would have a surface area approximating 6�r2

instead of 4�r2, similarly to how a pixelated circle’s perimeter

approximates 8r instead of 2�r. Fortunately, algorithms have

been developed to extrapolate surface-area data from voxe-

lated objects. The marching-cube algorithm was initially

developed to display smoother surfaces from a voxelated data

set without consideration of the surface area and has since

then been shown to be usable to extrapolate surface areas

(Lindblad, 2005). Briefly, the marching-cube algorithm

analyzes groups of eight voxels in a cubic arrangement. Each

voxel in the octuplet is given a binary value depending on

which side of the surface it is located on, and all values are

stored in a byte. With respect to symmetry, there are 14 unique

configurations out of the 256 possible bit combinations. Each

configuration is attributed a preset surface-area parameter.

Finally, the surface areas of all octuplets are summed to obtain

the total surface area. A flow chart of this process is shown in

Fig. S3. We implemented surface-area calculation using this

marching-cube algorithm in MoloVol with the most recent

optimal surface-area parameters reported by Lindblad (2005).

The vdW surface areas calculated with MoloVol at a resolu-

tion of 0.1 Å were very similar to analytical values for simple

systems (<0.3% error for acetylene) and calculated values

with other programs for large systems [1.6% difference

compared with the PyMOL result calculated with same

element radii as MoloVol for a cytochrome C complex

containing 1356 atoms, PDB ID 6s8y (Alex et al., 2019)].

Worse results were obtained with other sets of parameters for

computer programs
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Figure 8
1D demonstration of how shifting the underlying voxel grid relative to the
atom positions can impact the voxel types with the neighbor search
algorithm. (a) Example of voxel types being assigned as expected when
rsearch is equal to rprobe. (b) A false negative situation leading to an
incorrectly assigned voxel using the same rsearch and rprobe as before.



the marching-cube algorithm, notably a previous set described

by Lindblad (2003). These results demonstrate that surface

areas can be extrapolated from voxelated chemical structures

with reasonable accuracy using a marching-cube algorithm

with the right set of parameters. More details on accuracy are

provided in Section 4.6.

4.5. Optimizations

One important aspect in MoloVol development was to

ensure that calculations would be completed in a reasonable

time even for large molecules, like proteins, and at high

resolution, like 0.1 Å.

4.5.1. Application of the octree data structure. Calculation

time in voxel-based systems typically scales cubically with the

number of voxels and thereby inverse cubically with the grid

resolution. To achieve sub-cubic scaling, we adopt an octree

approach. An octree is a data structure in which every node

contains either eight or no children. In MoloVol, each voxel is

an octree and may contain eight voxel children. The children

have half the side length of their parents and are stacked in a

2 � 2 � 2 grid within their respective parent. For the opti-

mization, the largest, top-level voxels are evaluated first. If

their type is successfully evaluated, then the types of all

descendants are also set. When the top-level voxel is a limit

case, for instance by being located at the edge of an atom, then

the voxel is formally divided into eight child voxels that are

subsequently analyzed. The process is repeated until the

lowest level of voxels is reached. At the bottom level,

voxels are the smallest unit of space and are treated as zero-

dimensional points, so that no limit cases can occur.

Because of this approach, only voxels near surfaces are

analyzed using smaller voxels, whereas voxels in uniform

portions of the space are analyzed using larger voxels. For

instance, Fig. 9 shows a 2D slice of a three-atom structure

evaluated using a voxelated octree with a total of four levels.

In the slice shown, we can count a total of 436 voxels (from top

to bottom levels: 24, 76, 144 and 292), which is over three times

smaller than the 1536 total number of voxels needed for this

slice without the octree structure. The difference between

these numbers is even more significant when considering the

full three-dimensional space. Notably, further increasing the

number of levels is counterproductive as it would, albeit

slightly, increase the number of voxels to 442 for this slice with

five levels. Therefore, there is an optimal value for a given

calculation. Inside MoloVol, that value is set using the para-

meter ‘optimization depth’. Setting it to 0 means that no

octree development occurs and no optimization is applied.

Considering the typical calculation parameters and various

chemical structures, we found that the optimal optimization

depth is generally in the range 2–5 for different calculations.

Thus, we set the default value to 4 in MoloVol with the

possibility to change this parameter if needed. Test results are

given in Section 4.6.2.

The algorithms to determine voxel types presented in

Section 4.2 were adapted to be compatible with this octree

optimization. Importantly, it was ensured that the results

obtained from the program were invariant with respect to the

optimization depth parameter. In most cases, the octree is

simply exploited by conducting all computations at the highest

possible octree level, only descending the tree when a limit

case is identified. In the case of the flood-fill algorithm used in

the cavity identification, it is necessary to evaluate neighbor

voxels on varying octree levels. For this, we implemented a

function that returns a list of all relevant neighbor voxels on

any level.

4.5.2. Optimization of atom search using a k-d tree. To

accelerate the first algorithm in the voxel type evaluation step,

a k-d tree was used. The k-d tree is a well established data

structure that can be used to store a set of spatially separated

points and may be used to reduce the complexity of neighbor

searches (Bentley, 1975; Friedman et al., 1977). Here, the k-d

tree is used to accelerate the search of atoms that may affect

the type of a given voxel.

A list of atoms is obtained from the user via an input file.

Each atom has a position in 3D space, consisting of three

Cartesian coordinates (x, y and z) and a radius. To construct

the k-d tree, the set of all atoms is first sorted along one of the

coordinates, e.g. x. The middle element of the sorted list

(rounded down) is stored in the tree’s root node. Next, this

procedure is repeated with the two sets of atoms left and right

of the previous middle element in the sorted list; however, in

the second step the atoms are sorted along the y coordinate.

The middle elements of each list become the left and right

children of the root node. This algorithm is repeated recur-

sively, cycling through the coordinates, until all atoms have

been placed in a node, resulting in a binary tree. If an atom list

is empty, then the appropriate node is assigned an empty

reference (NULL).

The strength of this data structure is demonstrated best with

an example. In MoloVol, we may want to determine whether a

voxel is inside any atom to determine its type. Computing the

voxel–atom distance for every atom scales with O(n) with the

number of atoms n. Using the tree, we begin by computing the

distance between the voxel and the root node atom along the x

coordinate. If the distance exceeds the largest atom radius in

the tree, we can dismiss not only the node atom but one entire

branch of the tree. In the best case, the comparison may

computer programs
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Figure 9
Slice of a voxelated space with octree development containing three
atoms. The sizes of atoms and voxels correspond to a realistic MoloVol
calculation with the following parameters: atom radius = 1.7 Å; probe
radius = 0 Å; grid resolution = 0.2 Å; optimization depth = 3 (i.e. four
levels in the octree including level 0).



reduce the number of remaining candidate atoms by a factor

of 2 for each tree level, resulting in O(logn). If the distance is

not larger than the largest atom radius, then the 3D voxel–

atom distance must be calculated for the node atom and the

search may continue along both branches.

4.6. Benchmarking and comparative study

Hardware specifications and input parameters are listed in

detail in the supporting information.

4.6.1. Effect of grid resolution on accuracy. Calculations on

a structure file containing a single hydrogen atom (radius

1.2 Å) were performed at various grid-resolution values to

demonstrate the convergence behavior of the vdW volume

and vdW surface-area results. Analytical values for volume

and surface area can be trivially obtained because of the

geometric simplicity of the single-atom structure. Fig. 10

displays the relative error versus the grid resolution for both

vdW volume [Fig. 10(a)] and vdW surface [Fig. 10(b)]. As

expected, the results deviate strongly and unpredictably from

the analytical values at large grid-resolution values when the

voxels are larger. As the grid resolution decreases, so do the

voxel sizes, and the obtained results soon converge towards

the expected values. We have found that good results were

generally obtained at below 0.2 Å grid resolution. As such, the

default grid resolution in MoloVol is set to 0.2 Å. An analo-

gous test with 1000 non-overlapping hydrogen atoms shows

the same trend [Figs. 10(c) and 10(d)]; however, the relative

error never exceeds 3 and 4% (for volume and surface area,

respectively), even at a grid resolution of 2 Å. This is because

the error is stochastically compensated. Depending on the

property, sufficient accuracy may therefore be achievable in

larger structures using higher grid-resolution values.

For a comparison of convergence behavior, the vdW

volume and surface area of a cytochrome C complex (PDB

entry 6s8y, 1356 atoms) were calculated at different grid-

resolution values using MoloVol, 3V and PoreBlazer. The

results were plotted against the grid resolution and are shown

in Fig. 11. For both volume and surface-area calculations,

MoloVol and 3V perform remarkably similarly, both in value

and in convergence. Both show clear convergence behavior

for the volume calculation and similar deviation from the

mean. For the surface-area calculations, both MoloVol and 3V

produce a linear relationship between surface area and grid

resolution, but no convergence. In analogous plots for

acetylene [Fig. S5(a)], for which analytical results are avail-

able, and for fullerene C60 [Fig. S5(b)] a similar linearity

emerges, but only at small grid-resolution values. We infer that

this linear trend is inherent to voxelated objects as the surface

becomes more detailed at finer resolution. Structures

containing a small number of atoms such as acetylene and

fullerene C60 appear to be subject to larger fluctuation at

higher grid-resolution values. We hypothesize that this can be

attributed to a lack of error compensation, as discussed above.

PoreBlazer performs differently from both MoloVol and

3V. For the vdW volume, PoreBlazer does not reveal any

convergence behavior in the studied grid-resolution regime,

and the result at 0.2 Å is 3% lower than MoloVol’s result. For

the surface area, PoreBlazer’s result at the finest grid resolu-

tion is in good agreement with MoloVol’s, but at larger grid

resolution a larger disagreement is observed. In addition,

PoreBlazer’s results follow a sigmoid curve rather than a

linear trend. The performance of PoreBlazer is further

discussed in Section 4.6.3.

4.6.2. Runtime optimization due to octree development. A

range of diverse calculations were conducted to find whether

an optimal value for the octree depth (see Section 4.5.1) could

be determined. To test for unexpected effects of the optimi-

zation, different calculation parameters and options were

computer programs
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Figure 11
(a) vdW volume and (b) vdW surface-area calculations at different
resolutions for a cytochrome C complex (PDB entry 6s8y) for different
programs. Connecting lines have been added for visual clarity. MoloVol
(red diamonds) and 3V (green triangles) perform similarly, while
PoreBlazer (blue spheres) deviates significantly and does not converge
in the volume calculation. Smaller grid-resolution values could not be
tested with PoreBlazer owing to the program crashing.

Figure 10
vdW volume (a), (c) and vdW surface area (b), (d) calculations at
different resolutions for a single hydrogen atom (a), (b) and 1000
separate, randomly scattered hydrogen atoms (c), (d) (radius 1.2 Å).
Connecting lines have been added for visual clarity. Owing to the
simplicity of the structure, analytical values can be easily calculated. As
the grid resolution decreases, so does the voxel size, and the results
converge towards the expected values.



varied, such as the number of atoms, addition of surface

calculations, unit-cell mode and two-probe mode. Fig. 12

shows the results for three structures of different atom counts,

with acetylene at four, fullerene at 60 and a protein complex at

1356 (PDB entry 6s8y; Alex et al., 2019). Each calculation set

displays a sharp drop going from 0 to 1 octree depth, as this is

equivalent to enabling the optimization. Furthermore, in all

tests the optimal depth was found to be between 2 and 5. At

higher depths the calculation time increases drastically as

unnecessary voxels appear. On this basis, we have chosen the

default octree depth to be 4.

4.6.3. Calculation result comparison with other programs.
Finally, we compared calculated values for diverse structures

including small molecules, a protein and a porous material.

Table 1 shows a summarized comparison for acetylene and

fullerene C60. The complete table and calculation details are

provided in the supporting information.

Acetylene is geometrically simple enough to calculate the

exact volumes and surface areas analytically as references (see

supporting information). MoloVol is the only program from

those tested that provides all types of volumes and surface

areas with such accuracy compared with the analytical values

(<0.2% error for volumes; <1% error for surface areas).

PyMOL only provides means to calculate Svdw and Sacc as it

uses a completely different calculation method only suitable

for surfaces around spheres. Both values are in excellent

agreement with the analytical reference. Such agreement on

surface areas between MoloVol and PyMOL despite them

using entirely different calculation approaches, provides a

solid indication that the algorithms are sound.

Across all structures, Vvdw and Vacc calculated with 3V are in

excellent agreement with the respective values calculated with

MoloVol (<0.3% difference) as well as with the analytical

values for acetylene. Vmol, however, exceeds the analytical

value for acetylene by 6% and the values of all other struc-

tures by 2–4%, in contrast to MoloVol. This overestimation is

consistent with results obtained from MoloVol when not

correcting for misattributed voxels, i.e. at � = 0 for the search

distance as discussed in Section 4.2.2 and Fig. 8, and therefore

suggests a similar underlying issue. For Svdw, Sexc and Sacc, 3V

demonstrates an error of up to 3% for acetylene but produces

similar values to MoloVol for all larger structures (�1%

difference). Note that the algorithm used by 3V for calculating

surface areas (Windreich et al., 2003) differs from the one used

by MoloVol. We purposefully chose not to use this algorithm

in MoloVol because it produces different results depending on

which side of a surface the area is calculated from. In

summary, 3V and MoloVol perform similarly well; however,

MoloVol seems slightly better suited for analyzing small

molecules.

PLATON’s CALC SOLV routine calculates the probe

occupied volume (Vocc) in a crystalline unit cell. Subtracting

this Vocc from the total volume of the unit cell Vunit-cell

produces Vmol. Performing the calculation with a probe radius

of 0 Å should provide Vvdw. However, as shown in Table 1,

PLATON performs relatively poorly in calculating Vmol and

especially Vvdw for acetylene, with errors of 5 and 39%,

respectively. Across all other molecules Vvdw deviates by

between 20 and 30% from the values calculated by all other

programs. Investigating this difference in performance falls

out of the scope of this study. It should only be established that

PLATON is not suited for calculating Vvdw. Interestingly,

PLATON performs almost exactly like 3V for Vmol (�0.6%

difference). Therefore, the previous discussion for 3V is

equally valid for PLATON.

Zeo++ uses algorithms based on Voronoi tesselation which

are significantly different from the voxel-based approach in

MoloVol. The values calculated with Zeo++ are in good

accordance with those from MoloVol with the exception of

Vmol, which appears to be systematically larger.

PoreBlazer tends to underestimate Vvdw and Vmol for all

structures, while it overestimates Sacc for small molecules and

underestimates Sacc for larger structures. This discrepancy may

originate from a hard-coded coefficient that increases the radii

of the atoms and probe by a factor of 1.122 in some algorithms

computer programs
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Table 1
Comparison of volumes and surface areas calculated for acetylene and
fullerene C60 with different programs.

All programs were run with the same input parameters where applicable (i.e.
van der Waals radii H = 1.20 Å, C = 1.77 Å; grid resolution = 0.2 Å; probe
radius = 1.2 Å). Extended tables are available in the supporting information
with all calculation details.

Structure Method
Vvdw

(Å3)
Vmol

(Å3)
Vacc

(Å3)†
Svdw

(Å2)
Sexc

(Å2)
Sacc

(Å2)

Acetylene Analytical 37.80 37.95 153.75 57.47 56.55 141.82
MoloVol 37.74 37.84 153.74 57.00 56.98 141.48
PyMOL – – – 57.52 – 142.05
3V 37.84 40.08 153.896 55.68 58.20 139.50
PLATON‡ 23 40 – – – –
Zeo++‡ 38.79 39.00 153.74 57.41 – 141.91
PoreBlazer‡ 35.80 35.90 – – – 165.78

C60 MoloVol 528.62 537.66 1077.97 400.10 385.38 526.75
PyMOL – – – 404.28 – 529.93
3V 528.90 555.50 1077.08 397.74 395.99 520.99
PLATON‡ 405 555 – – – –
Zeo++‡ 531.43 566.91 1080.88 404.53 – 527.27
PoreBlazer‡ 508.47 519.28 – – – 536.03

† This value has little physical meaning but is still provided by 3V and thus included here
for comparison. For other programs, it is derived from other values: Vacc = Vvdw + Vvoid +
Vshell = Vunit-cell � Vcore (for crystal structures). ‡ These programs require crystal
structure input; therefore, a dummy unit cell was built around the structures.

Figure 12
Calculation times for structures at varying octree depths. Connecting
lines have been added for visual clarity. The structures were chosen to
cover a wide range of atom numbers, with acetylene at four (blue dots),
fullerene at 60 (green triangles) and a cytochrome C complex at 1356 (red
diamonds; PDB ID 6s8y; Alex et al., 2019).



of PoreBlazer v4.0 (Sarkisov et al., 2020). According to the

authors, this coefficient was introduced to more accurately

reflect a monolayer of adsorbate. Values calculated with

PoreBlazer are, therefore, not comparable with the results of

other programs that aim to describe the geometrical features

rather than a realistic physical system with an adsorbate.

Another possible source of error comes from the use of a

random sampling to calculate surface areas.

This comparative study demonstrates that MoloVol

provides more volume and surface-area data than most other

programs. However, other programs are clearly specialized for

use in a certain field of chemistry, e.g. 3V being devoted to

biomacromolecules or Zeo++ and PoreBlazer being devoted

to porous materials. Accordingly, these programs provide

additional features useful to their respective fields, such as the

maximum pore diameter in porous material, and cannot be

replaced entirely by MoloVol in its current version.

We stress that obtaining all results from programs other

than MoloVol may require compiling the program from source

code, modifying the source code (e.g. changing hard-coded

element radii), using the command line, manipulating input

files (notably, to create dummy unit cells around isolated

molecules for programs that only analyze crystal structures)

and/or deriving desired values via indirect approaches (see

details in the supporting information). In contrast, MoloVol

calculations were performed directly on the unmodified

structure files in a few clicks from the GUI. We believe that

this user friendliness is one of the greatest strengths of

MoloVol, as it makes these calculations accessible to a larger

user base.

4.6.4. Performance comparison with other programs. In a

comparative study, six structures were analyzed using

MoloVol and several other programs. All programs are

compared with respect to the runtime in Fig. 13. An effort was

made to ensure optimal comparability, such as using the same

element radii and comparable structure files. However, it is

not feasible and sometimes not possible to ensure perfect

comparability, as each program provides its own unique set of

molecular properties and may require additional input para-

meters that lack an analog in MoloVol. The runtime was

measured excluding idling.

Details on how the calculations were performed are

provided in the supporting information. Briefly, a MoloVol

calculation was performed for each structure using MoloVol

v1.0.0. The calculations were run in single-probe mode with a

probe radius of 1.2 Å, a grid resolution of 0.2 Å and an opti-

mization depth of 4. For the other programs (3V, PLATON,

Zeo++, PoreBlazer) the same calculation parameters were

chosen wherever applicable. In all cases, the atomic radii were

changed to MoloVol’s default values. Not all programs directly

provide the same properties as MoloVol. For some programs

this could be compensated for by running multiple calcula-

tions to obtain a specific value. The contributions from

multiple calculations are broken down in Figs. S6–S8. Some

programs (PLATON, Zeo++, PoreBlazer) require crystal unit

cells, so dummy cells were prepared to allow for their use.

Finally, 3V was compiled without OpenMP support (parallel

processing on multi-core CPU), as this is the default config-

uration. A knowledgeable user could compile a version with

OpenMP support and obtain faster runtimes than we report.

Fig. 13 shows that across all structures MoloVol performed

consistently faster than Zeo++, PoreBlazer and PLATON,

often by more than a factor of 10. Overall, 3V performs

slightly but consistently faster than MoloVol. HKUST-1 could

not be evaluated with 3V because it does not support crystal

unit cells. Despite the slightly slower calculation times when

compared with 3V, MoloVol provides overall more output

results in a single calculation, such as cavity properties.

5. Limitations and planned features

MoloVol treats atoms as static impenetrable spheres. This is a

common and convenient model but does not represent the

complex reality of atomic interactions and molecular motion.

As such, the values calculated with MoloVol can be infor-

mative and help describe and compare molecular systems but

should by no means be considered absolute limits to, for

instance, what guest can or cannot reside in a cavity.

In its current state, MoloVol can be used to identify, locate

and analyze cavities within porous crystalline materials. Yet,

for crystal structure analysis a user may need to manually

distinguish continuous pores from isolated cavities (Ongari et

al., 2017). We plan to include a feature that identifies pores

automatically in a future version.

MoloVol can currently provide a list of cavities with their

volumes, surface areas, center positions and cavity types, based

on the number of openings in two-probe mode. We plan for

MoloVol to indicate connecting and neighboring cavities and

present a network of cavities in the report to provide more

detailed spatial information. This feature is meant to help

users identify useful cavities more easily.

Considering the anisotropy of a voxelated grid, rotating or

translating the input chemical structure may lead to slightly

different calculated volumes and surface areas. We are

considering adding a feature to randomize the structure’s

computer programs
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Figure 13
Runtime comparison between MoloVol and several other programs.
Calculations were conducted in all applications using the same input
parameters when applicable (i.e. atomic radii, probe radius and grid
resolution). MoloVol performs faster than Zeo++, PoreBlazer and
PLATON and slightly slower than 3V.



orientation and provide an average result from multiple

calculations. This reduces anisotropy and may increase accu-

racy.

Visualizing surfaces currently requires the use of third-party

software. Adding the ability to visualize the calculated

surfaces directly within the MoloVol user interface is under

consideration.

Despite the algorithmic optimizations we have imple-

mented in MoloVol that ensure fast calculations, there

remains a clear optimization strategy that has yet to be

exploited. It is possible to further accelerate calculations by

parallelizing the program instructions, using either GPU- or

CPU-driven multithreading. Such features are not critically

needed but are nonetheless under consideration for future

versions.

MoloVol is designed as a general tool for analyzing

geometrical features of chemical structures. As such, it cannot

compete with software dedicated to more specific functions,

such as analyzing the chemical interactions within cavities.

Yet, its simplicity of use and, to the best of our knowledge, its

wider range of geometrical features that can be calculated

compared with other available software makes MoloVol a

useful tool for several fields of chemistry, including but not

limited to host–guest chemistry, porous materials and struc-

tural biochemistry.
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