
research papers

1314 https://doi.org/10.1107/S1600576722008226 J. Appl. Cryst. (2022). 55, 1314–1323

Received 4 April 2022

Accepted 17 August 2022
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Bragg diffracted intensities and q values for crystalline structures with long

repeat distances may be obtained by small-angle neutron scattering (SANS)

investigations. An account is given of the methods, advantages and

disadvantages of obtaining such data by the multichromatic time-of-flight

method, compared with the more traditional quasi-monochromatic SANS

method. This is illustrated with data obtained from high-magnetic-field

measurements on magnetic vortex line lattices in superconductors on the

former HFM/EXED instrument at Helmholtz-Zentrum Berlin. The methods

have application to other mesoscopic crystalline structures investigated by

SANS instruments at pulsed sources.

1. Introduction

Small-angle neutron scattering (SANS) is a very apt technique

for measuring large-scale crystalline structures having repeat

distances in the tens to thousands of ångströms. Flux line, or

vortex, lattices (VLs) in superconductors are a typical appli-

cation (Eskildsen et al., 2011), but others include skyrmion

lattices (Mühlbauer et al., 2009) and other long-period helical

magnetic structures or mesophases formed by nanoparticles in

colloidal suspensions (Mühlbauer et al., 2019). Taking the case

of Bragg diffraction by vortex lattices, the parameters

obtained are the VL structure and spacing and the VL form

factors as a function of applied magnetic field and tempera-

ture. These data may be analysed in terms of the magnetic

penetration depth and the coherence length of the super-

conductor. Information about the superconducting energy gap

and the nature of the pairing may also be inferred. Tradi-

tionally, such measurements have been performed on quasi-

monochromatic (��/� ’ 10%) SANS instruments, and there

has been little published use of the multichromatic time-of-

flight (TOF) SANS technique for such measurements (Pautrat

et al., 2012; Bannenberg et al., 2018; Li et al., 2019; Campillo,

Bartkowiak et al., 2022).

Many years ago, the Christen formula (Christen et al., 1977)

was derived for the quasi-monochromatic case to relate the

integrated intensity of a VL Bragg peak at wavevector q [q =

(4�/�)sin�, where � is half the scattering angle and � is the

wavelength of the incident radiation] to the magnetic form

factor (the spatial Fourier component of the VL magnetic field

at that q). Here, we demonstrate how to obtain the same

information using TOF SANS. With the increasing availability

of pulsed sources, such as the ISIS Neutron and Muon Source

(UK), the Spallation Neutron Source (USA), J-PARC (Japan)
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and soon the European Spallation Source (Sweden), and the

reduction in quasi-monochromatic instruments due to the

closure of reactor sources, it is important to establish how VL

studies may be carried out quantitatively on TOF SANS

instruments. The information about VLs is obtained from the

integrated intensity, position and q widths of the diffraction

spots. The analysis described here may equally be used to

obtain crystallographic information about other mesoscopic

structures, for example the skyrmions studied by Bannenberg

et al. (2018) and Li et al. (2019).

We have carried out several experimental studies

(Campillo, Bartkowiak et al., 2022; Campillo, Soda et al., 2022;

Cameron et al., 2022) on VLs using the HFM/EXED neutron

beamline (no longer in service) at the Helmholtz Zentrum

Berlin (Prokhnenko et al., 2015, 2017; Smeibidl et al., 2016).

This instrument was a multi-purpose instrument that operated

exclusively in TOF mode and had a SANS option. In this

paper, we primarily draw on examples from a sample of 98%

detwinned YBa2Cu3O7 (Campillo, Bartkowiak et al., 2022) to

illustrate our analysis methods. We have also used these

methods for high-field VL studies on twinned Y0.85Ca0.15Ba2-

Cu3O7 (Cameron et al., 2022) crystals and Ba1�xKxFe2As2

(Campillo, Soda et al., 2022). In all three cases, we had results

obtained from quasi-monochromatic SANS to compare with.

The data reduction on HFM/EXED and subsequent analysis

were carried out using the software package Mantid (Arnold et

al., 2014).

2. Bragg diffraction in TOF SANS

To generate a VL, a magnetic field must be applied to the

superconductor; the flux lines then lie parallel to this magnetic

field (with vortices of supercurrent around them) and the

reciprocal-lattice vectors of the VL are therefore perpendi-

cular to this field. If the magnetic field is aligned nearly

parallel to the neutron beam, all of the Bragg reflections from

the VL will be experimentally accessible in the SANS

geometry.

The diffraction condition for a Bragg peak is set by the

Bragg equation. In most VL SANS studies using a quasi-

monochromatic neutron wavelength, the diffraction condition

is met by altering the angle of the sample and magnet together

with respect to the incoming neutron beam, and so the

measurement is typically referred to as a rocking curve

through the Bragg condition. If the relevant diffraction spot is

perpendicular to the rotation axis (e.g. a horizontal spot with a

vertical rotation axis) then the rocking angle ! moves q

perpendicular to the Ewald sphere, the rocking curve will be

centred on the Bragg angle �B, and the intensity integrated

over ! and the rocking curve width can be extracted. In the

more general case, when the spot is at an angle � to the

perpendicular, the rocking will be centred on �B /cos�; it

moves q more slowly through the Ewald sphere and the

angular width has to be corrected by the ‘Lorentz factor’ cos�.

The width is often reported in terms of angular width but more

properly corresponds to a width in the qz direction (z is

parallel to the applied field). In the rest of this paper we will

use ! to refer to the special case where the rotation axis is

perpendicular to the spot.

In the time-of-flight (TOF) case, at a given value of the

sample and magnet rotation angle � a range of wavelengths

are scattered, and so at each � a range of qz values are

sampled. Elastic scattering at the appropriate angles by

shorter and longer wavelengths therefore corresponds to

measuring the signal at different rocking angles in the case of

quasi-monochromatic SANS ! (Pautrat et al., 2012). Alter-

natively, as illustrated schematically in Fig. 1, the neutron

wavelength distribution at fixed magnet rotation angle can be

regarded as giving the signal over a range of qz. Depending on

the range of Bragg angles and the width of the VL rocking

curve, it may be necessary to measure in TOF mode at two or

three different � values to give complete coverage of the

rocking curve.

It is also possible to measure the VL with the field

perpendicular to the beam (Laver et al., 2008). In this case the

sample has to be rotated so that one of the VL Bragg planes
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Figure 1
A schematic demonstration of how the TOF technique at one magnet
rotation angle gives data equivalent to those obtained over a range of
rocking angles in the single-wavelength technique. The spread of
wavelengths in the incident beam is represented by three wavevectors
of different lengths. The incoming and outgoing wavevectors ki and kf are
labelled for one of these wavelengths. The magnetic field and sample are
rotated together away from the incident beam direction by an angle
which has been exaggerated for clarity. The rotation angle is chosen so
that a VL diffraction spot satisfies the Bragg condition at a wavelength �B

in the middle of the incoming wavelength distribution. Thus elastic
scattering by 2�B (also exaggerated for clarity) corresponds to a VL
reciprocal-lattice vector q, which is perpendicular to the magnetic field.
Imperfections in the VL give a finite size to its diffraction spot,
represented by the green ellipse, and this gives rise to different
correlation lengths parallel and perpendicular to the field. For SANS
measurements, the range of wavelengths or the rocking curve give
information almost exactly along qz, the component of wavevector
parallel to the field.



(which are typically 60� apart in this geometry) is at a small

angle to the incoming beam (see Fig. 2). In this arrangement,

the B direction marked in Fig. 1 corresponds to this Bragg

plane and the field direction is perpendicular to the page. This

means that the rocking curve or qz width gives information

about the orientation of the VL structure around the field

direction rather than along B.

3. VL form factor

The VL form factor is the magnitude of a Fourier component

of the spatial variation of the magnetic field within the VL. For

non-TOF SANS at a neutron wavelength �, the form factor

F(q) for a diffraction spot with wavevector q is related to the

integrated intensity I(q) by the following relationship

(Christen et al., 1977):

jFðqÞj2 ¼
�2

0

2�Vð�=4Þ2
qIðqÞ

’�2
: ð1Þ

Here, �0 (= h/2e, with h the Planck constant and e the electron

charge) is the magnetic flux quantum, V is the illuminated

sample volume, � (= 1.91) is the neutron magnetic moment in

nuclear magnetons and ’ is the neutron flux

(neutrons m�2 s�1) illuminating the sample. The integrated

intensity is defined as

qIðqÞ

’�2
¼

1

’�2

Z X
qx;qy

Iðqx; qy; !Þ q d!; ð2Þ

where ! is the rocking angle through the diffraction spot. (The

angle is measured in radians, around an axis perpendicular to

the scattering plane.) I(qx, qy, !) is the intensity detected at

rocking angle !. This is then summed over the area of the

detector containing the diffraction spot, and the integral

represents the area under the graph of summed intensity

versus q!.

The equivalent equation in TOF mode is obtained by

considering the illuminating beam as a distribution ’(�) over

the neutron wavelengths, represented by a histogram with bins

of width �� centred on wavelengths �j (and corresponding

wavevectors kj) having neutron flux ’j = ’(�j)��. This will

give rise to a scattered intensity Ij = I(qx, qy, qz, �j)��, with ’j

appearing in equation (1) and Ij inside the integral in equation

(2). Note that �� cancels in the ratio Ij /’j , as indeed it does in

non-TOF SANS where a single wavelength band is used.

However, for a TOF measurement the VL is at a fixed angle to

the neutron beam, so a rocking curve measurement is not

performed. Instead, as shown in Fig. 1, the distribution of

wavelengths corresponds to a range of values of the Bragg

angle �B, and hence plays the part of the rocking curve. If the

range of wavelengths is not broad enough to cover the whole

rocking curve width for a VL, several measurements at

different magnet rotation angles may be used; the following

analysis applies to each one of these measurements.

To do the TOF equivalent of ‘integrating over the rocking

curve’, we have to determine how detector counts translate

into q space. We make use of the geometry represented in

Fig. 3, where we define the ‘laboratory’ frame, which has the z

direction pointing towards the incoming beam.

In the laboratory frame, the scattered q0 = kf � ki . If the

magnitude of the neutron wavevectors is kj, then we may write

the components of q0 as

q0 ¼ kj

x

r
; kj

y

r
;

kj

2

x

r

� �2

þ
y

r

� �2
� �� �

: ð3Þ

This is q0 in the laboratory frame; we wish to have q in the

sample/magnet frame, which is rotated from the laboratory

frame by a small angle � about the vertical y axis. If the

diffraction spot is perpendicular to the magnet rotation axis

then � is equivalent to !, and � = ! = �B brings the spot into

the diffraction condition. Otherwise � > �B is required. In our

experiments the magnet rotation axis was vertical and the

spots were at �45� to the horizontal, so � ’ �B /cos45�. In the

sample frame, the VL diffraction spots will lie at qz = 0,

perpendicular to the field direction. For small rotation angles

and small qz we have, to a good approximation,

q ¼ kj

x

r
; kj

y

r
; q0z � kj

x

r
sin �

� �
: ð4Þ
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Figure 2
Illustrations of the two possible VL measurement geometries: (left) field
nearly parallel to the incident beam and (right) field perpendicular. The
relevant Bragg planes are shown as dashed lines

Figure 3
The geometry of the scattering. The incoming neutron beam at a
particular wavelength is represented by ki and a scattered neutron at the
same wavelength with wavevector kf arrives in a �x�y detector pixel
centred (x, y) from the origin, after travelling a distance r to the pixel.



Differentiating equation (4) shows that the relationship

between pixel space and q space in the xy plane is

dqx

dx
¼

dqy

dy
¼

kj

r
: ð5Þ

At this point, one has to make choices about how to treat

the experimental information regarding wavelength and

counts and how they are recorded. In our work here we have

used Mantid as implemented at EXED, where we must work

in q space, and so the rest of our treatment builds on that (see

Section 5). However, different choices could be made, for

instance in the user-friendly GRASP software (Dewhurst,

2003) work can be done using the appropriate TOF bins

associated with each detector pixel.

Of immediate relevance for our discussion of the expression

for the form factor is the fact that, when the detector data are

assembled by Mantid into pixels of q space, there may be

counts from several detector pixels added into one q pixel, and

these counts will be normalized by the main beam intensity,

summed for the same number of pixels. To calculate the

intensity summed over the detector pixels, we have to account

for this. If the size in the xy plane of a q pixel is �qx�qy then,

using equation (5), the area of the detector contributing to this

pixel is �x�y, given by

�x�y ¼ �qx�qy

r2

k2
j

: ð6Þ

Hence the number N of detector pixels (of real-space size �x�y
as in Fig. 3) included in this q pixel is

N ¼
�x�y

�x�y
¼

�qx�qyr2

k2
j �x�y

: ð7Þ

This factor has to be included in a sum over q space to convert

it into a sum over the detector. We note that the k2
j in the

denominator cancels the �2
j in the Christen formula for the

whole of the wavelength distribution. The Christen formula

applies when summing over a real-space detector; when

summing over q space the wavelength dependence in the

Christen formula disappears. Finally, qd! translates into dqz ,

so we come to the TOF version of the formula for the form

factor,

jFðqÞj2 ¼
�2

0

2�Vð�=4Þ2
�qx�qy

4�2

r2

�x�y

�

Z X
j

Ijð�qx;�qy; qzÞ

’j

dqz: ð8Þ

The area �qx�qy is chosen to contain all the intensity of

the diffraction spot. The integral over qz is understood as the

area of a Gaussian (or Lorentzian if that is the observed

shape) fitted to this intensity as a function of qz. This is

analogous to using the area under a rocking curve in the

quasi-monochromatic SANS case to establish the integrated

intensity.

4. Instrument setup

Our neutron measurements were carried out on the High

Magnetic Field Facility for Neutron Scattering (Prokhnenko et

al., 2017). This facility is no longer operational, but at the time

of our experiments it consisted of the High Field Magnet

(HFM) (Smeibidl et al., 2016) and the Extreme Environment

Diffractometer (EXED) (Prokhnenko et al., 2015) at the

Helmholtz-Zentrum Berlin (HZB). The multi-purpose EXED

instrument operated in TOF mode, with a wide range of

incident neutron wavelengths, maximizing the volume of

reciprocal space that could be observed for a given orientation

of the HFM. This was a hybrid solenoid magnet system with a

maximum field of 25.9 T, making it the highest continuous

magnetic field that was available in the world for neutron

scattering experiments. The instrument was used for a wide

variety of elastic diffraction or inelastic scattering experi-

ments; in this case we used a setup appropriate for elastic

small-angle scattering from the vortex lattice (VL), which has

a repeat period of �100 Å under our conditions. The direction

of the horizontal magnetic field, and therefore of the sample,

was rotated relative to the incoming beam by a few degrees, so

as to satisfy the Bragg scattering condition at a wavelength

near the middle of the range for the incoming neutrons.

The neutron beam from the HZB reactor was chopped at a

frequency of 10 Hz by two counter-rotating choppers with

opening angles of �55� situated 53 m before the sample. The

gap both opens and closes linearly with time, with a total

opening time of 15.2 ms. However, the maximum width of the

chopper gap is roughly three times larger than the guide width,

so the beam is fully transmitted over the central �10.1 ms,

giving a flat-topped pulse, as shown in Fig. 4. We use this pulse

shape in our resolution calculations later in the paper, where

we represent its width by a single number, the root-mean-

square (r.m.s.) time width of the intensity distribution.

Neutrons over the wavelength range 2.5–9.3 Å could be

identified by their time of arrival at the detector, between�37

and 137 ms after they had passed through the source choppers.

Additional choppers removed neutrons which would have

arrived at the edges of this time range or outside it. This avoids

‘frame overlap’ with the next pulse arriving 100 ms later
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Figure 4
The neutron pulse shape in our experiments. This pulse is repeated every
100 ms.



(Prokhnenko et al., 2015). For our first experiment, the data

were analysed over the wavelength range 2.55–8.15 Å,

ignoring low intensities at the extremes of the range. The

incoming beam was collimated by a 30 mm diameter aperture

located 5.5 m before the sample and a second 14 mm diameter

aperture 1.0 m before the sample, with a sample-to-detector

distance of 5.5 m. For the second experiment, the range was

5.0–8.15 Å to reduce background due to double Bragg scat-

tering, first from one twin domain and then from another

domain. This is seen only below the Bragg cut-off, i.e. at short

wavelengths, and from a sample containing both twin domains.

The collimation in this case was 30 mm at 7 m with another

12 mm aperture at 0.65 m and a detector distance of 4.5 m.

The sample areas were defined by a 7 � 5 mm hole in a

cadmium ‘window frame’ around the mosaics. This gave an

angular divergence of the incoming beam of�0.20� FWHM in

the first experiment and �0.17� FWHM in the second.

Two different detectors were used in the two experiments;

both consisted of arrays of cylindrical position-sensitive

detector tubes. The tube spacing defined their horizontal

resolution while the vertical resolution was given by 1% of

their length. In the first, the detector is that described by

Prokhnenko et al. (2017). This detector was at a fixed position

with respect to the laboratory and had pixels of size (�x, �y) =

(14, 9) mm. In the second case, the detector was attached to

the magnet, and so both rotated with the same angle �. This

detector also had larger pixels: (20.8, 24) mm. The first

detector had better resolution but was not in a vacuum as it

was separate from the magnet, so helium or argon gas was put

in the flight path to reduce background due to air scattering.

Equation (5) gives the relationship between pixel size and q

resolution.

In both experiments, a perforated cadmium beamstop of

measured transmission (�1.5%) was set to intercept most of

the incident beam to avoid overloading the detector. The

fraction of the beam transmitted by a perforated beamstop

also acts as a beam monitor. This gives a measure of the main

beam intensity with the same detection efficiency as the

scattered beam and – in TOF mode – with the same time

structure. The alternative arrangement of a beam monitor in

the incident beam will give a wavelength-dependent efficiency,

which in general will be different from that of the detector. In

TOF mode, corrections would have to be made for monitor

efficiency and the different distance of the monitor from the

choppers. In quasi-monochromatic mode, a monitor in the

incident beam is not a problem, as long as a perforated

attenuator of known transmission is used to measure the main

beam intensity. In both cases, one relies on the transmission

through the perforations being determined by the fraction of

area they occupy, which allows us to make the reasonable

assumption that the transmission is wavelength independent.

5. Data treatment

The data treatment for obtaining the VL was performed using

the software package Mantid (Arnold et al., 2014) using the

following procedure.

(i) Before starting the data treatment, we first loaded data

files containing information on the position of the direct beam

on the detector for each angle of rotation of the magnet at

which measurements were taken. These define the centre of

our detector, i.e. q = 0.

(ii) We then loaded separately all of the data files, desig-

nated as foreground (being studied to see if there is a VL

signal) and background (no VL signal possible). Each file was

labelled with an identification number, the angle of rotation of

the magnet, and the temperature and magnetic field applied

during that measurement. Each foreground file had a corre-

sponding background file measured at the same magnet angle

of rotation and both should have been measured at the same

field. Background files were obtained by measuring above the

critical temperature of the sample. Each file contained the

neutron counts collected during a run (usually around 60 min)

assembled into 256 logarithmically spaced time bins for each

pixel of the detector.

(iii) Next, the data were re-binned from time bins to

wavelength bins of width 0.02 Å.

(iv) Each foreground and background file was then divided

by the known pixel-dependent efficiency of the detector.

(v) Using the detector centre appropriate for the relevant

magnet rotation angle, these files were re-binned from neutron

counts versus wavelength in each detector pixel to neutron

counts versus wavelength in pixels of the q space of the sample

(see Section 3).

(vi) Where files had been measured at the same tempera-

ture and magnetic field but at different rotation angles, the

files were merged at this point and the counts for all angles

were added together into the appropriate q-space pixel and

wavelength bins. It is important to note that Mantid conserves

the number of neutron counts, adding them to the appropriate

bins in the q-space pixels.

(vii) A separate workspace was then created to allocate the

main-beam wavelength distribution information to every

detector pixel. The main-beam information was obtained from

the counts passing through the perforated beamstop,

corrected by its transmission factor. These data were also

rebinned to q space in the same manner as the foreground and

background files. This process assigned the number of main-

beam counts that could have given rise to the scattered

intensity in each q-space pixel and wavelength bin.

(viii) After this re-binning the separate foreground and

background files containing the scattered counts were

normalized by the main-beam intensity. The normalized

intensities were then summed over wavelength bins as in

equation (8) for each q-space pixel.

(ix) The normalized background was subtracted from the

normalized foreground to give the diffraction signal – from

the VL in our case. For our VL data, this was concentrated

near the plane perpendicular to the magnetic field (defined as

the qz = 0 plane) in diffraction spots from the VL at q =

(qx, qy).

(x) We note that determining the integrated intensity from

any mesoscopic crystal structure investigated by SANS would

require a similar analysis procedure. In the case of a skyrmion
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lattice, this would give the form factor of the spatially varying

magnetization perpendicular to the scattering vector.

Figs. 5(a) and 5(b) provide examples of foreground and

background raw data taken on the 98% detwinned

YBa2Cu3O7 sample at 23 T. These display the intensity per

pixel of the detector, summed over all neutron wavelengths.

The bright spot is the direct beam. Fig. 5(c) shows the corre-

sponding subtraction. In both foreground and background

there are four spots of intensity forming a square pattern

around the direct beam (note that the detector pixels are not

square). These spots are the results of a double diffraction

process, firstly from the majority twin and then from the

minority twin, or vice versa. They are not related to the VL.

This occurs at a specific wavelength controlled by the Bragg

condition for the crystal planes in question. The actual VL

diffraction signal is spread out over a range of distances from

the main beam as it appears at all wavelengths, and it is most

clearly seen after converting from detector pixels to q space.

To see the signal clearly in the detector panel output prior to

the rest of the analysis required at least 4 h of counting time

for both foreground and background.

To extract the integrated intensity of the Bragg reflection, a

sum over qx, qy and an integration over qz must be carried out,

as described in the text following equation (8). Fig. 6 shows an

example of the data prior to this integration. Firstly, the signal

versus qx and then versus qy is plotted in Fig. 7. In each case,

the quantity plotted has been summed over the spot area in

the other two dimensions of q space. This gives the position

and width of the spot, which determine the area of qx and qy

over which to sum the signal. Finally the qz integration is done

to give the total integrated intensity. As shown in Fig. 7, all of

the fits were Gaussians with the background level constrained

to be zero. From the fits, the FWHM in a given direction can

also be extracted; this is discussed in more detail in the
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Figure 6
Data from YBa2Cu3O7 at 23 T, measured at � = 1.2 and 2.0�. The colour
plot shows the intensity in each pixel after the processing described in the
main text, excepting the normalization step. This results in giving the
intensity near qz = 0. The image has been smoothed using Mantid.

Figure 5
The upper two panels compare the intensity measured on one of the
EXED detector panels (there were four detector panels in total, two
forward and two backward) after counting foreground and background
for 4 h each. The detector pixels are not square. The data in panels (a)
and (b) are displayed using a logarithmic colour scale, and the features
seen in both are discussed in the main text. The effect of the perforated
beamstop is clear in these panels. Panel (c) shows the foreground minus
the background, un-smoothed and with a linear colour scale. The double
diffraction signals present in the foreground and background cancel, but
Poisson errors in the large counts near the main beam are seen in the
difference signal. As indicated by the geometry in Fig. 1, the VL signal is
diffracted at different angles depending on wavelength, so is spread out
on the detector. For this magnet rotation angle, they appear as faint
diagonal streaks to the right of the beam centre; one of them is inside the
red ellipse in panel (c).



following section. The dimensions of the qxqy area used to sum

the signal shown in Fig. 7(c) were set to be �3� the Gaussian

widths of Figs. 7(a) and 7(b).

We have checked our analysis by comparison with quasi-

monochromatic measurements and find excellent quantitative

agreement in the measured form factor for YBa2Cu3O7 as a

function of field (Campillo, Bartkowiak et al., 2022) when

using the first detector setup. For the detector setup in the

second experiment, we consistently recorded an integrated

intensity lower than that obtained in the first experiment or

quasi-monochromatic measurements on three different

samples. The measured form factor from the second setup had

to be multiplied by 1.5 to match the values measured by other

setups. We do not know the exact reason for this but the most

likely cause would be a problem with correctly establishing the

main beam intensity.

6. General considerations

In a TOF experiment, there is often a choice of the range of

wavelengths to be used, which will give rise to a range of qz at

the diffraction spot. However, a wide range may not give much

extra information, because the intensity of the beam will fall

off at long wavelengths and the reflectivity of the sample falls

off at short wavelengths as �2. Also, short wavelengths may

diffract from the main crystal structure as well as from the

long-period structure to be examined. This can give unwanted

background, as observed in YBa2Cu3O7 near the main beam

in Fig. 5. This was much more important in our Y0.85Ca0.15Ba2-

Cu3O7 sample, because it had equal populations of both twin

domains, giving much stronger double Bragg scattering. In this

case, as described in Section 4, the short-wavelength data had

to be removed from the analysis to reduce the background.

The rotation angle of the sample and the range of wave-

lengths determine the region of q space covered. A slice in the

qxqz plane is represented in Fig. 8. The shape of this region

means that some parts of q space have little or no scattered

signal and also little or no main beam to serve for normal-

ization. If the data are normalized by the main beam, this

results in large uncertainties or even divide-by-zero errors in

regions near to or outside the edge of the region covered.

These effects can be seen in the plots in Fig. 7, particularly in

Fig. 7(c). Taking data at other magnet angles will increase the

volume of q space that is covered but does not necessarily

increase the quantity of useful data about the diffraction spot
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Figure 7
Plots of the VL signal versus qx, qy and qz for the upper VL Bragg
reflection from YBa2Cu3O7 at 23 T (see Fig. 5). The signals plotted have
been summed over suitable ranges of the other two dimensions of q space.
The qz integration gives the final integrated intensity to be carried
forward. Normalization by the main beam sometimes results in large
uncertainties or even divide-by-zero errors in regions near to or outside
the edge of the region covered.

Figure 8
Illustration of the area of q space covered by a given range of wavelengths
and 2� values (angles exaggerated for clarity). The directions of qx and qz

are marked. The magnet is rotated to bring the desired q vector into the
middle of the shaded area, but for a given rotation angle the area is
narrow and curved so that it covers only part of the qz = 0 plane which
contains q, and a very short range of qz .



itself. This is illustrated in Fig. 9. A good way of dealing with

this problem would be to use a Bayesian method of analysis

(Holmes, 2014) which gives little weight to data that have large

fractional uncertainties.

Another consideration in SANS measurements is the qz

width of the diffraction spot in the TOF method – or

equivalently, the width of the rocking curve in quasi-mono-

chromatic SANS. In the latter case, the width for a new and

uninvestigated sample is immediately revealed by a rocking

scan. In the TOF case, the range of wavelengths may be too

large or too small to obtain efficiently the required data at a

single magnet rotation angle. Consider first the situation with a

small q and a short z-axis correlation length, i.e. a large qz

width of the signal. Because of the small q, the range of qz

covered by the range of wavelengths will also be small (see

Fig. 1) and a set of different sample rotation angles will be

required to give sufficient qz coverage. Conversely, if the

sample exhibits a well ordered structure at a large value of q,

the ‘rocking curve’ given by the TOF technique may be too

wide, with many of the data giving background instead of

signal. The most challenging situation for SANS by any

technique is a weak signal at low q with large qz width, where

efficiently setting the required measurement conditions is

somewhat more involved for the TOF technique.

7. Instrument resolution and VL perfection

In this section, we discuss the questions of instrument reso-

lution and measurement of the perfection of the structure

being investigated within the context of VL diffraction.

However, the results can equally be applied to other meso-

scopic structures to relate the coherence of these structures in

the x, y and z directions to the spot widths in q space. The

width of a diffraction spot in qx, qy and qz will be determined

partly by the instrument resolution (which is highest in the z

direction) and partly by the perfection of the VL. A simple

approach in the quasi-monochromatic case is described by

Cubitt et al. (1992).2 This analysis was carried out not in q

space but in terms of the widths of distributions over angles,

including any spread in the Bragg angle. It showed how the

effects of the angular spread and wavelength spread of the

incoming beam combine with any imperfection of the VL to

give the widths of the diffraction spot on the detector and of its

rocking curve. In equation (3) of Cubitt et al. (1992), the

intensity of a diffraction spot is given as a function of two

variables, both treated as pointing radially from the main

beam through the diffraction spot: (i) the angle ’ of the

scattered beam measured relative to the ideal Bragg 2�B of the

spot, and (ii) the rocking angle ! measured relative to the

ideal Bragg �B. We extend slightly the treatment of Cubitt et

al. (1992) to derive the instrument qz resolution, which was not

explicitly derived there, and to calculate the qxqy resolution

for the TOF case. In a quasi-monochromatic SANS experi-

ment, the contributions of the instrument to the resolution are

given by the instrument setup, and the contributions of the

sample may be extracted from the data as angular widths. The

outputs obtained from the analysis of TOF data are in q space,

and so to use the results of Cubitt et al. (1992) it is convenient

to convert values from TOF observations into angles. The

radial width 	’ of a spot in the plane of the detector is related

to the observed radial width 	q by 	’ = 	q /kj (see Fig. 10).

However, because of the range of wavelengths used in TOF,

we can only apply this expression approximately, using a value

in the middle of the wavelength range. The equivalent of the

rocking curve width 	! is given in terms of the observed width

	qz
by 	! ¼ 	qz

=q. Note that this implies that, for a rocking
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Figure 9
Plots of the VL signal versus qz, (a), (b) and (c) for the upper VL Bragg
reflection from YBa2Cu3O7 at 23 T (see Fig. 5) and (d), (e) and ( f ) for the
lower VL Bragg reflection from YBa2Cu3O7 at 25 T. In panels (a), (b), (d)
and (e) the magnet angle � is written in the figure. (c), ( f ) Data after
combination of the two angles shown in panels (a) and (b), and (d) and
(e), respectively. From the 23 T panels, we can see that the 1.2� data
[panel (a)] make no contribution to the final combination in panel (c) and
only add noise. From the 25 T panels, we can see that the noise is heavily
reduced when combining both angles in panel ( f ). Note that some data
points appear to have zero error: this is because the data are zero.

2 There is a misprint in equation (2) of Cubitt et al. (1992), where integration
over ! should be over 
, but the following results are correct.



curve measured by quasi-monochromatic SANS to have an

angular width which is independent of field, this would

correspond to a qz width which increases with q and therefore

with field.

Cubitt et al. (1992) used the following symbols: a is the

angular width of the incoming collimation, b is the mosaic

spread of the VL crystal and c is the spread of Bragg angles. To

calculate the rocking curve width for a spot, we have to

integrate equation (3) of Cubitt et al. (1992) over ’ to obtain

the total intensity of the spot as a function of !. This was not

done explicitly by Cubitt et al. The result is

	2
! ¼ a2

þ b2
þ c2: ð9Þ

This simple addition of the three widths applies in both quasi-

monochromatic and TOF setups. However, for the spot size

different expressions may need to be used. If in a quasi-

monochromatic experiment the spot width is measured at

fixed ! = 0, the following expression applies:

	2
’ ¼

a2b2 þ a2c2 þ 4b2c2

a2 þ b2 þ c2
: ð10Þ

However, in a TOF experiment, we are effectively sampling a

range of ! values so we have to integrate equation (3) of

Cubitt et al. (1992) over !, obtaining the much simpler

expression

	2
’ ¼ a2

þ ð2cÞ
2: ð11Þ

This result [not given by Cubitt et al. (1992)] may also be used

in the quasi-monochromatic case if the spot width is measured

on a sum over a rocking curve. We note that equation (11)

shows that the spot size does not depend on the mosaic spread

b of the sample. In the quasi-monochromatic case, the ! = 0

spot size in equation (10) does give information about b.

Furthermore, as discussed by Cubitt et al. (1992), a different

expression containing a, b and c may be obtained from the

slight shift in spot position as a function of rocking angle !. To

obtain similar information from TOF data, one would have to

analyse thin slices of the wavelength distribution to obtain

quasi-monochromatic data.

To use these expressions we must calculate the parameters.

First we consider the spread of Bragg angles, which can arise

either from wavelength spread or from variation in the d

spacing of the VL or other mesoscopic crystal. For a VL, it is

usually the case that the magnetic field is extremely uniform,

so c tends to be dominated by the wavelength spread. The data

from a TOF instrument will be collected into bins with arrival

time t for each pixel of the detector, but if these bins are

chosen correctly they will not determine the wavelength

resolution of the instrument. This is instead controlled by

the pulse width of the incoming beam, often set by input

chopper(s).

In our case, the pulse shape shown in Fig. 4 gives a 2 � r.m.s.

width of �t = 7.3 ms. The wavelength resolution arising from

the width of the incoming neutron pulse is given by ��/� =

�t /t, and in our case varied from 2 � r.m.s. �22% at 2.55 Å to

�7% at 8.15 Å. This may also be expressed by stating that

�� / �t is independent of � and in our experiment was equal

to �0.55 Å. Pautrat et al. (2012) reduced �t using choppers to

improve the wavelength resolution in their TOF experiment

on the VL in niobium. This has a side effect of reducing the

flux.

The other contributions to the resolution of the instrument

are the input collimation and the detector pixel size. In the first

experiment setup, the �0.20� input-beam divergence

projected to a �19 mm FWHM spot size on the detector at

5.5 m, which had a pixel size (�x, �y) = (14, 9) mm. For the

second setup, with a detector less suitable for SANS located

4.5 m from the sample, the calculated spot size was �13 mm

FWHM, compared with (�x, �y) = (20.8, 24) mm. Thus in the

first case the resolution in the detector plane was limited by

input collimation, and in the second by pixel size.

We calculate only for the first setup, relating to the data

shown in Figs. 11 and 12, and demonstrate the method for B =

20 T and a wavelength of 6 Å in the middle of the TOF range.

We have a = 0.20� and calculate c = 0.16� from the instru-

mental wavelength spread. (The spread of the Bragg angle

��B ’ ��/2d, with �� ’ 0.55 Å and d ’ 100 Å at 20 T.) Using
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Figure 10
(Left) A schematic illustration of a Bragg spot on a 2D detector with
some radial width, corresponding to (centre and right) a wavevector
spread of 	q . This can also be represented by an angular width 	’ of the
beam coming from the sample to give rise to that Bragg spot. This angular
width is determined by the incoming beam collimation, the mosaic spread
of the VL and the spread of Bragg angles due to imperfect
monochromation of the beam. The diffraction angles in this image are
exaggerated for clarity.

Figure 11
The qz FWHM widths of the diffraction spots at base temperature versus
field above 8 T. The dashed line is the calculated qz resolution. The empty
square points are from a previous non-TOF study (Cameron et al., 2014).



equation (9) we calculate the FWHM of 	! = 0.27� due to just

these two terms. However, with 	qz
’ 10�3 Å�1 from Fig. 11,

we calculate (using q	! ¼ 	qz
) a much larger 	! ’ 0.9�. This

indicates that, in the qz direction, the VL mosaic b (or alter-

natively the z correlation length of the VL) dominates the

observed qz width, which is much larger than the instrument

resolution due to input collimation and wavelength spread

denoted by a and c.

Now we turn to the size of the spots in the qxqy plane. At

20 T, equation (11) gives 	’ ’ 0.42�, and hence 	q ’

8 � 10�3 Å�1. The calculated radial q resolution is compar-

able to the qx, qy widths observed in Fig. 12, so the circular spot

that we see is resolution limited. This only confirms that the

spread of Bragg angles c, which is the only quantity in equa-

tion (11) possibly depending on VL properties, is dominated

by wavelength resolution and cannot give information about

any spread in the VL d spacing.

8. Summary

We have shown how to extract quantitative information from

VLs and other long-period structures, such as skyrmions, using

a TOF instrument. The range of wavelengths is equivalent to

sampling a range of rocking angles at once. However, some-

times using a large range of wavelengths can give additional

background. The choice of magnet angles at which to collect

data is very important and is challenging to determine in

advance of the measurement, especially if the VL structure or

sample quality is not already known. The strategies presented

here will be useful for the high-flux TOF SANS instruments at

pulsed sources.
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Figure 12
The FWHM widths at 3 K of the diffraction spots in the qx and qy

directions versus field. These widths are mainly dominated by the in-
plane resolution of the instrument – marked by dashed lines – so they
only set a low limit on the VL perfection. Dashed lines indicate the
resolution of the HFM/EXED instrument.
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