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Small-angle scattering (SAS) probes the size and shape of particles at low

resolution through the analysis of the scattering of X-rays or neutrons passing

through a solution of particles. One approach to extracting structural

information from SAS data is the indirect Fourier transform (IFT). The IFT

approach parameterizes the real-space pair distribution function [P(r)] of a

particle using a set of basis functions, which simultaneously determines the

scattering profile [I(q)] using corresponding reciprocal-space basis functions.

This article presents an extension of an IFT algorithm proposed by Moore

[J. Appl. Cryst. (1980), 13, 168–175] which used a trigonometric series to

describe the basis functions, where the real-space and reciprocal-space basis

functions are Fourier mates. An equation is presented relating the Moore

coefficients to the intensities of the SAS profile at specific positions, as well as a

series of new equations that describe the size and shape parameters of a particle

from this distinct set of intensity values. An analytical real-space regularizer is

derived to smooth the P(r) curve and ameliorate systematic deviations caused

by series termination. Regularization is commonly used in IFT methods though

not described in Moore’s original approach, which is particularly susceptible to

such effects. The algorithm is provided as a script, denss.fit_data.py, as

part of the DENSS software package for SAS, which includes both command

line and interactive graphical interfaces. Results of the program using

experimental data show that it is as accurate as, and often more accurate than,

existing tools.

1. Introduction and overview

Small-angle scattering (SAS) yields structural information at

low resolution about the size and shape of particles in solution.

X-rays or neutrons scattering from freely tumbling particles in

solution exhibit rotational averaging in reciprocal space,

resulting in isotropic scattering profiles collected on 2D

detectors. This rotational averaging results in the loss of

information describing the 3D structure of the particle. The

scattering of a molecule I(q), where q is the momentum

transfer [q = (4�/�)sin�, where � is half the scattering angle

and � is the wavelength of the incident radiation], is deter-

mined by its 3D scattering length density function, and thus

SAS profiles can be calculated directly from known atomic

structures. However, due to the spherical averaging of the

intensities, the inverse problem of calculating a unique 3D

structure from SAS profiles is not possible. Nonetheless,

structural information describing global properties of size and

shape can be obtained through analysis of the SAS profile.

While unique 3D real-space information cannot be

obtained directly from a SAS profile, a Fourier transform of

the reciprocal-space intensity profile yields the set of pair

distances in the particle, known as the pair distribution func-

tion or P(r). However, due to limitations caused by the
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termination of higher-order scattering data to a finite q range,

uncertainties in intensity measurements and systematic errors,

direct calculation of the Fourier transform yields P(r) func-

tions with large systematic deviations (Glatter, 1977; Moore,

1980; Hansen & Pedersen, 1991; Svergun, 1992; Svergun &

Pedersen, 1994). One popular approach to extracting this

structural information from SAS profiles is the indirect

Fourier transform (IFT) proposed by Glatter (1977). In this

approach, a set of basis functions is used to parameterize the

P(r) function. The weights of these basis functions are then

adjusted to optimize the fit of the corresponding intensity

function to the experimental scattering profile.

One such IFT algorithm proposed by Moore (1980) takes

advantage of information theory (Shannon, 1948) to describe

a set of basis functions defined by the maximum particle

dimension D. Moore uses a trigonometric series to define a

function Q(r) = P(r)/r. This definition resulted in a convenient

relationship between the real-space Q(r) and the reciprocal-

space U(q) = qI(q), where the two are Fourier mates. Key to

Moore’s approach (and other IFT methods; Glatter, 1977;

Svergun, 1992) is that the coefficients of the series terms define

both the real-space and reciprocal-space profiles, using the

appropriate basis functions. Least squares can be used to

determine the coefficients and the associated standard errors

by minimizing the fit to the experimental scattering profile

(full details are given in Section S1 of the supporting infor-

mation). This approach has the advantage of providing the

necessary information on the variances and covariances of the

coefficients to determine the errors on each coefficient. Moore

showed, using Shannon information theory, that the number

of coefficients that can be determined from the data is the

number of independent pieces of information that the data are

able to describe about the particle. Moore derived a series of

equations relating the coefficients to commonly used SAS

parameters such as the forward scattering intensity I(0), the

radius of gyration Rg and the average vector length r, along

with error estimation for each parameter. One advantage of

Moore’s approach over others is that a separate regularizing

function is not explicitly required to smooth the P(r) curve

due to the use of the sine series (Moore, 1980). However, in

practice with experimental data, it has been found that

Moore’s approach is often more susceptible to large oscilla-

tions in the P(r) curve due to series termination (Svergun &

Pedersen, 1994; Hansen & Pedersen, 1991), probably because

of the lack of a regularizing function. Such regularizing

functions have been shown to be effective at smoothing the

P(r) curves calculated using Moore’s approach (Tully et al.,

2021; Rambo, 2021).

Here we extend Moore’s derivation to relate the Moore

coefficients to specific intensity values such that each term in

the series is now weighted by a corresponding intensity,

termed In (Section S1 in the supporting information). We

present equations for calculating a variety of commonly used

SAS parameters and their associated errors from the In values.

Additionally, we derive a modified equation for least-squares

minimization taking into account an analytical regularization

of the P(r) curve. We provide open-source software with

convenient interfaces for performing all of the presented

calculations, including a novel approach to estimating para-

meters sensitive to systematic errors. Finally, we describe the

results using both simulated and real experimental data and

compare with current state-of-the-art software tools.

2. Theoretical background

2.1. Extension of Moore’s IFT

Moore’s use of Shannon information theory to define I(q)

resulted in a selection of q values, namely qn = n�/D, termed

‘Shannon channels’ (Feigin & Svergun, 1987; Svergun & Koch,

2003; Rambo & Tainer, 2013). The intensities at qn , i.e. In =

I(qn), therefore become important values as they determine

the Moore coefficients an and thus similarly can be used to

describe completely the low-resolution size and shape of a

particle obtainable by SAS. In Section S1 we derive the

mathematical relationship between In and an which results in

the following general equation for I(q) as a function of the

intensity values at the Shannon points:

IðqÞ ¼ 2
X1
n¼1

In

ðn�Þ2

ðn�Þ2 � ðqDÞ2
sinðqDÞ

qD
ð�1Þnþ1: ð1Þ

Defining basis functions Bn as

BnðqÞ ¼
ðn�Þ2

ðn�Þ2 � ðqDÞ
2

sinðqDÞ

qD
ð�1Þnþ1; ð2Þ

I(q) can now be expressed as a sum of the basis functions Bn

weighted by the intensity values at qn ,

IðqÞ ¼ 2
P1
n¼1

InBnðqÞ: ð3Þ

As in Moore’s original approach, the Bn functions are

determined by the maximum dimension of the particle D. Bn

values for D = 50 Å are illustrated in Fig. 1. The P(r) function

can be represented using the series of In values as
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Figure 1
A plot of reciprocal-space basis functions Bn for any particle of size D =
50 Å. Vertical dashed lines show the locations of the Shannon points qn.



PðrÞ ¼
r

2D2

X1
n¼1

Inn sin
n�r

D

� �
ð4Þ

(Section S1) or by defining real-space basis functions Sn as

follows:

PðrÞ ¼
P1
n¼1

InSnðrÞ; ð5Þ

SnðrÞ ¼
nr

2D2
sin

n�r

D

� �
: ð6Þ

Least squares can be used to determine optimal values for

each In from the oversampled experimental SAS profile, along

with error estimates for each, taking into account the

variances and covariances of the coefficients. These terms can

then be used to calculate the corresponding I(q) and P(r)

curves using equations (1) and (4) and the associated errors

(Section S1).

The maximum particle dimension D is required for deter-

mining the qn values associated with the In values. Estimates

for the true value of D that are too small will result in Bn

values that lack sufficiently high frequencies for the adequate

reconstruction of I(q). Estimates of D that are too large will

result in overfitting the data. Moore found that testing

increasing values of D yielded improved fits to the experi-

mental I(q) function and used �2 (Section S1) to estimate the

true value of D by selecting the smallest D value that mini-

mizes �2 while avoiding larger D values that result in over-

fitting (Moore, 1980). An alternative method is to estimate D

from the P(r) curve by first guessing a reasonable value for D,

such as 3.5Rg or larger, fit I(q) and calculate the P(r) curve,

and then estimate the true value of D on the basis of where

P(r) gradually falls to zero.

2.2. Derivation of parameters from In values

Similarly to what Moore described for the an coefficients,

since the In values contain all the information present in I(q),

quantities that can be derived from I(q) can also be derived

directly from the In values. For example, to determine the

forward scattering intensity I(0), we take the limit of equation

(1) as q approaches zero to yield

Ið0Þ ¼ 2
P1
n¼1

Inð�1Þnþ1: ð7Þ

Equation (7) demonstrates a simple relationship between the

forward scattering of a particle and the In values. Note that the

particle dimension D is not explicitly present in equation (7).

Fig. 2 illustrates the relationship between the In values and

I(0).

The forward scattering of a particle is not directly measured

in an experiment due to its coincidence with the incident beam

and is thus typically estimated as an extrapolated value from

low-q data points or by integration of the P(r) function.

Equation (7) provides an alternative method of measuring the

forward scattering of a particle directly from the data through

the sum of the In values. While equation (7) is defined as a sum

from n = 1 to infinity, typical experimental setups only provide

data for the first 10–30 Shannon channels, depending on the

size of the particle. Thus in practice equation (7) yields an

estimate of the forward scattering rather than an exact

measurement. However, since the vast majority of the scat-

tering intensity present in the profile occurs within these 10–30

Shannon channels, equation (7) should provide an accurate

estimate of the forward scattering for most particles and

experimental setups.

Other parameters can be similarly derived (Section S2). For

example, Rg can be estimated from the In values as

R2
g ¼

D2

Ið0Þ

X1
n¼1

InFn; ð8Þ

where

Fn ¼ 1�
6

ðn�Þ2

� �
ð�1Þnþ1: ð9Þ

Another parameter describing particle size is the average

vector length in the particle r, which can be estimated from the

In values as

r ¼
4D

Ið0Þ

X1
n¼1

InEn; ð10Þ

where

En ¼
ð�1Þn � 1

ðn�Þ2
�
ð�1Þn

2

� �
: ð11Þ

The Porod invariant Q is defined as the integrated area

under the Kratky plot (Porod, 1982), which can be described

in terms of the In values as

Q ¼
�

D

� �3X1
n¼1

Inn2: ð12Þ

The Porod volume can then be calculated using the Porod

invariant (Section S2) (Porod, 1982). The Porod volume is

commonly used to estimate molecular weight for globular
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Figure 2
A plot of an example scattering profile, showing the relationship of In

values and I(0). Odd In values are shown as red squares, while even In

values [which have a multiplication factor of �1 in equation (7)] are
shown as blue triangles. Equation (7) states that twice the total sum of the
red squares and (negative) blue triangles is equal to the forward
scattering I(0), shown as a green circle.



biological macromolecules. More recently, Rambo & Tainer

(2013) derived a new SAS invariant termed the volume of

correlation, Vc , with units of length2 and which is related to

the correlation length of the particle ‘c . Vc can be used to

estimate the molecular weight for macromolecules that may

be either globular or flexible (Rambo & Tainer, 2013). Vc can

be estimated from the In values as

Vc ¼
D2Ið0Þ

2�

X1
n¼1

Inn Siðn�Þ

" #�1

; ð13Þ

where Si(n�) is the Sine integral. The correlation length can

similarly be calculated as

‘c ¼
2D

�

P1
n¼1 Inn Siðn�ÞP1

n¼1 Inn2
: ð14Þ

Since the variances and covariances of the In values are known

from the least-squares minimization, error propagation can be

used to determine the associated uncertainties for each of the

parameters described above (Section S2).

2.3. Regularization of P(r)

The original IFT proposed by Glatter (1977) and other IFTs

(Svergun, 1992; Vestergaard & Hansen, 2006) make use of

regularization of the P(r) curve, similar to the general method

of Tikhonov regularization (Tikhonov & Arsenin, 1977). The

goal is to use the knowledge that P(r) functions are smooth for

most particle shapes to generate curves that are free of strong

oscillations from series termination and are relatively stable to

statistical errors. Rather than minimize �2 directly, a new

function T is minimized, taking into account the smoothness of

the P(r) curve according to equation (15):

T ¼ �2 þ �S; ð15Þ

where S is the regularizing function, which can take different

forms, and � is a Lagrange multiplier that acts as a weight to

determine the strength of the smoothing. Larger � leads to a

smoother P(r) function but may result in a worse fit of I(q) to

the experimental data. The IFT method used by Moore has

been shown to be more susceptible than other IFT methods to

oscillations in the P(r) curve (Hansen & Pedersen, 1991;

Svergun & Pedersen, 1994), most likely due to the lack of a

regularizing function. We provide a detailed derivation of an

analytical regularization of P(r) using In values in Section S3.

As for other similar IFT methods utilizing regularization, a

suitable choice of �must be found to optimize the smoothness

of the P(r) curve and the fit to the experimental data. Various

methods for selecting the optimal value for � have been

proposed, including via point of inflection (Glatter, 1977),

Bayesian methods (Vestergaard & Hansen, 2006) and using

perceptual criteria (Svergun, 1992). We describe our approach

in Section 2.4 below.

Equation (3) assumes a sum from n = 1 to infinity. However,

data are only collected to the maximum q value allowed by the

experiment, qmax . The lack of data for q > qmax implicitly

corresponds to setting the In values to zero for those data

points where n > nmax [where nmax = int(qmaxD/�), i.e. the

largest index in the series]. The regularization often results in

poorer fits of the intensity profile at higher experimental q

values with increasing � due to this implicit bias of In values

for n > nmax towards zero. In order to remove this bias and

allow for the In values at n > nmax to be unrestrained, In values

for n > nmax are allowed to float (calculated up to 3nmax). Note

that the number of Shannon channels that can be reliably

extracted from the data is dictated largely by the quality of the

data in addition to the q range, as described by Konarev &

Svergun (2015).

2.4. Implementation

Tools for performing the least-squares fitting of In values to

experimental data, calculation of parameters and errors, and

regularization of P(r) have been developed using Python,

NumPy and SciPy (Harris et al., 2020; Virtanen et al., 2020)

and are provided open source through the DENSS suite of

SAS tools (Grant, 2018; https://github.com/tdgrant1/denss).

The primary interface to use this algorithm is the denss.

fit_data.py Python script. To enable ease of use, in

addition to the command line interface, an interactive

graphical user interface (GUI) (Fig. 3) has been developed

using the Matplotlib package (Hunter, 2007).

2.4.1. Automatic estimation of D. To assist users, upon

initialization of the script the experimental data are loaded

and estimates of D and � are automatically calculated. To

estimate D automatically, an initial estimate of D is calculated

that is likely to be significantly larger than the actual D. This

subsequently enables a more accurate estimation of D where

P(r) falls to zero. An initial value of D = 7Rg is used as this

should ensure a large enough value given a variety of particle

shapes (Petoukhov et al., 2007; Grant et al., 2015). An initial

rough estimate of Rg is first calculated using the Guinier

equation (Guinier et al., 1955) with the first 20 data points. In

cases where that estimate fails (e.g. due to excessive noise or a

positive slope of the Guinier plot), the Guinier peak method is

instead used (Putnam, 2016). The In values are then calculated

from the experimental data using the regularized least-squares

approach outlined in Section S3, setting � = 0 to optimize the

fit to the data. After the initial In values have been calculated,

the corresponding P(r) function often suffers from severe

ripples caused by Fourier termination effects due to the finite

range of data, as described above, making it difficult to esti-

mate D where P(r) falls to zero. To alleviate this effect, a Hann

filter, which is a type of Fourier filter (Blackman & Tukey,

1958), is applied to remove the Fourier truncation ripples from

P(r). D is then calculated from this filtered P(r) curve as the

first position r where P(r) falls below 0.01Pmax after the

maximum, where Pmax is the maximum value of the filtered

P(r). This new D value is then used to recalculate the In values

for the best fit to the experimental scattering profile. In

addition to automatically estimating D directly from the data,

users can manually enter an initial estimate of D to begin with.

2.4.2. Automatic estimation of a. Next, the optimal � is

estimated, which yields In values corresponding to a smooth

P(r) function while still resulting in a calculated I(q) curve that
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fits the experimental data. First, the best �2 value possible is

calculated by setting � = 0 and using the D value estimated in

the previous step. Then, various values of � are scanned, from

10�20 to 1020 in logarithmic steps of 101. This wide range is

used to accommodate a variety of different scattering profiles

covering a range of signal-to-noise values. At each step the �2

is calculated. The optimal � is chosen by interpolating where

�2 ¼ 1:1�2
best , i.e. where �2 rises to 10% above the best

possible value.

2.4.3. Interface. The GUI mode of the script displays a plot

of the intensities on a semilog y axis and plots the experi-

mental data Ie(q) and the initial fit Ic(q), calculated from the In

values at the experimental q (Fig. 3). The script additionally

calculates Ic(q) at q values extrapolated to q = 0. Users can

alternatively provide a set of desired q values to calculate Ic(q)

as an ASCII text file when starting the program. The residuals,

[Ie(qi) � Ic(qi)]/�i , are also displayed to assist in assessing the

quality of the fit. Next to the plot of intensities, the P(r) curve

calculated from the In values is also displayed. In addition to

input text boxes for manually entering new D and � values in

the GUI, interactive sliders are available to change the D and

� values, which automatically update the plots as they are

adjusted. Users can also change the beginning and ending data

points if desired, to remove outlier data points that often occur

at either end of the experimental profile, or disable the

calculation of intensities for q > qmax . Several of the para-

meters described above, including I(0), Rg , r, Vp, Vc and ‘c ,

along with associated uncertainties, are calculated from the In

values and displayed in the GUI. These parameters are

updated interactively whenever D or � are changed.

2.4.4. Calculation of Vp , Vc and ‘c. Particular care must be

taken when estimating parameters that are sensitive to

systematic errors in high-q data points, such as Vp, Vc and ‘c .

In practice, direct estimation of these parameters using the

equations described above may yield unstable results, even

with regularization. Porod’s law is based on the assumption

that all scattering comes from the surface of a particle,

resulting in an asymptotic intensity decay proportional to q�4

(Porod, 1982), giving rise to the ability to estimate values such

as the Porod volume Vp. In practice, shape scattering contri-

butes significantly (Rambo & Tainer, 2011), as do systematic

errors caused by inaccurate background subtraction (Mana-

lastas-Cantos et al., 2021), resulting in poor estimation of these

parameters without correction. To deal with this, many algo-

rithms impose an artificial constant subtraction to force the

Porod decay, which has proven effective at providing accurate

estimates of particle volume (Manalastas-Cantos et al., 2021).

However, different algorithms have different methods for

calculating the constant to subtract and for determining the

fitting region where these calculations are performed, and

there is often subjectivity involved in selecting the appropriate

‘Porod region’ (Rambo & Tainer, 2011; de Oliveira Neto et al.,

2021). To avoid such issues with constant subtraction alto-

gether, we have developed a different approach.

In our approach, we take advantage of the regularization

provided above by intentionally oversmoothing using a large

�. Oversmoothing has the effect of removing shape scattering

while simultaneously enforcing a decay similar to Porod’s law

of q�4, making the resulting scattering profile more consistent

with the assumptions of the Porod law. To do this, we multiply
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Figure 3
The interactive GUI display from the denss.fit_data.py script. The upper left panel shows the experimental I(q) curve as black circles, fitted In

values as blue circles and the fitted Ic(q) calculated from the In values as a red curve, all on a semilog plot. The residuals of the experimental and
calculated intensity curves are shown below the intensity plot. The panel on the right shows the P(r) curve calculated from the In values. Input text boxes
are provided at the bottom left to allow for trimming data points at the beginning or end of the curve, along with a checkbox to disable the calculation of
intensities at high q values. Interactive sliders for Dmax and � are also provided, along with corresponding input boxes for manual entry. The bottom right
of the window shows size parameters calculated from the In values and associated uncertainties. Buttons for resetting the sliders, printing the size
parameters and saving the results can be found at the bottom left.



� by a factor of 10, which in our tests with experimental data

resulted in the most accurate and robust results (see Results

section below). We also limit the q range to 8/Rg , which has

previously been shown to be a reasonable cutoff for calcu-

lating Porod volume (Manalastas-Cantos et al., 2021; de

Oliveira Neto et al., 2021). Note that this oversmoothing is

only applied for calculation of the three parameters

mentioned above and their associated errors and does not

affect the actual fit of the scattering profile, P(r) curve or other

parameters.

2.4.5. Output. Finally, upon exiting the script, the experi-

mental data and calculated fit of the intensities are saved in a

file, with the calculated parameter values saved in the header.

The corresponding P(r) curve is also saved.

In addition to providing the denss.fit_data.py script

as an interface to the algorithm described above, other scripts

in the DENSS package also utilize this algorithm, including

denss.py and denss.all.py, to allow automatic fitting of

the data and estimation of D and � when using these programs

for ab initio 3D density reconstructions.

3. Results

One of the few shapes for which an analytical scattering

equation has been derived is the solid sphere (Rayleigh, 1910;

Porod, 1982). Since the equation of scattering for a sphere is

known exactly, the In values for a sphere can be calculated

directly (Section S4), resulting in equation (16),

In; sphere ¼
9

2

2

n�

� �6

1þ ð�1Þnþ1
þ

n�

2

� �2

1þ ð�1Þn½ �

� 	
: ð16Þ

Note that the radius R of the sphere does not enter into

equation (16). Interestingly, the odd In values for a sphere

decay exactly as q�6 and the even In values decay exactly as

q�4. The decay of intensity at higher angles proportional to

q�4 is described by Porod’s law as mentioned above, generally

an approximation for most globular particles but here derived

analytically for a sphere for even In values.

All parameters outlined above, including Rg , volume etc.,

can be calculated analytically using equation (16), resulting in

well known equations for solid spheres (Section S4). In Fig. 4

the scattering profile for a sphere of radius 25 Å with added

Gaussian noise [Ie(q)] is shown with the fitted In values and

the recovered Ic(q) profile. Eight Shannon points were used to

fit the data, from which size parameters were calculated using

the fitted In values, shown in Table 1. The In values can also be

used to calculate the P(r) curve Pc(r), shown in Fig. 5 along

with the exact P(r) curve for a sphere (Porod, 1982) (Section

S4).

Data from publicly accessible databases for experimental

SAS data, such as BIOISIS (https://www.bioisis.net) and

SASBDB (Valentini et al., 2014), are particularly useful for

verification and testing of algorithms such as that described

here. To test denss.fit_data.py on experimental data

sets, we downloaded two data sets from the benchmark section

of the SASBDB online database, in particular SASDFN8

(apoferritin) and SASDFQ8 (bovine serum albumin) (Grae-

wert et al., 2020). Automated estimates of D and � were
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Table 1
Parameters calculated from In values for the sphere profile shown in Fig. 4.

The columns correspond to expected parameter values using an infinite
number of Shannon channels and the recovered values calculated from the fit.

Parameter Expected Calculated

I(0) 1.00 1.00 � 0.004
Rg (Å) 19.36 19.38 � 0.18
r (Å) 25.71 25.74 � 0.17
Vp (Å3) 65450 75838 � 1338
Vc (Å2) 277.78 298.52 � 2.50
‘c (Å) 37.50 40.43 � 0.79

Figure 4
A plot of a calculated intensity curve Ic(q) (red line) fitted to simulated
noisy intensity values Ie(q) (grey dots with error bars) for a sphere of
radius 25 Å. The blue circles show the Shannon intensities In(qn) and the
black dashed line shows the exact scattering profile of the sphere
Isphere(q). The bottom plot shows the residuals of the experimental data
with respect to the calculated profile.

Figure 5
A plot of a calculated Pc(r) curve from In values fitted to simulated noisy
intensity values for a sphere of radius 25 Å. The exact P(r) curve for the
sphere, Psphere(r), is also plotted as a dashed line.



suitable for accurate fitting and parameter estimation, as

indicated by the plot of residuals and comparison with the

published parameter values (Fig. 6). Best fits are achieved

when setting � = 0, as expected, and increasing � results in

smoother P(r) plots. High-quality fits and smooth P(r) curves

can be obtained simultaneously with an appropriate � (Fig. 6),

while setting � to too large a value results in poorer fits to the

intensity profile. Similar to other IFT methods, a balance must

be struck to select the optimal � value resulting in the

smoothest P(r) function possible while still enabling a good

quality fit of I(q).

To compare the parameter estimates with other software,

we used DATGNOM from the ATSAS 3.0 package to esti-

mate Rg and I(0), DATPOROD to estimate Vp, and DATVC

to estimate Vc from these two data sets (Manalastas-Cantos et

al., 2021). A comparison of parameter values calculated

by DATGNOM/DATPOROD/DATVC and denss.fit_

data.py is shown in Table 2. Overall, and very importantly

for community standards, the values are similar for the two

different methods [�0.1% difference for Rg and I(0), and

�3% difference for Vp and Vc]. To verify that the error bounds

are estimated correctly, we followed the protocol outlined by

Manalastas-Cantos et al. (2021) to use the DATRESAMPLE

program to generate 1000 resampled scattering profiles from

the two SASBDB data sets. This allows the calculation of

parameters from each resampled profile and subsequently an
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Figure 6
Fitting of In values to real experimental data sets while using regularization results in good quality fits, smooth P(r) curves and accurate parameter
estimation. GUI displays are given for SASDFN8 (top) and SASDFQ8 (bottom). Note that the experimental q values were given in nanometres,
resulting in nanometre units for parameters displayed.



estimate of the statistical errors based on the standard

deviation of the parameter values, for comparison with the

errors estimated by the programs. The results of this analysis

are also shown in Table 2. The analysis shows that denss.

fit_data.py produces similar or smaller statistical errors

compared with the estimated errors, suggesting the estimated

errors should be considered an upper bound and the statistical

errors probably less, whereas the statistical errors appear to

be underestimated by DATGNOM [note that only Rg and

I(0) have estimated errors reported]. It is noteworthy that

the statistical errors on Rg and I(0) are smaller from

denss.fit_data.py (two- to fivefold smaller) than from

DATGNOM, while the statistical errors on Vp and Vc are

about twofold smaller from DATGNOM/DATPOROD/

DATVC.

The statistical errors described here are only based on

resampling the scattering profile and do not account for

systematic error that is likely to dominate. As discussed above,

Vp, Vc and ‘c are particularly sensitive to systematic deviation.

To test the algorithm for accuracy with experimental data, we

calculated Vp values for 29 data sets from the Benchmark

section of the SASBDB and used Vp to estimate the molecular

weight (MW) of the particle (where MW = Vp /1.6). Fig. 7

shows a comparison of molecular weight values calculated

using Vp estimates from denss.fit_data.py and

DATPOROD with their expected values. Here, the expected

value is taken from the expected molecular weight in the

SASBDB entries calculated from the amino acid sequence.

The median error from denss.fit_data.py is 8.7% and

from DATPOROD is 18.0%. As expected, these real errors

are in practice significantly larger than the <2% statistical or

estimated errors in Table 2, confirming that systematic

deviations dominate actual estimates of Porod volume from

experimental data.

4. Discussion and conclusions

The approach outlined above is an extension of Moore’s

original description of SAS profiles using a trigonometric

series with the advantage of replacing the nondescript Moore

coefficients with specific intensity values. As such, this deri-

vation is subject to all of the same requirements as Moore’s,

including the need for accurate intensity measurements for at

least the first three Shannon channels to obtain reliable esti-

mates of parameter values. We have described a derivation for

performing regularization of the real-space P(r) curve analy-

tically, and procedures for the automatic estimation of D and �
values. We also present a novel approach for estimating

parameters that are particularly sensitive to systematic

deviations at high q values, such as Vp.

As in Moore’s original approach, the use of least-squares

minimization for the derivation given here of a series of SAS

parameters directly from the In values has enabled the esti-

mation of uncertainties through error propagation while
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Figure 7
Comparison of expected molecular weight with values calculated using Vp

estimated from denss.fit_data.py and DATPOROD.

Table 2
Comparison of parameter values calculated from experimental data sets SASDFN8 (DFN8) and SASDFQ8 (DFQ8) using DATGNOM/DATPOROD/
DATVC or denss.fit_data.py.

Columns correspond to the value calculated for each parameter (Value) and either the estimated [� (Est.)] or statistical [� (Stat.)] errors as described in the text.

DATGNOM/DATPOROD/DATVC denss.fit_data.py

Data set Parameter Value � (Est.) � (Stat.) Value � (Est.) � (Stat.)

DFN8 Rg (nm) 5.216 5.451 � 10�4 2.931 � 10�3 5.222 2.835 � 10�3 5.933 � 10�4

DFN8 I(0) 5.063 � 104 9.836 2.306 � 101 5.070 � 104 9.173 9.061
DFN8 r (nm) N/A N/A N/A 6.950 2.644 � 10�3 7.212 � 10�4

DFN8 Vp (nm3) 6.704 � 102 N/A 1.905 7.020 � 102 1.303 � 101 3.752
DFN8 Vc (nm2) 1.714 � 101 N/A 8.717 � 10�3 1.709 � 101 1.678 � 10�1 2.065 � 10�2

DFN8 ‘c (nm) N/A N/A N/A 6.540 1.374 � 10�1 2.735 � 10�2

DFQ8 Rg (nm) 2.745 1.442 � 10�3 4.122 � 10�3 2.748 4.199 � 10�3 1.135 � 10�3

DFQ8 I(0) 1.542 � 104 5.665 1.017 � 101 1.542 � 104 4.570 4.596
DFQ8 r (nm) N/A N/A N/A 3.594 3.010 � 10�3 1.164 � 10�3

DFQ8 Vp (nm3) 9.769 � 101 N/A 3.367 � 10�1 9.917 � 101 1.278 4.373 � 10�1

DFQ8 Vc (nm2) 4.638 N/A 2.890 � 10�3 4.355 2.949 � 10�2 4.579 � 10�3

DFQ8 ‘c (nm) N/A N/A N/A 3.624 5.274 � 10�2 1.227 � 10�2



accounting for covariances in the data. The oversampling of

the information content in the SAS profile effectively

increases the signal-to-noise ratio of each of the unique

observations in the data, i.e. the In values. Additionally, the

analytical regularization derived here simultaneously enables

smooth P(r) curves and accurate fits to experimental data, all

while providing error estimates for the In values and asso-

ciated parameter calculations, accounting for covariances in

the data. Using simulated and experimental data, we have

shown that these methods yield parameter values describing

the size and shape of particles that are as accurate as, and

often more accurate than, existing tools.

The algorithm has been made available open source as a

script called denss.fit_data.py, accessible on GitHub at

https://github.com/tdgrant1/denss. The software can be run

either from the command line or as an interactive GUI.

5. Related literature

The following additional references are cited in the supporting

information: Fubini (1907); Tonelli (1909).

Acknowledgements

The author thanks Drs Stephen Meisburger, Kushol Gupta

and Robert Rambo for testing the software and for useful

discussions.

Funding information

Support for this research was provided by the National

Institute of General Medical Sciences of the National Insti-

tutes of Health (award No. R01GM133998) and by the

National Science Foundation through the BioXFEL Science

and Technology Center (award No. 1231306).

References

Blackman, R. B. & Tukey, J. W. (1958). Bell Syst. Tech. J. 37, 185–282.
Feigin, L. A. & Svergun, D. I. (1987). Structure Analysis by Small-

Angle X-ray and Neutron Scattering, 1st ed. New York: Plenum
Press.

Fubini, G. (1907). Rom. Acc. L. R. (5), 16, 608–614.
Glatter, O. (1977). J. Appl. Cryst. 10, 415–421.
Graewert, M. A., Da Vela, S., Gräwert, T. W., Molodenskiy, D. S.,
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