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Bragg coherent X-ray diffraction imaging (BCDI) allows the 3D measurement

of lattice strain along the scattering vector for specific microcrystals. If at least

three linearly independent reflections are measured, the 3D variation of the full

lattice strain tensor within the microcrystal can be recovered. However, this

requires knowledge of the crystal orientation, which is typically attained via

estimates based on crystal geometry or synchrotron microbeam Laue diffraction

measurements. Presented here is an alternative method to determine the crystal

orientation for BCDI measurements using electron backscatter diffraction

(EBSD) to align Fe–Ni and Co–Fe alloy microcrystals on three different

substrates. The orientation matrix is calculated from EBSD Euler angles and

compared with the orientation determined using microbeam Laue diffraction.

The average angular mismatch between the orientation matrices is less than

�6�, which is reasonable for the search for Bragg reflections. The use of an

orientation matrix derived from EBSD is demonstrated to align and measure

five reflections for a single Fe–Ni microcrystal via multi-reflection BCDI. Using

this data set, a refined strain field computation based on the gradient of the

complex exponential of the phase is developed. This approach is shown to

increase accuracy, especially in the presence of dislocations. The results

demonstrate the feasibility of using EBSD to pre-align BCDI samples and the

application of more efficient approaches to determine the full lattice strain

tensor with greater accuracy.

1. Introduction

Bragg coherent X-ray diffraction imaging (BCDI) allows 3D

nanoscale strain measurements, with a typical spatial resolu-

tion of a few tens of nanometres and a strain resolution of the

order of �2 � 10�4 (Hofmann et al., 2017b). BCDI has been

applied to study crystal defects and lattice strain in a variety of

materials, including noble metals (Robinson et al., 2001),

alloys (Kawaguchi et al., 2021), geological compounds (Yuan

et al., 2019), semiconductors (Lazarev et al., 2018) and func-

tional materials (Dzhigaev et al., 2021). An advantage of using

BCDI is the ability to study 3D volumes up to 1 mm in size

under ambient conditions. This has enabled BCDI to become

an essential tool for probing how lattice strains evolve in in

situ and operando studies, for example in battery charging

(Singer et al., 2018), thermal diffusion (Estandarte et al., 2018),

dissolution (Clark et al., 2015) and catalytic oxidation (Carnis

et al., 2021).
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BCDI involves fully illuminating a crystalline sample with a

coherent X-ray beam and positioning the diffractometer such

that the Bragg condition is met for a specific hkl reflection.

The outgoing wavevector produces a diffraction pattern that is

collected on a pixellated area detector positioned in the far

field (Fraunhofer regime). By rotating the sample through the

Bragg condition, a 3D coherent X-ray diffraction pattern

(CXDP) is recorded as different parts of the 3D Bragg peak

sequentially intersect the Ewald sphere in reciprocal space,

which is projected onto the detector. If the CXDP is over-

sampled by at least twice the Nyquist frequency (Sayre, 1952),

iterative phase retrieval algorithms can be used to recover the

phase (Fienup, 1982). The amplitude and phase in reciprocal

space are related to the real-space object via an inverse

Fourier transform (Miao & Sayre, 2000) followed by a space

transformation from detector conjugated space to orthogonal

laboratory or sample space (Yang et al., 2019; Maddali et al.,

2020; Li et al., 2020). The real-space amplitude �(r), where r is

the position vector, is proportional to the effective electron

density of the crystalline volume associated with the particular

crystal reflection. The real-space phase  (r) corresponds to

the projection of the lattice displacement field u(r) onto the

Bragg vector Qhkl of a specific hkl crystal reflection,

 hklðrÞ ¼ Qhkl � uðrÞ: ð1Þ

Since the development of BCDI in the early 2000s, most

experiments have featured the measurement of a single

reflection, providing only one component of the strain tensor.

However, the analysis of a single strain component can be

ambiguous as different information is obtained for different

reflections (Yang et al., 2021). If at least three linearly inde-

pendent reflections are measured, the full 3D strain tensor can

be calculated. Before 2017, only three experiments (Beitra et

al., 2010; Newton et al., 2010; Ulvestad et al., 2015) reported

measuring more than one reflection on a single crystal. This is

not surprising, as multi-reflection BCDI (MBCDI) experi-

ments require prior knowledge of the crystal orientation

(Newton et al., 2010) or the scanning of extensive volumes of

reciprocal space until two reflections are found, upon which

further reflections can then be located.

The development of a microbeam Laue X-ray diffraction

pre-alignment procedure in 2017 (Hofmann et al., 2017a)

enabled the direct determination of the crystal orientation

matrix, such that crystals could be reliably pre-aligned for

MBCDI. Recently, a double-bounce Si(111) monochromator

that allows Laue X-ray diffraction to be performed has been

commissioned on the BCDI beamline 34-ID-C at the

Advanced Photon Source (APS), Argonne National Labora-

tory, USA (Pateras et al., 2020). Another method to determine

the orientation of a sample is by indexing pole figures

(Richard et al., 2018), but this method requires a Bragg peak

with known Miller indices to be found. The indexing is

performed using texture analysis and relies on the samples

being well faceted to produce truncation rods in reciprocal

space that are perpendicular to the facet surfaces. These pre-

alignment protocols have not only led to the increased

popularity of MBCDI for determination of the full strain

tensor with respect to an arbitrary reference (Yang et al., 2022;

Hofmann et al., 2017b, 2018, 2020; Phillips et al., 2020) but also

enabled simultaneous multi-Bragg-peak phase retrieval

procedures to increase reconstruction quality (Newton, 2020;

Gao et al., 2021; Wilkin et al., 2021).

Here we present an alternative method of pre-determining

crystal orientation for MBCDI alignment without relying on

synchrotron X-rays. We use electron backscatter diffraction

(EBSD) to determine the orientation (Adams et al., 1993) of

randomly oriented Fe–Ni and Co–Fe microcrystals on three

different sapphire substrates. EBSD instruments are much

more widespread and accessible than synchrotron instruments

and can be used as a valuable pre-screening tool for BCDI.

EBSD measurements can produce 2D orientation maps with a

high spatial resolution of �10 nm, thus enabling the selection

of specific crystals with particular orientations or features such

as twin domains. This allows the user to preserve synchrotron

beamtime for BCDI measurements rather than performing
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Figure 1
(a) Dewetted Fe–Ni alloy microcrystals on a sapphire substrate. (b) Fe–Ni
microcrystal 1B is used for the computation of strain and rotation tensors.
(c) The EDX spectrum for crystal 2B on the substrate, which is similar
across all crystals on the substrate. The L lines for the most pronounced
elements in the crystal are indicated. The composition excludes the Al
and O substrate peaks. The Ga impurity is due to FIB milling around the
crystal vicinity (Hofmann et al., 2017b). (d) Central slices of the CXDPs
for each reflection, measured for crystal 1B.



pre-orientation measurements and analysis on the beamline.

We compare orientation matrices found by EBSD with those

measured by microbeam Laue diffraction and the ultimately

measured reflection positions in MBCDI. Using the pre-

determined EBSD orientation matrix, we measured five

crystal reflections for an Fe–Ni microcrystal (Fig. 7,

Section 3.2) and determined its full strain and rotation tensors

with respect to the average structure of the crystal. We also

implement an alternative approach using the complex

component of the phase, rather than the phase alone, for the

efficient calculation of the phase derivatives required for the

strain tensor determination and the more accurate inter-

polatation of the recovered phase to sample coordinates.

2. Experimental methodology

2.1. Microcrystal fabrication

Samples were produced by sputter deposition of a thin film

onto a single-crystal sapphire wafer (C-plane orientation).

One substrate with a film thickness of 375 nm was produced

for the Fe–Ni microcrystals. It was dewetted in a vacuum

furnace purged with a gas mixture of 5% hydrogen, balance

argon, at 1523 K for 24 h. The resulting crystals exhibit a face-

centred cubic (f.c.c.) structure, range from 0.5 to 1.5 mm in size

[Fig. 1(a)] and adhere to the substrate surface. The substrate

was cleaved to make substrates 1 and 2, both containing Fe–Ni

microcrystals. Substrate 3 contained Co–Fe microcrystals that

were produced in a similar way. The procedure and details for

substrate 3 can be found elsewhere (Yang et al., 2022).

Each substrate was coated with 10 nm of amorphous carbon

via thermal evaporation using a Leica ACE600 coater to assist

with scanning electron microscopy (SEM) imaging. To facil-

itate reliable measurement of multiple reflections from a

specific microcrystal, a ZEISS NVision 40 Ga focused ion

beam (FIB) instrument was used to remove the surrounding

crystals within a 40 mm radius using currents from 6 nA to

150 pA and an acceleration voltage of 30 kV. Only SEM

imaging was used to position the FIB milling scans to prevent

large lattice strains caused by FIB imaging (Hofmann et al.,

2017b). The isolated crystals on each substrate are shown in

Fig. 2. Crystal 1B [Fig. 1(b)] was used for the computation of

the strain and rotation tensors (Fig. 7).

Energy-dispersive X-ray spectroscopy (EDX) was used to

determine the elemental composition of each crystal

[Fig. 1(c)]. EDX showed a homogeneous distribution of all

elements throughout the dewetted crystals (Fig. 3). EDX was

performed on a ZEISS Merlin instrument using an Xmax 150

detector (Oxford Instruments) with an elliptical region

encapsulating crystal 2B on the substrate for 16 s with an

accelerating voltage of 10 kV.

2.2. Electron backscatter diffraction

Crystal orientation was determined by EBSD using a

ZEISS Merlin instrument equipped with a Bruker Quantax

EBSD system and a Bruker eFlash detector tilted at 4�.

Electron backscatter patterns (EBSPs) were recorded with the

sample tilted at 70� (Fig. 4) using an accelerating voltage of

30 kV and a current of 15 nA. The EBSPs were 800 � 600

pixels and a step size of 19.8 nm was used between consecutive

points on the sample. The diffraction patterns were indexed

and the Euler angles extracted for each pattern using the

Bruker ESPRIT 2.1 EBSD software. The Euler angles were

exported and analysed using MTEX, a MATLAB toolbox for

texture analysis (Bachmann et al., 2011), to produce inverse

pole figure (IPF) maps for all crystals (Fig. 2).

Here we use the Bunge convention (Bunge, 1982) to

describe each crystal orientation (crystal frame) relative to the

substrate (sample frame). The crystal orientation matrix UB is

composed of U, which describes the rotation of the crystal

reference frame, and B [equation (2)], which characterizes the

unit-cell parameters.

Using the same convention as Britton et al. (2016), the unit

cell has vectors a, b and c with lengths a, b and c, respectively.

Angle � describes the angle between b and c, � the angle

between c and a, and � the angle between a and b. B is used to

transform the base vectors to Cartesian base vectors:
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Figure 2
SEM images and inverse pole figure (IPF) maps for each crystal from
EBSD. The colour coding shows the out-of-plane crystal orientation. The
maps allow for different grains to be identified. For each crystal, the
region surrounded by thick black lines corresponds to the grain
orientation used for the computation of the orientation matrix. For some
samples (i.e. 1F and 3A) only a small region on the IPF map corresponds
to the grain measured at the synchrotron. EBSD samples the orientation
of a cylindrical volume with a height up to 40 nm below the surface
(Dingley, 2004).

Figure 3
EDX elemental analysis maps of an Fe–Ni crystal, showing the
homogeneous elemental distribution of crystal 2B corresponding to the
SEM spectrum in Fig. 1(c). The images show the 2D signals for the
primary Fe–Ni emission lines.



B ¼

a
f

sinð�Þ
0 0

a
cosð�Þ � cosð�Þ cosð�Þ

sinð�Þ
b sinð�Þ 0

a cosð�Þ b cosð�Þ c

2
6664

3
7775; ð2Þ

where

f ¼
�

1� ½cosð�Þ�2 � ½cosð�Þ�2 � ½cosð�Þ�2

þ 2 cosð�Þ cosð�Þ cosð�Þ
�1=2

: ð3Þ

Since all crystals in this study have an f.c.c. structure, B is the

3 � 3 identity matrix multiplied by the lattice constant.

UB provides the direction and radial position of specific hkl

reflections, Hhkl , in laboratory coordinates (Busing & Levy,

1967),

Hhkl ¼ UB

h

k

l

2
4

3
5: ð4Þ

Several different coordinate frames are used in EBSD that

refer to different aspects of the measurement (Fig. 4). In this

paper, all coordinate systems and rotation matrices will be

right handed and we will use the same notation as Britton et al.

(2016). For EBSD, the following subscripts describe specific

coordinate systems:

(i) ‘d’ is the detector frame that describes the EBSPs.

(ii) ‘s’ is the EBSD sample frame that is related to the

detector frame by sample (�sample) and detector (�detector) tilts

about the x axis. The xs and ys axes correspond to the direc-

tions of EBSD scan points.

(iii) ‘m’ is the SEM map frame. This corresponds to how the

EBSPs overlay on the SEM maps and thus how the EBSD

orientation is referenced.

The EBSD software returns the orientation matrix from

EBSD measurements in the SEM map frame (Fig. 4). The

corresponding orientation matrix is referred to as UEBSD, m . It

can be constructed from a series of rotations using Euler

angles, where each angle describes a rotation about a coor-

dinate axis. Here we use right-handed rotation matrices to

describe vector rotations about the x axis,

Rxð�Þ ¼
1 0 0

0 cosð�Þ � sinð�Þ
0 sinð�Þ cosð�Þ

2
4

3
5; ð5Þ

and the z axis,

Rzð�Þ ¼
cosð�Þ � sinð�Þ 0

sinð�Þ cosð�Þ 0

0 0 1

2
4

3
5; ð6Þ

and Bunge-convention Euler angles, �1 , � and �2 (Britton et

al., 2016). Equivalently, equations (5) and (6) correspond to

left-handed rotations through angle � for the coordinate

system. To transform vectors from the crystal coordinate

frame to the laboratory frame, we use (Britton et al., 2016)

U>EBSD;m ¼ Rzð��2ÞRxð��ÞRzð��1Þ: ð7Þ

We note that the Euler angles in equation (7) are negative

because the original angles as defined are for left-handed

rotation matrices. First a rotation of ��1 is applied about the

original z axis, followed by a rotation of �� about the new x

axis and finally a rotation of ��2 about the new z axis. For

consistency with the convention used here (Busing & Levy,

1967), we express equation (7) as

UEBSD;m ¼ Rzð�1ÞRxð�ÞRzð�2Þ: ð8Þ

Here, the EBSD software already accounts for the instrument

tilts �sample and �detector and returns Euler angles in the SEM

map frame (subscript m) (Fig. 4).

To input the orientation matrix into the spec orientation

calculator on beamline 34-ID-C, we must define two hkl

reflections corresponding to out-of-plane [equation (13)] and

in-plane [equation (14)] reflections (Hofmann et al., 2017a).

One concern is the consistency in the indexing of crystals on

the 34-ID-E Laue instrument and in EBSD measurements.

Due to the cubic structure of the present crystals, there are

equivalent orientation matrices that differ by 90� rotations

about the crystal axes. These rotations are accounted for using

an Rcrystal rotation matrix that captures rotations by

90(nx, y, z)�, where nx, y, z 2 {�1, 0, 1, 2}, about the x, y and z

axes,

Rcrystal ¼ Rx½90ðnxÞ
�
�Ry½90ðnyÞ

�
�Rz½90ðnzÞ

�
�: ð9Þ

To align the EBSD map frame to the BCDI laboratory

frame, a �90� rotation about the x axis is required [Fig. 5(a)].

Combining this with equations (8) and (9) leads to the

formation of the UB34C, EBSD matrix,

UB34C;EBSD ¼ Rxð�90�ÞUEBSD;mRcrystalB: ð10Þ

These matrix-based orientation operators provide a general-

ized approach to the transformation of orientation, irrespec-

tive of the software implementation.
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Figure 4
The position of the substrate in the laboratory frame for EBSD
measurements, with relevant coordinate systems. The three-pointed star
represents the orientation of a sample feature on the blue substrate. The
EBSD detector coordinate system (xd , yd , zd) describes the EBSP
coordinates. The EBSD sample coordinates (xs, ys, zs) correspond to the
EBSD scan points. The SEM map coordinates (xm , ym , zm) show how
EBSPs overlay on SEM maps. Here, the Euler angles output by the
EBSD software are with respect to the SEM map coordinates. This
follows the same convention as Britton et al. (2016).



2.3. Microbeam Laue X-ray diffraction

Microbeam Laue diffraction was used to verify the lattice

orientation of each crystal independently. This was performed

on beamline 34-ID-E at the APS. Further details about the

instrument can be found elsewhere (Liu et al., 2004; Hofmann

et al., 2017a).

The sample was positioned with its surface inclined at a 45�

angle to the incident beam [see Fig. 5(b)] and diffraction

patterns were recorded using a Perkin–Elmer flat-panel

detector above the sample. 2D fluorescence measurements of

the Fe K�1 peak (6.40 keV) were used to identify the spatial

position of the crystals, using a monochromatic 17 keV

(��/� ’ 10�4) X-ray beam focused to 0.25 � 0.25 mm

(horizontal � vertical) using Kirkpatrick–Baez (KB) mirrors.

Next, a polychromatic X-ray beam was used to collect a

Laue diffraction pattern of each crystal (Fig. 6). The pattern

shows weak Bragg reflections from the microcrystals and

strong Bragg peaks from the single-crystal sapphire substrate.

The two sets of peaks were indexed and fitted using the

LaueGo software (https://www.aps.anl.gov/Science/Scientific-

Software/LaueGo). From the indexing, we could determine

the UB matrix [equation (4)]. The UB matrix determined by

Laue diffraction on the 34-ID-E instrument is referred to as

UBLaue,

UBLaue ¼

j j j

a	 b	 c	

j j j

2
4

3
5; ð11Þ

where a*, b* and c* are the column (represented by vertical

lines) reciprocal-space vectors returned by LaueGo in units of

nm�1 in the 34-ID-E laboratory frame.

To convert UBLaue into a UB matrix for use on the BCDI

instrument 34-ID-C, UB34C, Laue, the 45� rotation of the

sample in the Laue laboratory frame must be accounted for

[Fig. 5(b)]. To align the microbeam Laue and BCDI laboratory

frames, a rotation of the sample by 45� about the x axis is

required (Hofmann et al., 2017a), leading to

UB34C;Laue ¼ Rxð45�ÞUBLaue: ð12Þ

2.4. Bragg coherent X-ray diffraction imaging

BCDI was performed on beamline 34-ID-C at the APS. An

in situ confocal microscope was used to position the micro-

crystal within the X-ray beam (Beitra et al., 2010). The sample

was illuminated using a 9 keV (� = 0.138 nm) coherent X-ray

beam, with a bandwidth of ��/� ’ 10�4, from an Si(111)

monochromator. The X-ray beam was focused to a size of

1.1 � 1.1 mm (horizontal � vertical, FWHM) using KB

mirrors. Beam-defining slits were used to select the coherent

portion of the beam at the entrance to the KB mirrors. For

beamline 34-ID-C, the transverse coherence length is 	h >

10 mm and the longitudinal coherence length is 	w ’ 0.7 mm at

a photon energy of 9 keV (Leake et al., 2009).

The sample needs to be positioned such that a specific hkl

Bragg diffraction condition is met to produce a diffraction

pattern in the far-field Fraunhofer regime. The orientation
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Figure 6
The Laue diffraction pattern from microcrystal 1B. The squares show the
Bragg peaks that were used for orientation determination, with their
corresponding hkl indices shown in red. Weaker reflections from the
microcrystal are expected to be inside the blue circles. Other intense
peaks in the Laue diffraction pattern belong to the sapphire substrate and
are not indexed here for clarity.

Figure 5
The position of the substrate in the laboratory frame for microbeam Laue
diffraction and EBSD measurements compared with the BCDI
laboratory frame (x, y, z). The three-pointed star represents the
orientation of an arbitrary sample feature on the blue substrate. Right-
handed rotation matrices are used for the rotations. (a) Diagram showing
how the EBSD laboratory coordinates, specifically the SEM map
coordinates (Fig. 4), are related to the BCDI frame. (b) Diagram
showing the transformation between the laboratory frames for Laue
diffraction and BCDI, characterized by a 45� rotation about the x axis.



matrix determined by EBSD or Laue diffraction is commu-

nicated to the spec software used on 34-ID-C by defining two

reflections that correspond to hkl values associated with

laboratory x (in-plane) and y (out-of-plane) directions [note

the angles referred to here are set elsewhere (Hofmann et al.,

2017a)]:

(i) The primary reflection (out-of-plane, y direction), H?,

where the instrument angles are set to 
spec = 0�, �spec = 20�,

�spec = 0�, �spec = 90� and �spec =�10�. The fractional ½h k l�> is

then

h

k

l

2
4

3
5 ¼ ðUBÞ�1H? ¼ ðUBÞ�1

0

1

0

2
4

3
5: ð13Þ

(ii) The secondary reflection (in-plane, x direction), Hk,

where the instrument angles were set to 
spec = 20�, �spec = 0�,

�spec = 10�, �spec = 90� and �spec = 0�. The fractional ½h k l�> is

then

h

k

l

2
4

3
5 ¼ ðUBÞ�1Hk ¼ ðUBÞ�1

1

0

0

2
4

3
5: ð14Þ

Here UB refers to UB34C, EBSD or UB34C, Laue. These two

fractional hkl vectors are then entered into spec as known

reflections. On this basis, the expected angular positions of the

{111} and {200} reflections from the sample were calculated.

Not all {111} and {200} reflections could be measured as some

may exceed the angular range of the sample and detector

motors. Occasionally, manual motor adjustments of a few

degrees were required to locate the Bragg peak. Once a Bragg

peak was found, the sample tilt and positioning were refined

such that the centre of mass was on the centre of the detector

positioned 0.5 m away from the sample. At this aligned posi-

tion, the angular and translational positions were saved for

each Bragg peak and used to determine the true beamline

orientation matrix UB34C by minimizing the least-squares

error associated with the measured reflections,

min
P
hkl

UB34C½h k l�> �Hhkl

�� ��2
; ð15Þ

where ½h k l�> are the Miller indices in crystal coordinates.

Differences between the true and predicted positions of the

reflections using UB34C arise from a number of different

sources. The largest error is the repeatability of the sample

position in different coordinate systems. The use of Thorlabs

1X1 kinematic mounts, which have angular errors of less than

a millidegree, helps with the precise re-mounting of samples.

There is also uncertainty in the goniometer precision and

alignment with the diffractometer, which can influence the

angle readout. Furthermore, the centre of the detector may

not be perfectly aligned to the calculated position for a given

detector distance or angle. The position of the measured

Bragg peak is limited by the energy resolution of the incident

X-ray as it affects the Bragg angle.

CXDPs were collected on a 256 � 256 pixel module of a

512 � 512 pixel Timepix area detector (Amsterdam Scientific

Instruments) with a GaAs sensor and a pixel size of

55 � 55 mm positioned 1.0 m from the sample to ensure

oversampling. CXDPs were recorded by rotating the crystal

through an angular range of 0.6� and recording an image every

0.005� with 0.1 s exposure time and 50 accumulations at each

angle.

To optimize the signal-to-noise ratio and increase the

dynamic range of the CXDPs, three repeated scans for each of

the 111, 111, 200, 020 and 002 reflections were performed and

aligned to maximize their cross correlation. Once aligned, the

minimum acceptable Pearson cross correlation for summation

of CXDPs from a specific Bragg reflection was chosen to be

0.976, similarly to previous BCDI studies (Hofmann et al.,

2018, 2020). CXDPs were corrected for dead time, dark field

and white field prior to cross-correlation alignment. Details

regarding the recovery of the real-space images using phase

retrieval algorithms are given in Appendix A and the

computation of the strain is given in Appendix B.

2.5. Sample mounting

For the SEM, EDX and EBSD analyses, samples were

mounted on 12.5 mm diameter SEM specimen pin stubs using

silver paint. For microbeam Laue X-ray diffraction, they were

attached to a Thorlabs 1X1 kinematic mount. From here, a

Thorlabs kinematic mount adapter between 34-ID-E and 34-

ID-C was used to mount the samples for BCDI. This adapter

consists of two 1X1 mounts sandwiched together to enable

sample orientation to be well preserved between the beam-

lines. There is no kinematic mount adapter between the SEM

and BCDI instruments. Moreover, the use of magnets in the

kinematic mounts inhibits their use for electron microscopy.

Across the different instruments, the sample orientation was

maintained throughout as shown in Fig. 5, which has an

arbitrary sample feature to illustrate the respective orienta-

tions.

3. Results and discussion

3.1. Orientation matrix comparison

The angular mismatch between two UB matrices, UB1 and

UB2 , can be determined by converting UB1(UB2)�1 into a

rotation vector. A rotation matrix R can be converted using

Rodrigues’ rotation formula in matrix exponential form,

R ¼ expðwmÞ; ð16Þ

where wm is an antisymmetric matrix,

wm ¼

0 �wz wy

wz 0 �wx

�wy wx 0

2
4

3
5; ð17Þ

which contains the elements of the rotation vector

w ¼ ½wx wy wz�
>. The rotation vector is defined by a rotation

axis ŵw multiplied by a rotation �. If the two orientation

matrices are different, UB1(UB2)�1 can be converted to a

rotation vector where the angular mismatch is �. If UB1 =

UB2 , then UB1(UB2)�1 = I3 and therefore � = 0.
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Here we set UB1 and UB2 as UB34C, EBSD, UB34C, Laue or

UB34C. First we rearrange equation (16) to calculate wm:

wm ¼ log½UB1ðUB2Þ
�1
�; ð18Þ

where log here refers to the matrix natural logarithm. Next we

reconstruct the rotation vector using equation (17) and

calculate its magnitude to obtain the mismatch,

� ¼ kwk ¼ ½wmð3; 2Þ;wmð1; 3Þ;wmð2; 1Þ�>
�� ��: ð19Þ

To calculate the angular mismatch between UB34C, EBSD and

other orientation matrices, the permutation of nx, y, z that

produced the smallest error was chosen. Tables 1–3 show the

angular mismatch of UB34C, Laue and UB34C, EBSD compared

with UB34C for substrates 1–3. The average angular mismatch

for all crystals between orientation matrices UB34C, Laue and

UB34C is 4.48�, that between UB34C, EBSD and UB34C is 6.09�,

and that between UB34C, Laue and UB34C, EBSD is 1.95�.

Generally, UB34C, Laue is most similar to UB34C. This is

expected, as there is a Thorlabs kinematic mount adapter

between 34-ID-E and 34-ID-C for the precise angular align-

ment of samples. A larger difference is observed when

comparing UB34C, EBSD and UB34C. This is due to the manual

removal of the SEM pin stub from the electron microscope,

which then needs to be re-secured to the kinematic mount.

The cylindrical pin permits a greater degree of rotational

freedom, thereby increasing the angular mismatch when

UB34C, EBSD is considered. Despite this increased angular

freedom in the pin, a 2� increase in the angular uncertainty

when using UB34C, EBSD instead of UB34C, Laue is still a very

accurate result. This means only a slightly larger angular range

needs to be explored in alignment.

The alignment of crystals for BCDI using EBSD remains

much more time efficient because microbeam Laue diffraction

pre-alignment on 34-ID-E is no longer required. The use of

EBSD for pre-alignment of BCDI samples also affords greater

flexibility in experiment type. The ability to pre-characterize

samples offsite should substantially increase throughput and

make MBCDI a much more widely accessible technique,

especially on beamlines without pink-beam capability or

access to a nearby Laue instrument.

3.2. Determination of strain

MBCDI allows the strain and rotation tensors to be

computed if at least three reflections are measured, thus

providing more information about the crystal defects present

(Hofmann et al., 2017b, 2018, 2020; Phillips et al., 2020). Fig. 7

shows the strain and rotation tensors reconstructed from five

measured Bragg reflections of crystal 1B. The �xx , �yy and �zz

slices show defects close to the edge that may not be resolved

if analysing a single reflection alone (Yang et al., 2021), as

some crystal defects, such as dislocations, are visible only when
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Table 1
Angular differences (�) between UB34C , UB34C, Laue and UB34C, EBSD for
substrate 1.

Sample UB34C UB34C, Laue UB34C, EBSD

1B UB34C – – –
UB34C, Laue 9.72 – –
UB34C, EBSD 11.0 2.37 –

1C UB34C – – –
UB34C, Laue 2.22 – –
UB34C, EBSD 5.35 3.28 –

1E UB34C – – –
UB34C, Laue 9.70 – –
UB34C, EBSD 11.0 1.97 –

1F UB34C – – –
UB34C, Laue 7.14 – –
UB34C, EBSD 9.56 3.05 –

Average UB34C – – –
UB34C, Laue 7.19 – –
UB34C, EBSD 9.23 2.67 –

Table 2
Angular differences (�) between UB34C , UB34C, Laue and UB34C, EBSD for
substrate 2.

Sample UB34C UB34C, Laue UB34C, EBSD

2A UB34C – – –
UB34C, Laue 1.81 – –
UB34C, EBSD 2.00 0.845 –

2B UB34C – – –
UB34C, Laue 0.366 – –
UB34C, EBSD 3.33 3.56 –

2C UB34C – – –
UB34C, Laue 11.0 – –
UB34C, EBSD 11.2 0.306 –

2D UB34C – – –
UB34C, Laue 0.392 – –
UB34C, EBSD 0.659 0.269 –

2E UB34C – – –
UB34C, Laue 0.977 – –
UB34C, EBSD 4.34 4.11 –

2F UB34C – – –
UB34C, Laue 0.425 – –
UB34C, EBSD 1.58 1.23 –

Average UB34C – – –
UB34C, Laue 2.49 – –
UB34C, EBSD 3.86 1.52 –

Table 3
Angular differences (�) between UB34C , UB34C, Laue and UB34C, EBSD for
substrate 3.

Sample UB34C UB34C, Laue UB34C, EBSD

3A UB34C – – –
UB34C, Laue 0.369 – –
UB34C, EBSD 2.28 2.25 –

3B UB34C – – –
UB34C, Laue 9.69 – –
UB34C, EBSD 10.7 2.09 –

Average UB34C – – –
UB34C, Laue 5.03 – –
UB34C, EBSD 6.49 1.74 –



Qhkl � b 6¼ 0, where b is the Burgers vector (Williams & Carter,

2009).

These results were produced using a refined method for the

computation of the strain and rotation tensor. A general

approach for the computation of both these tensors is

described in Appendix B. This relies on the recovery of the

phase of the CXDP. The intensity of the CXDP is the squared

magnitude of the Fourier transform F of the complex crystal

electron density f. The solution for the recovered phase is non-

unique, as global phase offsets C can produce the same CXDP,

i.e. jFff ½ ðrÞ�gj2 ¼ jFff ½ ðrÞ þ C�gj2. After phase retrieval,

the phase values are bound between [�
, 
], which describes

the periodic nature of the crystal structure but not necessarily

the true complex crystal electron density. For instance, if the

projected displacement in the direction of Qhkl is greater than


/|Qhkl|, then a phase jump, where the phase difference is 2

between two pixels, will occur. These phase jumps cause

discontinuities in the derivatives of the phase @ hkl(r)/@j,
where j corresponds to the spatial x, y or z coordinate, leading

to spurious large strains. Typically, phase unwrapping algo-

rithms can be used to remove phase jumps, but dislocations

have characteristic phase vortices (Clark et al., 2015) that end

at dislocation lines, meaning that phase jumps associated with

dislocations cannot be unwrapped.

To account for this, Hofmann et al. (2020) demonstrated an

approach that involves producing two additional copies of the

phase with phase offsets of � 

2 and 


2 , respectively. This shifts

the phase jumps to different locations and, by choosing the

phase gradient with the smallest magnitude for each voxel, the

correct phase derivatives can be found. Here, we employ a

more efficient method used in coherent X-ray diffraction

tomography following Guizar-Sicairos et al. (2011), which has

also been applied in the Bragg geometry using ptychography

(Li et al., 2021). Rather than making multiple copies of the

phase, we take the derivative of the complex exponential of

the phase and determine the phase gradient using the chain

rule:

@ hklðrÞ

@j
¼ Re

@ exp½i hklðrÞ�=@j

i expði hklÞ

� �
: ð20Þ

Here exp½i hklðrÞ� is a circle expressed using Euler’s formula,

where the phase jumps disappear. Fig. 8 shows the difference

between the two methods for computing the lattice rotation

and strain tensors. We can see that the procedure based on

phase offsets (Hofmann et al., 2020) fails to resolve the details
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Figure 7
The average morphology of the 111, 111, 200, 020 and 002 reflections for
Fe–Ni crystal 1B. The region of missing intensity in the middle of the
crystal corresponds to a twinned region of the crystal, which is only visible
in the 111 reconstruction (Fig. 10 in Appendix A). The average
morphology taken over all five reflections is based on an amplitude
threshold of 0.30. The slices through the strain and rotation tensor
components using the average morphology are shown for the planes
indicated at x = 2.5 nm (red), y = 2.5 nm (green) and z = 2.5 nm (blue)
from the centre of mass of the microcrystal. The amplitude threshold is
0.30 and the coordinate axes are 100 nm long. The supplementary videos
(SV1–SV3) show the strain and rotation tensor components throughout
the volume along the x, y and z axes, respectively.

Figure 8
A comparison of the strain and rotation tensors at z = 2.5 nm, as shown in Fig. 7, computed using two different methods. (a) The strain and rotation
tensors as computed using equation (20) (Guizar-Sicairos et al., 2011). (b) The strain and rotation tensors as computed by introducing phase offsets and
choosing the phase gradient with the minimum value (Hofmann et al., 2020). (c) The difference between the results. The amplitude threshold for the
reconstructions is 0.30 and the magnitude of the coordinate axes is 100 nm.



fully in the regions with high strain, i.e. around the edges and

central region of missing intensity. The new approach of

computing phase gradients successfully deals with these

complex regions.

Furthermore, we apply this to the interpolation of the phase

from detector conjugated space to sample space, by inter-

polating the complex quantity expði hklÞ instead of  hkl. This

avoids the blurring of phase jumps that occurs during direct

interpolation of  hkl, shown in Fig. 9.

This refinement of strain and rotation tensor computation

allows for a more accurate reconstruction of crystal defects

and their associated nanoscale lattice strains. It also reduces

the time required to compute the tensors, since phase offsets

need to be applied before and after mapping the crystal from

detector conjugated space to orthogonal sample space. This

will play an important role in the analysis of large MBCDI

data sets, such as those obtained from in situ or operando

experiments that reveal crystal defects interacting with their

environment. Reconstruction accuracy in multi-Bragg-peak

phase retrieval algorithms that involve a shared displacement

field constraint applied to all reflections would also be

improved by implementing this more accurate interpolation of

phase values (Newton, 2020; Gao et al., 2021; Wilkin et al.,

2021).

4. Conclusions

We have demonstrated that the orientation of various

microcrystals on different substrates can be found via EBSD

and used to align BCDI experiments. The results indicate a

�2� increase in angular error when using EBSD alignment

compared with Laue diffraction alignment, which is still within

reasonable tolerance for the search for Bragg peaks. Impor-

tantly, using EBSD to pre-align crystals allows beamtime to be

more effectively utilized for BCDI data set collection. It also

removes the need for BCDI and Laue instrument coordina-

tion, and enables MBCDI on BCDI instruments that do not

have pink-beam capability or a Laue instrument nearby. Using

the orientation matrix obtained from EBSD, five reflections

have been located on an Fe–Ni microcrystal and full 3D strain

and rotation tensors have been recovered. When computing

the tensors, we have demonstrated a more efficient approach

to resolving phase jumps, by implementing a complex phase

quantity to calculate and interpolate the phase. This allows for

the phase to be unwrapped and the correct strain to be

resolved in the vicinity of dislocations. These refinements

make BCDI a more accessible microscopy tool.

5. Data availability

The processed diffraction patterns, final reconstructions and

data analysis scripts, including a script to compute the orien-

tation matrix using EBSD, are publicly available at https://

doi.org/10.5281/zenodo.6383408.

Also available are three supplementary videos, as follows:

(i) SV1 shows xy plane slices through the lattice strain and

rotation tensors in Fig. 7.

(ii) SV2 shows yz plane slices through the lattice strain and

rotation tensors in Fig. 7.

(iii) SV3 shows zx plane slices through the lattice strain and

rotation tensors in Fig. 7.

APPENDIX A
Phase retrieval

The reconstruction process of CXDPs was done indepen-

dently for each reflection, in two stages, using the output from

the previous stage to seed the next phasing stage (listed

below). The CXDPs have a size of 256 � 256 � 128 voxels.

(i) Each reconstruction was seeded with a random guess. A

guided phasing approach (Chen et al., 2007) with 40 indivi-

duals and four generations was used with a geometric average

breeding mode. For each generation and population, a block

of 20 error reduction (ER) and 180 hybrid input–output

(HIO) iterations, with � = 0.9, was repeated three times. This

was followed by 20 ER iterations to return the final object.

The shrinkwrap algorithm (Marchesini et al., 2003) with a

threshold of 0.1 was used to update the real-space support

after every iteration. The � values for the Gaussian kernel

shrinkwrap smoothing for each generation were � = 2.0, 1.5,

1.0 and 1.0, respectively. The best reconstruction was deter-

mined using a sharpness criterion, as it is the most appropriate

metric for crystals containing defects (Ulvestad et al., 2017).

The two worst reconstructions were removed after each

generation.

(ii) The reconstruction was seeded with the output from

stage (i). This second stage was identical to stage (i), except

now for each generation and population a block of 20 ER and

180 HIO iterations, with � = 0.9, was repeated 15 times,

followed by 1000 ER iterations. Here the final 50 iterates were

averaged to produce the final image.

The overall average 3D spatial resolution was 35 nm. This

was determined by differentiating the electron-density
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Figure 9
Phases for the 111, 111, 200, 020 and 002 reflections at z = 2.5 nm. We
compare (a) the new method of interpolating the complex quantity of the
phase  c with (b) interpolating the phase alone  0 . (c) The difference
between  c and  0 , � , highlights the information that can only be
resolved around phase jumps in  c . The amplitude threshold for the
reconstructions is 0.30 and the size of the coordinate axes is 100 nm. Here
the average morphology was used. Hence the 111 reconstruction shows a
region of missing intensity corresponding to a twin, which is not present in
the original 111 reconstructed morphology (Fig. 10 in Appendix A).



amplitude across the crystal/air interface for the five reflection

directions and fitting a Gaussian to each of the profiles. The

reported spatial resolution is the averaged FWHM of the

Gaussian profiles. The average 3D spatial resolutions were 30,

38, 39, 31 and 39 nm for the 111, 111, 200, 020 and 002

reconstructions (Fig. 10), respectively.

APPENDIX B
Strain and rotation tensor calculations

The full 3D lattice strain tensor "(r) and rotation tensor !(r)

are given by (Constantinescu & Korsunsky, 2007)

"ðrÞ ¼ 1
2 ruðrÞ þ ½ruðrÞ�>
� �

ð21Þ

and

!ðrÞ ¼ 1
2 ruðrÞ � ½ruðrÞ�>
� �

; ð22Þ

which rely on the reconstruction of u(r). With a single BCDI

measurement, we can determine one component of the

displacement field. For MBCDI, if at least three linearly

independent reflections are measured, u(r) can be determined

by minimizing the least-squares error (Hofmann et al., 2017a;

Newton et al., 2010),

EðrÞ ¼
P
hkl

Qhkl � uðrÞ �  hklðrÞ
� �2

; ð23Þ

for every voxel in the sample. Here, we use the modified

approach of Hofmann et al. (2020), in which case the squared

error between phase gradients is minimized,

EðrÞj ¼
X
hkl;j

Qhkl �
@uðrÞ

@j
�
@ hklðrÞ

@j

	 
2

; ð24Þ

where j corresponds to the spatial x, y or z coordinate, to find

ru(r) directly for the computation of "(r) and !(r) in equa-

tions (21) and (22), respectively.

In Fig. 7, five linearly independent reflections were

measured and reconstructed to assemble the strain and rota-

tion tensor. To assess the reliability of the MBCDI measure-

ments and phase retrieval procedure, we calculate the strain

tensor using four out of the five reflections to predict the strain

projected along the scattering vector of the fifth reflection.

First, the phase gradients for each reflection are calculated

from the strain tensor components,

@ hklðrÞ

@j
¼ Qhkl �

@uðrÞ

@j
; ð25Þ

and then used to calculate the strain fields projected along the

scattering vector �hkl(r),

�hklðrÞ ¼ r hklðrÞ �
Qhkl

jQhklj
2
: ð26Þ

This is compared with the strain field projected along

the scattering vector computed from the measured phase
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Figure 10
The sample morphology for each measured reflection labelled with the
scattering vector. The average morphology for the five reflections is
shown in Fig. 7. The amplitude threshold for the reconstructions is 0.30
and the size of the coordinate axes is 500 nm.

Figure 11
A comparison between (a) the calculated and (b) the measured strain for
the 111, 111, 200, 020 and 002 reflections at y = 2.5 nm. The calculated
strain is computed from the strain tensor determined using the other four
reflections following the methodology presented in the text. (c) The
measured strain subtracted from the calculated strain. The amplitude
threshold for the reconstructions is 0.30 and the size of the coordinate
axes is 100 nm.

Figure 12
A comparison between (a) the calculated and (b) the measured strain for
the 111, 111, 200, 020 and 002 reflections at y = 2.5 nm. The calculated
strain is computed using the strain tensor determined using all five
reflections following the methodology presented in the text. (c) The
measured strain subtracted from the calculated strain. The amplitude
threshold for the reconstructions is 0.30 and the size of the coordinate
axes is 100 nm.



gradients using the approach presented in the main text

[equation (20)].

The average strain error for each reflection is computed by

summing the magnitude of the difference between the calcu-

lated and measured strain and dividing the sum by the number

of voxels in the morphology of each reconstruction (Fig. 11).

The average strain error for each reflection (listed in

parentheses) is 3.5 � 10�4 (111), 2.1 � 10�4 (111), 3.3 � 10�4

(200), 4.0 � 10�4 (020) and 2.9 � 10�4 (002).

If all five reflections are used to predict the strain along the

scattering vector for each reflection (Fig. 12), the average

strain error for each reflection (listed in parentheses) is

2.0 � 10�4 (111), 1.2 � 10�4 (111), 8.2 � 10�5 (200),

1.0 � 10�4 (020) and 9.6 � 10�5 (002).

The average strain error is close to the strain resolution

limit for BCDI of�2 � 10�4 (Yang et al., 2021; Hofmann et al.,

2020), demonstrating that the reconstructed tensors using all

five reflections are accurate. The use of all five reflections

reduces the average strain error by 62% compared with the

use of four reflections.

Acknowledgements

The authors acknowledge use of characterization facilities at

the David Cockayne Centre for Electron Microscopy,

Department of Materials, University of Oxford, and use of the

Advanced Research Computing (ARC) facility at the

University of Oxford (Richards, 2015).

Funding information

Funding for this research was provided by the European

Research Council under the European Union’s Horizon 2020

research and innovation programme (grant No. 714697 to DY,

GH, NWP and FH) and under the Marie Skłodowska-Curie

Actions (grant No. 884104 PSI-FELLOW-III-3i to NWP). KS

acknowledges funding from the General Sir John Monash

Foundation. X-ray diffraction experiments were performed at

the Advanced Photon Source, a US Department of Energy

(DOE) Office of Science User Facility operated for the DOE

Office of Science by Argonne National Laboratory under

contract No. DE-AC02-06CH11357.

References

Adams, B. L., Wright, S. I. & Kunze, K. (1993). Metall. Trans. A, 24,
819–831.

Bachmann, F., Hielscher, R. & Schaeben, H. (2011). Ultramicroscopy,
111, 1720–1733.

Beitra, L., Watari, M., Matsuura, T., Shimamoto, N., Harder, R.,
Robinson, I., Garrett, R., Gentle, I., Nugent, K. & Wilkins, S.
(2010). AIP Conf. Proc. 1234, 57–60.

Britton, T. B., Jiang, J., Guo, Y., Vilalta-Clemente, A., Wallis, D.,
Hansen, L. N., Winkelmann, A. & Wilkinson, A. J. (2016). Mater.
Charact. 117, 113–126.

Bunge, H. J. (1982). Texture Analysis in Materials Science, 1st ed.
Oxford: Butterworth.

Busing, W. R. & Levy, H. A. (1967). Acta Cryst. 22, 457–464.
Carnis, J., Kshirsagar, A. R., Wu, L., Dupraz, M., Labat, S., Texier, M.,

Favre, L., Gao, L., Oropeza, F. E., Gazit, N., Almog, E., Campos, A.,

Micha, J.-S., Hensen, E. J. M., Leake, S. J., Schülli, T. U., Rabkin, E.,
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