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Single-shot coherent diffraction imaging (CDI) is a powerful approach to

characterize the structure and dynamics of isolated nanoscale objects such as

single viruses, aerosols, nanocrystals and droplets. Using X-ray wavelengths, the

diffraction images in CDI experiments usually cover only small scattering angles

of a few degrees. These small-angle patterns represent the magnitude of the

Fourier transform of the 2D projection of the sample’s electron density, which

can be reconstructed efficiently but lacks any depth information. In cases where

the diffracted signal can be measured up to scattering angles exceeding�10�, i.e.

in the wide-angle regime, some 3D morphological information of the target is

contained in a single-shot diffraction pattern. However, the extraction of the 3D

structural information is no longer straightforward and defines the key challenge

in wide-angle CDI. So far, the most convenient approach relies on iterative

forward fitting of the scattering pattern using scattering simulations. Here the

Scatman is presented, an approximate and fast numerical tool for the simulation

and iterative fitting of wide-angle scattering images of isolated samples.

Furthermore, the open-source software implementation of the Scatman

algorithm, PyScatman, is published and described in detail. The Scatman

approach, which has already been applied in previous work for forward-fitting-

based shape retrieval, adopts the multi-slice Fourier transform method. The

effects of optical properties are partially included, yielding quantitative results

for small, isolated and weakly interacting samples. PyScatman is capable of

computing wide-angle scattering patterns in a few milliseconds even on

consumer-level computing hardware, potentially enabling new data analysis

schemes for wide-angle coherent diffraction experiments.

1. Introduction

Coherent diffraction imaging (CDI) aims to retrieve an

isolated sample’s spatial information from the far-field

amplitude of a highly coherent and monochromatic light beam

that has scattered off the sample (Chapman & Nugent, 2010;

Miao, Sandberg et al., 2011; Seibert et al., 2011). The great

advantage of CDI is its lensless setup, making it suitable for

those wavelength regions where lenses are hard or even

impossible to manufacture. Thus, the spatial resolution in CDI

is, in principle, only dependent on the radiation wavelength

and on the maximum scattering angle at which the scattering

signal can be recorded on a detector.

For small-angle scattering (SAS) conditions (Guinier et al.,

1955), and assuming the first Born approximation (Born,

1926), the 2D scattering image can be efficiently computed by

calculating the squared absolute value of a Fourier transform

(FT) of the imaged sample’s 2D electron-density projection.
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This relationship between the sample and the diffraction

within the SAS regime is the basis of the original CDI

approach, experimentally demonstrated for the first time in

1999 (Miao et al., 1999), where iterative phase retrieval algo-

rithms are employed to reconstruct the scattered field in the

detector’s plane in amplitude and phase (Fienup, 1982;

Marchesini, 2007). Upon successful phase recovery, the real-

space 2D projection of the sample can be directly computed

(Loh et al., 2012; Seibert et al., 2011; Pedersoli et al., 2013).

It is still possible, under some specific circumstances, to

perform 3D imaging in the SAS scheme, but the single-shot

constraint has to be released. The most obvious way is based

on the tomographic approach, where several diffraction

patterns of the same sample are acquired at different orien-

tations, giving a sufficient amount of 3D information in the

reciprocal space to perform a 3D phase retrieval process via

suitable algorithms (Miao et al., 2006; Jiang et al., 2010;

Lundholm et al., 2018; Loh et al., 2010; Loh & Elser, 2009;

Ekeberg et al., 2015). In this respect, the recent advent of

X-ray free-electron laser (XFEL) sources (Feldhaus et al.,

2005; Harmand et al., 2013; Barty et al., 2013; Chapman et al.,

2006) has opened new routes for characterizing objects that

have thus far remained elusive. XFELs offer ultra-short and

ultra-high-intensity pulses, enabling a meaningful scattering

signal to be recorded before the object is destroyed, a scheme

that has therefore been termed ‘diffraction before destruction’

(Chapman et al., 2014). As a result, however, each sample can

only provide a single diffraction pattern before being

destroyed by the laser radiation. Thus, the 3D tomographic

approach is viable only if many replicas of the same sample are

available (Ekeberg et al., 2015). Although additional shape

information or symmetry constraints on the sample can in

principle allow for shape retrieval from a single SAS diffrac-

tion image (Xu et al., 2014), a full 3D reconstruction of non-

replicable samples with unconstrained shapes is impossible to

perform with SAS experiments. The requirement for addi-

tional constraints for reconstructing 3D information from a

SAS experiment is a result of the fact that the magnitude of

the maximum momentum transfer q acquired by the scattering

detector is much smaller than the radiation momentum k0.

Thus, as intuitively presented by Barke et al. (2015), the

acquired momentum transfers lie essentially in the plane

orthogonal to the beam propagation direction [see also

Fig. 3(b) in Section 2], and the sample’s depth information is,

in practice, completely lost.

The limitation to 2D-only information can be overcome in

the wide-angle scattering regime (WAS), where the 2D

diffraction patterns contain 3D information. In fact, because

of the comparable magnitudes of the momentum transfer q

and the wavevector k0, the component of the momentum

transfer parallel to the beam propagation direction, qk, which

carries depth information, is non-negligible [see Fig. 3(a) in

Section 2]. As shown by Barke et al. (2015), in this scenario

different parts of the scattering pattern carry details about

different 2D projections of the density – establishing the

possibility of extracting partial tomographic information from

a single image. The primary shortcoming of experiments in the

WAS regime is that the scattering patterns cannot be

converted into shape information in such a straightforward

way as in the SAS regime, where the field represents the 2D

FT of the density projection. Some attempts to numerically

invert single WAS patterns have been made (Raines et al.,

2010): however, the stability and reliability of such approaches

are still debated within the community (Wang et al., 2011;

Miao, Chen et al., 2011).

Therefore, the forward-fitting approach, where a measured

scattering pattern is compared with scattering simulations for

appropriately parameterized sample shapes, is currently the

most general and practicable approach to invert CDI data

taken under WAS conditions. To perform such a forward-

fitting analysis, a model that describes the sample’s

morphology depending on a set of free parameters has to be

selected. Then, those parameters’ values are varied using

stochastic and/or deterministic optimization algorithms to

minimize the discrepancy between the experimental diffrac-

tion data and the scattering simulation. In this procedure, the

simulation of scattering patterns is the most challenging and

computationally expensive task. In fact, optimization routines

usually require thousands of optimization steps. For each step,

the gradient of the optimization target has to be computed,

and this involves a number of simulations that increases with

the number of free parameters. Depending on the complexity

of the sample’s model, this translates into a number of 104 to

106 simulations for the analysis of a single diffraction pattern,

highlighting the urgent need for fast forward-simulation

approaches.

If the simulation runtime is uncritical, e.g. for benchmarking

purposes, or for cases with high symmetry, several approaches

are available that enable computation of the exact solution to

the scattering problem. The first method is based on the

analytical solution for sufficiently simple geometries, such as

the Mie solution to the Maxwell equations (Hahn, 2009), with

which the scattered far-field can be calculated as a series

expansion into vector wave harmonics up to arbitrary accu-

racy. However, such analytically motivated treatment is only

applicable to simple sample shapes, like a sphere (Bohren &

Huffman, 2008) or a coated sphere (Aden & Kerker, 1951). A

second option is to compute the scattering by solving

Maxwell’s equations numerically, e.g. via the finite-difference

time-domain (FDTD) method (Taflove, 1980; Varin et al.,

2012) or using Green’s function based approaches such as the

discrete dipole approximation (DDA) (Purcell & Penny-

packer, 1973; Sander et al., 2015). These numerical methods

allow simulations of light–matter interaction with no restric-

tions on the sample’s shape. However, FDTD or DDA

calculations of the scattered electric field are computationally

cost intensive. The whole computational domain has to be

represented on a grid at a sufficiently fine scale, and the

temporal evolution of the field (FDTD case) or the iterative

solution for the field’s evolution (DDA case) have to be

calculated. The demanding computational conditions render

the methods aiming at the unrestricted full solution of

Maxwell’s equations impractical for the use case of simulating

more than a few diffraction images. In particular, their time to
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solution is, even in the best cases, of the order of tens of

seconds, such that a full imaging routine based on forward

fitting would require from days to months to be completed for

a single diffraction pattern. Therefore, suitable approximate

methods are highly attractive for data analysis of wide-angle

CDI. In this paper we present the Scatman, a fast, flexible and

intuitive approximate simulation suite capable of providing

scattering simulations three to five orders of magnitude faster

than exact methods.

The Scatman’s core was originally conceived by Barke et al.

(2015) and computes wide-angle coherent scattering images of

isolated samples. It has already proven successful for data

analysis of WAS experiments (Barke et al., 2015; Rupp et al.,

2017; Langbehn et al., 2018; Zimmermann et al., 2019):

examples ranging from silver nanocrystals to spinning super-

fluid helium droplets are depicted in Fig. 1. However, a formal

presentation of the approach and a comprehensive evaluation

of its performance have never been disclosed. This paper aims

to fill this gap, by presenting the Scatman approach in a

refined, generalized and concise form, accompanied by the

public release of its software implementation, PyScatman.

The two following sections of this paper are dedicated to the

analytical framework and motivation of the approach, based

on the multi-slice Fourier transform (MSFT) technique

(Cowley & Moodie, 1957; Self et al., 1983; Reinhard et al.,

1997; Hare & Morrison, 1994; Barke et al., 2015), and its

translation into a numerical form. Section 4 focuses on the

comparison between the simulation results of the Scatman and

exact, analytical calculations based on Mie theory for a

spherical sample. It provides insight into the region of

applicability of the Scatman, whose results can be quantita-

tively close to the exact solution or just qualitatively usable,

depending on the sample’s properties. The final sections,

Sections 5 and 6, present our Scatman reference imple-

mentation, called PyScatman, published along with this paper

as open-source software. PyScatman is released as a Python

module that provides an easy interface to the user and

incorporates state-of-the-art programming techniques to yield

a high computational efficiency.

2. The Scatman routine

The Scatman is based on the MSFT approach, originally

developed for electron scattering (Cowley & Moodie, 1957;

Self et al., 1983; Reinhard et al., 1997). The MSFT routine has

already been applied in X-ray diffraction experiments for

fixed targets (Hare & Morrison, 1994), as well as for reco-

vering the topology of individual silver and helium nano-

particles in free flight (Barke et al., 2015; Langbehn et al.,

2018). A schematic overview of the MSFT method is shown in

Fig. 2. Roughly speaking, the simulation is based on the

partitioning of the spatial domain into slices [Figs. 2(a) and

2(b)]. The scattering contribution from each slice is computed

independently via an FT operation [Fig. 2(c)] and then

summed with an appropriate phase correction to compose the

final scattering pattern [Fig. 2(d)]. This section briefly revisits

the mathematical derivation of the approach, particularly

focusing on how the effects of the sample’s refractive index are

effectively incorporated into the Scatman’s simulation.

For deriving the method, we start from the well known Born

approximation (Born, 1926), which defines the scattered field

�ðqÞ in the far-field condition as

�ðqÞ /
R

dr �ðrÞ expðiq � rÞ; ð1Þ

where �ðrÞ defines the scattering strength in space and q is the

momentum transfer, schematically shown in Fig. 3. The inte-

gral in equation (1), which is in practice a 3D FT of the scat-

tering strength �ðrÞ, can be rewritten in the following form:

�ðqÞ /
R R R

dx dy dz �ðx; y; zÞ exp½iðxqx þ yqy þ zqzÞ�

�
P

s

expðiqzs�zÞ
R R

dx dy
Rs�zþ�z

s�z

dz �ðx; y; zÞ

" #

� exp½iðxqx þ yqyÞ�

¼
P

s

expðiqzs�zÞF ~��sðx; yÞ
� �

ðqx; qyÞ: ð2Þ

The first step in equation (2) is the explicit formulation of

equation (1) in Cartesian coordinates, where the coordinate

system is chosen such that the z axis is parallel to the beam
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Figure 1
Examples extracted from previous work that made use of the Scatman approach for wide-angle scattering data analysis. In (a), adapted from Barke et al.
(2015), soft X-rays are used to study the 3D structure of silver nanoparticles, by comparing the experimental data with the simulation. In (b), adapted
from Rupp et al. (2017), comparisons between experimental data and simulations demonstrated the feasibility of coherent diffraction imaging with high
harmonic generation sources. In (c), adapted from Langbehn et al. (2018), a fitting between the Scatman result and experimental diffraction patterns
revealed the 3D shapes of superfluid helium nanodroplets.



propagation direction; from now on, this axis will also be

referred to as the axial direction. The second step of the

equation is the approximation of the integral along z with a

discrete summation over the slices with integer index s; this

approximation holds given the condition that �z� ð�=qzÞ.

As depicted in Fig. 2(b), this operation represents a parti-

tioning of the spatial domain into slices of size �z along the

axial direction, this being the core of the MSFT approach. In

the last step, the integral over the x and y directions is

rewritten as a 2D FT. Moreover, the integral of the scattering

strength � over the slice s in the axial direction is defined as ~��s.

As long as only monochromatic radiation with momentum

k0 is considered and the scattering event is assumed to be

completely elastic, it is convenient to rewrite the axial

component of the momentum transfer qz as a function of qx

and qy:

qzðqx; qyÞ ¼ k0 1	 cos½�ðqx; qyÞ�
� �

with �ðqx; qyÞ ¼ arccos 1	
q2

x þ q2
y

k2
0

� �1=2
" #

; ð3Þ

where � is the scattering angle. Equation (3), which can be

intuitively derived from Fig. 3(a) through geometrical

considerations, enables equation (2) to be rewritten as

�ðqx; qyÞ ¼
P

s

exp ik0 1	 cos½�ðqx; qyÞ�
� �

s�z
� 	

�F ~��sðx; yÞ
� �

ðqx; qyÞ: ð4Þ

The scattered field �ðqx; qyÞ in equation (4) is the sum of the

scattering contributions from all s slices, with a phase factor

that depends on the scattering angle and on the slice’s position

on the z axis.

We continue the derivation of the method by defining the

scattering strength �ðrÞ. In particular, at high photon energies,

the strength of the scattering is related to the number of

electronic charges that contribute to the scattering. These are

described by the dielectric polarization density PðrÞ, defined as

PðrÞ ¼ "0�eðrÞEðrÞ ’ "0 n2
ðrÞ 	 1

� �
EðrÞ; ð5Þ

where EðrÞ is the electric field and �eðrÞ is the electric

susceptibility. The latter has been rewritten as a function of the

complex refractive index n, exploiting its relationship with the

relative permittivity "r ¼ �e þ 1, which is equivalent to the

squared refractive index for non-magnetic materials, i.e.

n2 ¼ "r�r ’ "r. In this way, any magnetic effect is neglected,

for example in the interaction of magnetic materials with

polarized light. Still, light polarization plays a role also for

dielectric materials. However, the effects of linearly polarized

light become relevant only for scattering angles above 30�

(Bohren & Huffman, 2008), and thus above the usual range of

wide-angle CDI experiments (Barke et al., 2015; Langbehn et

al., 2018). The current version of the Scatman assumes non-

polarized radiation, but its inclusion in the routine is under

study.

The Born approximation in equation (1) assumes that the

incoming electric field is not affected by the presence of the

sample, and considers a planar wave with constant amplitude,

momentum and phase along the full path. In this view, the

scattering strength defined in equation (1) is proportional to

the electric susceptibility, i.e. �ðrÞ / ½n2ðrÞ 	 1�, allowing the

definition of the scattering strength for a slice in equation (4)

as ~��sðx; yÞ / ½ ~nn2
s ðx; yÞ 	 1�, where ~nns are the optical properties

averaged over the slice thickness. However, especially when
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Figure 3
Schematic view of wide-angle and small-angle regimes and of the
notation used in this paper for the momentum vectors. The momentum
transfer q is defined as the difference between the incoming wavevector
k0 and the scattering vector k. q can be decomposed into its axial
component qz, i.e. the component parallel to the incoming radiation
assumed to travel along the z axis, and qxy. The wide-angle regime is
depicted in (a), where the axial component qz is non-negligible thanks to
the large scattering angle �. For comparison, (b) shows the same scheme
in the small-angle regime, where the scattering angle � is sufficiently small
to neglect the axial component of q. In both (a) and (b) the Ewald sphere
is shown in gray.

Figure 2
Schematic representation of the Scatman’s MSFT approach. In (a), the sample as a whole is defined by its scattering strength �, which depends on the
spatial distribution of the complex refractive index n. In (b), the sample is split into S slices, where, for each slice s, the scattering density ~��s is determined
by the slice’s optical properties. In (c), the scattered far field is computed for each slice s. In the last step (d), the scattering of the slices is summed with a
phase correction and subsequently squared to simulate the recorded diffraction pattern on the detector. For clarity of presentation, (c) only shows the
scattering signal’s squared amplitude for every slice, while the actual scattered wavefield is still a complex function at this point.



considering WAS, the refractive index of the sample will

modify the field. It is possible to partially take into account

this effect by defining the scattering strength for a given slice s

in the following form:

~��sðx; yÞ / ~nn2
s ðx; yÞ 	 1

� � Esðx; yÞ

E0 expðik0s�zÞ
; ð6Þ

where Esðx; yÞ is the field actually impinging on slice s of the

sample, while E0 expðik0s�zÞ is the field as it would travel

unaffected by the presence of the sample [the field taken into

account by the Born approximation in equation (1)]. The ratio

between the two fields can be interpreted as a correction

applied to the unmodified field assumed in the first Born

approximation, making ~��sðx; yÞ in equation (6) an effective

scattering strength. This correction factor allows us to

approximately include the effects of the sample’s optical

properties on the electric field incoming to the slice, while the

scattered field is still the unaffected one considered in the

Born approximation.

For a more intuitive presentation of how the incoming field

Esðx; yÞ impinging on the slice s is treated in the Scatman

approach, it is now convenient to rewrite the sample’s

refractive index n in the following form:

nðrÞ ¼ 1	 �ðrÞ þ i�ðrÞ: ð7Þ

Here, � defines the deviation of the real part of n from unity,

and is responsible for the change of the light’s phase velocity

in the sample, causing also the phenomena of refraction and

reflection. On the other side, �, often called the extinction or

absorption coefficient, defines how much the radiation is

damped when traveling in the sample (Lambert, 1760; Beer,

1852). This notation for the refractive index is convenient in

the X-ray regime, where jnj is very close to unity, and will be

extensively used in this paper.

An exact description of how the field distribution in the

sample is affected by � and �, regarding the field’s amplitude,

phase and propagation direction, is highly demanding and

essentially requires again the full solution of the scattering

problem. However, in the limit of sufficiently small � and �, it

is possible to assume the ‘projection approximation’ (Paganin,

2006), reducing the expression for the propagation of the

electric field Es at slice s to the following form:

Esðx; yÞ ’ Es	1ðx; yÞ exp½ik0�z ~nns	1ðx; yÞ�

¼ Es	1ðx; yÞ expðik0�zÞ exp½	ik0�z ~��s	1ðx; yÞ�

� exp½	k0�z ~��s	1ðx; yÞ�; ð8Þ

where ~�� and ~�� are the values of � and � averaged over the slice

thickness �z, and k0 is the radiation wavenumber. This

approximation locally assumes an axial propagation through a

homogeneous medium. Equation (8) recursively describes

how the field impinging on slice s is modified by taking into

account the effects of all the preceding slices. A first strong

assumption made by equation (8) is that the optical properties

must vary slowly. In particular, the variation of � has to be

sufficiently small that one can neglect changes in the field

propagation direction due to refraction and reflection, i.e. the

electric field always propagates in the axial direction, even

within the sample. Moreover, � and � are assumed to be

sufficiently small that one can neglect their influence on the

radiation scattered by the preceding slices, i.e. secondary

scattering is completely neglected (for the discussion of the

resulting limitations, see Section 4). In practice, at a given slice

s, ~��s introduces a phase shift in the field, while ~��s exponentially

damps the field magnitude.

Finally, the scattering strength [equation (6)] has to be

inserted into equation (4). The electric field in the denomi-

nator of equation (6), which is independent of qx and qy, can

be pulled out of the FT simplifying the global phase pre-factor

of the slice. This operation, combined with the formula for the

approximated field propagation in equation (8), yields the

main equation of the Scatman approach:

�ðqx; qyÞ /
P

s

exp 	i k2
0 	 q2

x 	 q2
y

� 	1=2
s�z

h i
� F ~nn2

s 	 1
� 	

Es

� �
ðqx; qyÞ

with Esðx; yÞ ¼ Es	1ðx; yÞ exp½ik0�z~nns	1ðx; yÞ�;

Es¼0ðx; yÞ ¼ E0: ð9Þ

Here the definition of the scattered field is based on the spatial

distribution of the sample’s optical properties. Although

equation (9) predicts the scattered electric field, only its

squared amplitude Iðqx; qyÞ = j�ðqx; qyÞj
2 is physically

measured in CDI experiments (Gaffney & Chapman, 2007;

Chapman & Nugent, 2010; Seibert et al., 2011; Ekeberg et al.,

2015) and should be taken into account for actual simulations.

3. Numerical implementation

In this section the concrete numerical implementation of the

Scatman is provided. A flowchart of the program is shown in

Fig. 4, and its blocks are described in the following paragraphs.

3.1. Setting up the virtual experiment

Read-in the user-defined parameters (Blocks 1 + 2). At the

beginning of the program, the user-defined input parameters

are read in. These include experimental details (Block 1) like

the irradiation wavelength 	, the maximal scattering angle �max

and the detector resolution N in pixels. N = 1000 will result in a

virtual detector of size 1000 � 1000 pixels. The virtual

detector is centered on-axis in the z direction, and every

virtual pixel has the same angular cross section. Furthermore,

the target is defined via a spatially dependent refractive index

(� and �) and the concrete dimensions of the target (xext, yext,

zext), as listed in Block 2. With this set of parameters the

experimental setup is uniquely defined.

Initialization (Blocks 3 + 4). Before entering the program’s

main loop, additional parameters are derived from the user-

defined parameters, and the relevant arrays are initialized.

Here, the maximal components of the scattering vector on

the xy plane (also called the detector plane) and in the axial

direction, qmax
xy and qmax

z , are calculated. As the FT in equation

(9) is numerically computed in the discrete form, qmax
xy is

necessary to assign a corresponding size dx and dy to the
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slices’ pixels in real space, and consequently its spatial

extension in pixels, Mx and My. The same applies to the axial

direction, where qz defines the slice thickness �z, and thus the

total number of slices S.

Two complex numerical arrays are then initialized to hold

the 2D wavefronts of the outgoing and the incoming wave-

fields (Block 4). While the outgoing wavefield is initialized to

zero, the incoming field is initialized to 1, which is equivalent

to a plane wavefront. The assumption of a perfectly coherent

incoming beam, in both space and time, is strictly enforced

from the mathematical foundations of the Scatman approach.

However, variations in amplitude and

phase are, in principle, not forbidden,

and their inclusion in future releases of

PyScatman are currently under study.

The desired diffraction image can now

be iteratively computed within the

program’s main loop.

3.2. The main loop

The main loop is the core of the

program. Every iteration within it

calculates the scattering contribution

of one slice of the sample. Each slice’s

input field is the original plane wave

shaped by the optical properties of the

sample up to the slice of interest. The

scattered radiation is then corrected

with a proper phase factor.

Calculating the local scattered field

(Blocks 5 + 6 + 7). The first step

required to compute the slice’s scat-

tered field is to render the slice’s

scattering potential (Block 5) through

the computation of the sample’s optical

properties at the proper spatial coor-

dinates. Calculating the slice’s scat-

tering contribution is, then, the subject

of Blocks 6 and 7, where both multi-

plicative terms are treated in their own

blocks. First, the FT of the product

between the incoming field and the

slice yields the far-field scattering

contribution of the latter (Block 6).

Then, the proper phase correction is

applied (Block 7). Note that the scat-

tering vector’s components are derived

in pixel units from their off-axis

distance relative to the z axis. The final

wavefield is then stored in the complex

array SLICEfield.

Updating the total scattered field and

computing the incident field for the next

slice (Blocks 8 + 9). The total scattered

field is updated in Block 8 by adding

the scattering contribution of slice s to

those of all the previous slices.

Then, in Block 9, the incoming field for the next slice is

prepared by propagating the field through slice s along the z

axis, following the definition in equation (8). The decoupling

of the total scattered field (Block 8) and the incoming field for

any subsequent slice (Block 9) enforces a central assumption

within the Scatman: multiple sequential scattering events are

not allowed to occur.

3.3. Preparing the output of the Scatman

After the main loop iterates over all slices in the virtual

medium, i.e. when Block 10 reaches the loop break condition,
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Figure 4
A flowchart of the conceptual core of the Scatman in numerical form is shown. Yellow blocks
indicate I/O operations. Green blocks contain data preparation. The main loop of the program, which
carries out the majority of calculations, is highlighted in blue. Each block contains a pseudo-code
schematically showing the numerical calculation. The abbreviation DFT stands for discrete Fourier
transform, practically computed through the fast Fourier transform algorithm (Cooley & Tukey,
1965).



the Scatman’s final piece of code prepares the output to match

the experimental conditions. In the simplest case, this is just

computing the absolute squared value of all slices’ total scat-

tered field (Block 11). However, it can include the modeling of

detector artifacts, stray light during the experiment or any

other experimental effect that may affect a real scattering

pattern.

4. Evaluation of the Scatman using exact simulations

As highlighted in Section 1, the Scatman program is an

alternative to the computationally intensive, but versatile,

numerical simulations such as FDTD or DDA methods, and to

Mie’s fast, but topologically restrictive, analytical solutions to

Maxwell’s equations. However, as underlined in Section 2,

there is a trade-off between the Scatman’s capability of being

both fast and versatile and the accuracy of the simulation

results, which depends heavily on the choice of the simulation

parameters.

During the mathematical formulation of the approach in

Section 2, some approximations were involved. Most of them

imply the assumption that the optical properties of the sample

of interest only differ slightly from those of the surrounding

medium (assumed here to be a vacuum). Therefore, the

Scatman approach is unable to quantitatively reproduce

features of the scattering images when relatively large varia-

tions of the refractive index are present, as usually happens,

for example, close to electronic resonances or for materials

with a high scattering cross section. Still, probing how small

the variation of the refractive index has to be is of great

interest to the user, to decide whether it is preferable to rely

on alternative and more accurate methods for data analysis.

This section provides an overview of the capabilities and

limitations of the Scatman program, where we compare the

simulation results with analytical diffraction patterns obtained

via Mie theory. The comparison is made by considering a

spherical sample to disentangle as much as possible the effects

of the optical properties from those produced by morpholo-

gical features. For an overview on how the method used for

the Scatman compares with exact methods in the case of

complex sample architectures, readers are referred to Barke et

al. (2015) and Langbehn et al. (2018).

Fig. 5 shows the results for 28 scattering simulations for a

spherical target, with a different pair of � and � values each.

The figure is split into two rows that show the radial profiles

and the diffraction patterns. Both rows share a common

legend, which is placed in between: solid lines represent the

Scatman result, dotted lines the Mie solution, and the colors

indicate different � values. The top row shows seven subplots

(a) to (g), where each subplot shows the scattering angle

dependence of the scattered light from a spherical particle for

a fixed value of � and four values of �. The choice to limit the
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Figure 5
Comparison of radial profiles between the Scatman and Mie calculations. The figure is split into two rows that share a common legend, which is placed in
between the rows. In the upper part, from (a) to (g), 28 radial profiles are shown that correspond to 28 combinations of � and � for a fixed spherical target
of radius 7	. For each combination of � and � the Scatman approximation along with the exact Mie results is plotted in solid and dotted lines, respectively.
In the lower part, the seven subplots from the top part are translated into seven diffraction images in (h) to (n), where the intensity of the scattering
signal is encoded in logarithmic color scale. Every diffraction image is partitioned into eight segments. These eight segments correspond to the eight line
plots shown in the associated plot from the top row. Every �/� pair combination takes up a quarter of every diffraction image, where the solid and dotted
lines surrounding the diffraction image indicate that the quarter is showing either the approximation of the Scatman program (solid line) or the exact
Mie solution (dotted line).



scattering angle to a range between 10 and 30� corresponds to

typical experimental scenarios for CDI experiments within the

WAS regime (Rupp et al., 2017; Langbehn et al., 2018; Barke et

al., 2015). In every subplot and for every � and � pair, two

calculations are shown: the solid line is the approximation of

the Scatman program and the dotted line is the exact Mie

solution. The radius of the spherical target used for the

simulations is fixed at 7	, which enables one to see the

signature of different optical properties, and to distinguish the

maxima and minima of the interference as well. For a fair

comparison between the two simulation methods, a normal-

ization factor has to be defined: in this case, both Mie and

Scatman profiles were normalized on their integral value

computed between 10 and 30�.

In the particular case of a spherical target, assuming non-

polarized light, the simulated diffraction image is identical in

all scattering directions. This symmetry property is exploited

in the bottom row of Fig. 5. The seven subplots from the top

row are translated into seven diffraction images (h) to (n),

where every diffraction image is partitioned into eight

segments. These eight segments correspond to the eight line

plots provided in the associated subplot from the top row.

Every �/� pair combination takes up a quarter of every

diffraction image, where the solid and dotted lines

surrounding the diffraction image correspond to the approx-

imation of the Scatman program (solid line) and the exact Mie

solution (dotted line).

Therefore, the bottom row does not add new data to the

figure but provides insight into the appearance of the scat-

tering image. Furthermore, it enables a qualitative assertion

on the diffraction images, which is often sufficient to deduce

the sample’s underlying topological properties. (Rupp et al.,

2017; Langbehn et al., 2018; Barke et al., 2015).

The simplest case during this evaluation is for � = 0 in

combination with the smallest � value (0.001). There, the

wavefield that propagates throughout the medium is identical

in phase to a reference field propagating through the

surrounding vacuum and only very weakly absorbed. The

corresponding Scatman and Mie calculations are shown in

blue in Figs. 5(d) and 5(k). The solid and dotted blue indicated

slices in the diffraction image in (k) are indistinguishable by

eye, just as the radial profiles in (d) are. However, when

increasing the absorption from 0.001 to 0.01, slight deviations

become visible at high scattering angles, where the Scatman

program produces a radial profile in which the maxima are

shifted towards higher scattering angles, and the amplitude is

slightly too high compared with the analytical results.

This behavior is core to all Scatman approximations where

the absolute value of � is comparably small (j�j<� 0:1). With

increasing absorption, the Scatman overestimates the signal’s

total amplitude and shifts the extrema at larger scattering

angles towards even larger scattering angles. Therefore, when

� is comparatively small, the quality of the Scatman’s simu-

lation is anticorrelated with the absorption in the medium.

The scenario strongly varies when larger values of � are

considered. There, the Scatman’s behavior is more compli-

cated, mostly due to the appearance of intricate resonance

effects that arise from the interplay between the target’s

geometry and the wavefield. Such resonance effects are more

pronounced for positive values of � (refractive index smaller

than unity), for example, observed in the atomic near-

resonance regime, where the photon energy dependence of �
resembles a Fano profile. Thus, the assertion concerning the �
dependence must be split for positive and negative values. At

negative values, broadly speaking in the off-resonance case,

the deviations between the Scatman and the Mie simulation

are mainly due to an overestimation of the amplitude with a

relatively tiny shift of the extrema positions in the radial

profiles. However, at positive values of �, the deviations

between the two simulations are significant. With � values

above 0.1, not shown here, the resulting radial profiles differ

wildly from one another.

Therefore, besides the anticorrelation with � for small �, the

second deduction that can be made here is that the Scatman

produces worsening diffraction images with a more positive �
(refractive index smaller than unity). For the specific case

presented here, the pivotal point for this to happen is roughly

for �>� 0:1.

So far, the comparison between the Scatman’s results and

Mie theory has been restricted to a fixed target size. However,

the features of scattering images of isolated nanoparticles vary

significantly, depending also on the targets’ size (Mie, 1908;

Bohren & Huffman, 2008; Rupp et al., 2014). Thus, a more

exhaustive comparison, which also includes size effects, is

presented in the supporting information.

Concluding, the approximation employed by the Scatman

program produces in most cases diffraction patterns of very

high quality compared with the analytical Mie solution for

spherical particles. In general, the quality of the routine is best

when the phase term in the refractive index is small

(j�j<� 0:02). Then, only minor deviations are observed and the

Scatman’s approximation could even be used as a replacement

for the Mie theory based solution. With increasing absolute

values of �, the quality deteriorates as well, where larger

positive values of � yield worse results than larger negative

values. At low � values, the absorption (�) is anticorrelated

with the quality of the approximation, yielding high-quality

diffraction images when absorption is low. This relationship,

however, is reversed for larger absolute values of �, where a

larger amount of absorption yields a better comparison with

the Mie theory calculations.

The exact range of optical properties for which the Scatman

approach is usable is highly dependent on the scope of the

simulation and its application. For this reason, we encourage

users to take the values given in this section as purely indi-

cative, and to directly check the applicability in their specific

use cases.

The next section introduces PyScatman, a high-level Python

front-end for the Scatman method.

5. PyScatman: a high-level Python front-end

In this section we present and explain the reference imple-

mentation of the Scatman in the form of a Python module,
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called PyScatman. The source code is available under the

MIT license (https://spdx.org/licenses/MIT.html) at https://

gitlab.ethz.ch/nux/numerical-physics/pyscatman, while the

documentation can be found at https://nux-group.gitlab.io/

pyscatman/.

The module is written in C++ (The C++ Standards

Committee, 2017) with bindings in Python using the PyBind11

C++ library (Jakob et al., 2019). This hybrid approach enables

us to maintain the highest possible simulation speed via

compiled C++ code while keeping a Python-only user-friendly

interface. The implementation is highly parallelized for multi-

core CPUs, and takes advantage of Nvidia GPU accelerators

via the CUDA library (Nickolls et al., 2008). In the current

version, PyScatman performs all the computations in single

floating point precision (32 bit).

In Section 5.1 a fundamental example is provided and

explained. There, an experiment is set up, an ideal detector is

defined and a simple shape is generated.

Building on this, Section 5.2 provides a more advanced

example, where three shapes are generated using three

different methods, and where a detector that simulates photon

statistics is used. This second example is meant to highlight the

great flexibility offered by the PyScatman module in terms of

defining a target’s shape.

Finally, in Section 6, the implementation is extensively

benchmarked with respect to its execution time on either the

CPU or the GPU using various shapes.

5.1. A fundamental example

In this section, a fundamental example is provided and

explained. We demonstrate the basic functionality and show

the easiest way to define the target’s shape (see Fig. 6).

For discussing the elements in the script we will refer to the

line numbers.

Define an experiment (lines 1 to 10). After the Scatman

module is imported, the experimental conditions are set up by

defining the irradiation wavelength in ångstöms, the maximal

scattering angle in degrees and the desired detector resolution

in pixels (px). Within PyScatman, there is no preferred length

unit: the only requirement is to keep the same unit (Å in this

example) throughout the whole script. An additional optional

parameter that defines the radiation intensity is described

later in the advanced example in Section 5.2.

Define a detector (line 17). The Scatman module provides

three detector types: MSFT, Ideal and MCP. MSFT is a virtual

detector, which directly yields the plain MSFT calculation,

while the Ideal one attempts to model realistic photon

statistics and noise augmentation. The Ideal detector is

described as part of the advanced example in Section 5.2.

Finally, PyScatman provides the MCP class, which aims to

simulate a scattering detector based on a microchannel plate

(MCP) (Wiza, 1979), often used in CDI experiments (Bostedt

et al., 2010; Rupp et al., 2017, 2020; Langbehn et al., 2018). The

MCP class is not described here as it is beyond the scope of

this paper. However, a full description can be found in the

Detectors section in the official PyScatman documentation

(https://nux-group.gitlab.io/pyscatman/detectors.html).

In this fundamental example, the MSFT detector is used,

which returns the exact MSFT calculation.

Define a shape (lines 24 to 33). PyScatman comes with

several pre-defined sample shape models, each with specific

parameters that define their appearance.1 The sample

described in listing 1 (Fig. 6) is of ellipsoid shape and is shown

in Fig. 7(a). Note that the three axes of the ellipsoid are given

in units of Å, as they must be consistent with the definition of

the radiation wavelength set at line 7.

All shapes have a delta, beta, latitude, longitude

and rotation preference, which define their refractive index

inside the sample and their orientation in space (see Fig. 8 for

a schematic on how the coordinates are defined). There, the

latitude and longitude properties follow the standard

convention also used for defining the coordinates on Earth,

where the north–south axis is along the z direction (solid gray

line).

Calculate the MSFT (lines 41 to 42). After having defined a

shape and a detector for an experiment, we can use the

acquire method of the detector class to calculate the MSFT-

based diffraction image. In this example, the variable

pattern_el is a Numpy array with dimensions 1024 � 1024,
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Figure 6
Listing 1: a fundamental PyScatman example. Here, we set up the
experiment, define a detector function and calculate the MSFT
simulation for an ellipsoidal sample.

1 A detailed explanation of every shape, along with images showing each of
the axes, can be found in the official documentation under ‘Shapes’ at https://
nux-group.gitlab.io/pyscatman/shapes.html.



as this was the resolution set at line 9. The final calculation of

the diffraction image is shown in Fig. 7(e).

5.2. A more advanced example

One of the main advantages of the PyScatman module is the

flexibility with which any arbitrary shape can be defined. In

addition to the pre-defined shapes introduced in Section 5.1,

here we present three additional methods that PyScatman

provides for defining an arbitrary shape: (i) Spherical-

Harmonics, (ii) RadialMap and (iii) VolumeMap. All three

methods are described in listing 2 (Fig. 9). PyScatman provides

additional methods to define the sample’s shape [including the

architectures presented by Barke et al. (2015) and Langbehn et

al. (2018)] which are not discussed here, and more of them will

be added in future releases.

Defining an Ideal detector (lines 1 to 17). We import the

PyScatman module and set up the same experiment as in

listing 1 (Fig. 6), with the addition of the optional parameter

photon_density which plays a role in the later-defined

Ideal detector. The idea behind the implementation of the

Ideal detector is that even a perfect real-life detector is

subjected to Poisson statistics of photons, which augments the

recorded diffraction images. In order to model this effect, an

estimate of the number of scattered photons has to be calcu-

lated and then used to add the appropriate Poisson noise to
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Figure 8
Schematic of the orientation in space for the latitude, longitude
and rotation properties of the shapes in the PyScatman module. A
shape model is oriented by setting the direction in space of its main axis.
This direction is defined through latitude and longitude para-
meters, expressed on a reference system where 90� latitude indicates a
direction towards the incoming beam and, thus, 	90� latitude is towards
the detector. The equator of the reference system, at 0� latitude, lies on
the plane orthogonal to the beam. Once the shape’s main axis is oriented,
a rotation is applied to the sample along this axis. Here, the simulated
sample reflects Earth’s elevation, to highlight the large flexibility that the
PyScatman module offers in terms of how to define the target shape. The
sample was modeled though an adaptation of ETOPO1 data (Amante &
Eakins, 2009), here in an exaggerated scale, which provides Earth’s
elevation as a function of the Earth’s coordinates, and simulated by the
use of the RadialMap shape model. See Fig. 9 for further details on how
to define such a shape.

Figure 7
Rendering of the shapes and their respective simulated diffraction patterns using two different detectors. From (a) to (d), the 3D rendering of the shape
objects, defined using the Ellipsoid (a), SphericalHarmonics (b), RadialMap (c) and VolumeMap (d) models. The RadialMap example in (c) has an inset
showing the array that was used for creating the shape, where the radius information is color coded. The corresponding diffraction patterns of samples
(a)–(d), computed by PyScatman via the MSFT detector, are shown in (e)–(h). The third row, from (i) to (l), shows instead the equivalent simulation
results provided by the Ideal detector. Here, the effects of photon statistics are clearly visible, along with the dependence on the value of the absorption
coefficient. For example, the samples in (b) and (c) have an absorption coefficient � ¼ 0:01 and � ¼ 0:05, respectively, which reflect a signal-to-noise
ratio higher in (k) than in ( j). Refer to the examples in the main text for further details.



the simulated diffraction pattern. A description of how this

data augmentation is implemented in PyScatman is given in

the supporting information.

Shape (1/3) via spherical harmonic coefficients (lines 26 to

36). Any shape that is described by a radius as a function of

the azimuthal and polar angles can also be defined using

spherical harmonic coefficients. A notable example is the

equipotential surface of the gravity potential of the Earth,

which is termed the geoid and is defined using spherical

harmonics (Barthelmes, 2009).

In general, the convention we use for the Laplace spherical

harmonics (Ym
‘ ) is defined as

Ym
‘ ð#; ’Þ ¼

ð2‘þ 1Þ

4�

ð‘	mÞ!

ð‘þmÞ!


 �1=2

Pm
‘ ðcos#Þ expðim’Þ; ð10Þ

where m and ‘ are the order and degree of the harmonics, #
and ’ are the azimuthal and polar angles within the spherical

coordinate system, and Pm
‘ are the associated Legendre

polynomials, defined as

P	m
‘ ¼ ð	1Þm

ð‘	mÞ!

ð‘þmÞ!
Pm
‘ : ð11Þ

PyScatman’s SphericalHarmonics class expects a list of

triplets, where the first value corresponds to degree ‘, the

second value to the order m and the third value to a scaling

parameter with which Ym
‘ ð�; ’Þ is multiplied. The final shape is

then the sum of all triplets within the passed list.

The shape defined at lines 26 to 36 in listing 2 can be seen in

Fig. 7(b), along with the calculated MSFT diffraction image for

this shape in Fig. 7( f).

Shape (2/3) via a radial map (lines 42 to 49). A second

method for defining an arbitrary shape within PyScatman is to

provide a 2D array of any size that holds the length of the radii

for all values of both angles � and ’, which can be interpreted

as the latitude and longitude coordinates. For example, when

an array with size 4� 4 px is passed, then these values define

the radii of the shape at the � values 	�=2, 	�=4, 0 and �=4,

and for ’ at the values 0, �=2, �, and 3�=2. These values are

then linearly interpolated when the sample shape is rendered

at the proper resolution, depending on the sample size and the

experimental conditions defined at lines 6–11.

The shape of type RadialMap presented in the example,

named shape_rm, is produced by the 2D radial map

radial_map_data (of size 1920 � 960) given as an argu-

ment in line 43. The rendered shape can be found in Fig. 7(c),

where an inset shows the used radial map. The MSFT calcu-

lation for this shape is shown in Fig. 7(g).

Shape (3/3) via a 3D volume map (lines 55 to 63). The third

method for defining an arbitrary shape is via a volume map.

The VolumeMap class of PyScatman requires a 3D array of

Boolean type (volume_data at line 59, here of size

200� 100� 50), which can have any size. The dx parameter,

then, defines the linear size of a single volume unit of the 3D

array volume_data and, as usual, must be expressed in the

same length unit as the wavelength. For example, if a

10� 10� 10 px array with every value set as Boolean true is

passed as data argument, and the dx argument is set to 2, we

end up with a cubic shape of size 20 � 20 � 20 Å. If we want

to scale up that cube by a factor of 2, we can set the dx

property to 4, which results in a cube with doubled dimensions.

The 3D rendering of the shape defined in this example is

presented in Fig. 7(d), along with its MSFT simulation in

Fig. 7(h). PyScatman also provides the possibility to perform

simulations of non-uniform samples via a completely arbitrary
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Figure 9
Listing 2: a more advanced PyScatman example. Here, we calculate the
MSFT diffraction images for various samples whose shapes are each
defined in a different way.



voxel representation of the refractive index. This feature is not

presented here for the sake of simplicity; readers may consult

the software documentation for more information.

Obtaining the results (lines 68 to 70). Finally, the simulation

is performed for all three shapes. All shapes can be simulated

through a single call to the Ideal detector’s acquire method,

passing them as a list. This possibility is implemented for

allowing the PyScatman module to better exploit parallel

computing hardware (and especially multiple GPUs) when

large data sets have to be simulated (see Section 6 for further

details). The patterns array yields the simulations, formatted

as a list of 2D arrays that contain the simulation result for the

shapes shape_sh, shape_rm and shape_vm. These

patterns are depicted in Figs. 7(j), 7(k) and 7(l), respectively,

where the effects of photon statistics simulated by the Ideal

detector are clearly visible.

6. Performance considerations

Our primary intention for the PyScatman module is to enable

data analysis on diffraction patterns by forward-fitting the

MSFT simulation with the experimental results, since classical

Fourier reconstruction via phase retrieval methods is not

possible for WAS. The model fitting approach consists of

guessing a target’s shape, simulating its diffraction pattern,

comparing it with the desired experimental data and then

iteratively improving the guess until the MSFT simulation is

sufficiently close to the experimental image. Such an optimi-

zation scheme is computationally expensive in its own right.

Therefore, it is of the utmost importance to speed up the

MSFT simulation as much as possible.

To this end, we provide in this section an overview of some

benchmark results on CPUs and GPUs, based on the examples

shown in listings 1 and 2.

A dissection of the total computational cost of the MSFT

routine reveals that time consumption of the simulation is

mostly determined by the number of discrete Fourier trans-

forms (DFTs) (one for each slice) and the target’s rendering

process. The time complexity of a single DFT is given by

CDFT � O½N2
p logðN2

pÞ� (Cooley & Tukey, 1965), where Np is

the resolution of the output image along a single axis. The

complexity for the MSFT algorithm scales linearly with the

number of slices (Ns), so that the total time complexity of the

MSFT’s DFT part scales with CMSFT;DFT � O½Ns N2
p logðN2

pÞ�.

Moreover, the time complexity of the rendering process can

be roughly estimated as CMSFT;Render � OðN3
s Þ.

These considerations show that the resolution of the output

image and the spatial extension of the sample, on which Np

and Ns, respectively, depend, are the determining factors for

the running time of a PyScatman simulation.

When a single shape object is given to the detector’s

acquire method, the PyScatman module carries out the

MSFT simulation differently depending on the available

hardware:

(i) CPU-only systems: slice rendering is sequential, where

each slice is rendered using all CPU cores in parallel. After all

Ns slices are rendered, all CPUs perform the DFT calculations

using the embarrassingly parallel scheme.

(ii) Single NVIDIA GPU: each slice rendering and its

respective DFT calculation are performed in parallel by the

CUDA cores. Only one CPU is used for taking care of data

preparation, inter-process communication and merging.

Therefore, if only a single shape is passed to the detector’s

acquire method, as happens in listing 1, then, even in the

case of a multi-GPU system, only one GPU is used, as the

overhead caused by data transfers between the different

GPUs’ memories would prevent a performance scaling.

However, when multiple shapes are to be simulated, as for

the example presented in listing 2, multiple GPUs can speed

up computation:

(i) CPU-only systems: the multiple shapes are split evenly

between all available CPU cores, where, subsequently, each

core takes care of performing the shape rendering and the

DFT calculations.

(ii) Single NVIDIA GPU: similarly to the CPU-only case,

the multiple shapes are split evenly between all available CPU

cores. Each CPU then sets up the shape’s data and submits the

work to the GPU, where the CUDA cores calculate the

rendering and the DFTs for all slices.

(iii) Multiple NVIDIA GPUs: this is similar to the single-

GPU case with the exception that the available CPUs are

placed in groups where each group has an assigned GPU. For

example, in an eight CPU core/four GPU system, two CPUs

would share a single GPU and coordinate as in the single-

GPU case.

Here, we present some benchmark results that we consider

representative of real-life situations. First, note that the

amount of computation, and thus the time to solution,

depends on several factors (most of which can be deduced

from Fig. 4):

(i) Simulation resolution: the greater the number of pixels

in the output image, the greater the computational cost.

(ii) Shape extension: the greater the ratio between the

sample size and the wavelength 	, the higher the number of

shape voxels to be rendered. Moreover, a greater scattering

angle corresponds to a greater spatial resolution, such that the

number of pixels to be rendered increases accordingly with the

maximum scattering angle �max.

(iii) Shape complexity: the function that defines the shape

optical properties, �ðx; y; zÞ and �ðx; y; zÞ, has a non-negligible

computational cost, depending on both the shape type and the

input data.

Among these three aspects, the contribution of the shape

complexity to the total computing time is the least straight-

forward to evaluate in a systematic and quantitative manner,

as it is highly dependent on the shape type and the values of its

parameters. For example, the SphericalHarmonics complexity

is particularly low when only a few harmonic coefficients are

provided as input: as the number of harmonic coefficients

increases, the data preparation step, which consists of the

computation of the SphericalHarmonics transform, starts to

take a relevant part of the computation time. The same

happens, for example, for the VolumeMap object, for which
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the time dedicated to data transfer has an effect on the time to

solution, depending on the size of the 3D array given as input.

Such a case-by-case study goes beyond the scope of this paper,

and the authors encourage the reader to install the PyScatman

module and test it for the cases of interest.

However, to give a rough idea about performance for

different sample shapes, a first test is performed on the same

four shape objects defined in the examples of the previous

section, i.e. shape_el (Ellipsoid), shape_sh (Spherical-

Harmonics), shape_rm (RadialMap) and shape_vm

(VolumeMap), keeping the same experimental conditions and

detector resolution. Here, the detector used is the MSFT one,

yielding the diffraction patterns shown in Figs. 7(e)–7(h). The

performance evaluation was accomplished on a workstation

equipped with an Intel Core i9-9900K CPU accelerated by a

GPU NVIDIA GeForce RTX 2080 Ti.

The simulation time is shown in Fig. 10(a). On the x axis the

four different shape models are labeled. The time to solution is

on the y axis, expressed in milliseconds on a logarithmic scale.

The time shown is the execution time of a single call to the

detector’s acquire method, with a single shape object given

as argument and averaged over 100 repetitions to rule out

statistical fluctuations. Two features are evident in the figure:

first, the performance difference between the CPU time and

the respective GPU time is around two orders of magnitude.

Second, the time to solution depends on the shape. The first

observation underlines why the PyScatman implementation,

when executed on a GPU, enables a new kind of data analysis

with the Scatman approach. The second feature, instead, is

due to different shape sizes and complexities.

To quantitatively investigate the dependence of simulation

time on the detector resolution and the sample’s spatial

extension, a second test is presented in Fig. 10(b). All the

timing values in this test are based upon the same sample

shape rendered in Fig. 7(b), defined through the Spherical-

Harmonics model. Here, that shape is scaled to match

different average radii, 3	, 5	, 10	 and 20	, in order to get

different sample spatial extensions without varying their

complexity. For each of them, two evaluations of the time to

solution are performed, one running on the CPU and the

other on the GPU. The whole operation is repeated for four

different detector resolutions, 256� 256, 512� 512,

1024� 1024 and 2048� 2048 px. Here, again, the great

advantage gained through the GPU computing is evident. In

particular, the difference of around two orders of magnitude

in the simulation time between GPU and CPU is consistently

present for all the different sample sizes and the resolutions of

the diffraction patterns, with the GPU still capable of

performing more than ten simulations per second even in the

worst, most complex case.

The presented timing results show the performance of the

PyScatman module in the current version. The software is,

however, still under development, and better timing perfor-

mances are expected in future software releases thanks to a

better optimization of the GPU management.

7. Summary

In this paper we introduced the Scatman, an approximate

method to simulate wide-angle diffraction patterns from

coherent and monochromatic light based on the multi-slice

Fourier transform. The scientific impact of the method has

already been demonstrated by previous publications that

made use of the Scatman, while it was under development, to

retrieve 3D morphological information on silver nanocrystals

(Barke et al., 2015) and helium nanodroplets (Langbehn et al.,

2018) from single wide-angle diffraction images.

The need for an approximate simulation tool arises from the

severe limitations of the available exact methods: Mie calcu-

lations, which are fast but can be used only for highly

symmetrical samples, and finite-difference time-domain or

discrete dipole approximation simulations, which are compu-

tationally heavy. The Scatman was conceived to be both

generic, i.e. capable of simulating the scattering from any kind

of sample, and sufficiently fast, enabling the retrieval of the

sample morphology by fitting the experimental diffraction

patterns via a model fitting approach.

The mathematical foundations of the method were

presented, highlighting the main approximations that make

the Scatman results deviate from the exact ones. The effects of

research papers

1244 Alessandro Colombo et al. � The Scatman J. Appl. Cryst. (2022). 55, 1232–1246

Figure 10
In (a), timing results for the shapes presented as examples in listing 1 and listing 2. The time to solution is shown in logarithmic scale versus the different
shape types. In (b), timing results for a shape defined through the SphericalHarmonics model are given. The harmonics coefficients are the same as in the
example presented in the main text, but the shape is scaled to get different average radii, indicated on the lower x axis in units of the wavelength 	.
Results are presented for four different simulation resolutions, from 256 � 256 px up to 2048 � 2048 px, labeled on the upper x axis.



these approximations as a function of the input parameters

were investigated, by comparing the Scatman simulations and

the exact Mie calculations for a spherical sample. Within given

bounds on the optical properties of the sample and its spatial

extension, the Scatman results proved to be in quantitative

agreement with exact calculations.

We presented our reference implementation of the

Scatman, called PyScatman, which is released as open-source

software with this article and is freely available online.

PyScatman, implemented as a Python module, provides an

easy interface to the user and a set of additional functionalities

useful for data analysis. PyScatman is entirely written in C++

and makes use of state-of-the-art programming techniques to

take full advantage of the most recent computing hardware,

including GPU accelerators. The computational performance

of PyScatman was briefly presented, demonstrating the

possibility to perform wide-angle scattering simulations in a

few to a few tens of milliseconds on consumer-level computing

hardware. These computing times are well suited to the

extensive use of PyScatman in the analysis of experimental

data via forward-fitting procedures, thus opening new

perspectives for coherent diffraction imaging in wide-angle

scattering conditions.

The Scatman method described here is a stable and tested

snapshot of its current development. Further enhancements

are under study, focusing on both the physics aspect and the

software implementation. In terms of software, the inclusion

of additional, more sophisticated and ductile shape models is

planned, along with a more efficient management of

computing resources. On the physics side, the partial inclusion

of secondary effects like multiple scattering, refraction and

reflection is under study, extending the range of applicability

of the approach to samples whose refractive index varies more

strongly from unity.

The aim of the Scatman method and its software imple-

mentation is to be a reference tool for the coherent diffraction

imaging community. They could also be of great interest

for other scientific fields where elastic scattering of

coherent radiation plays a role, like the recently growing

electron diffraction imaging techniques. Moreover, the high-

performance software implementation, PyScatman, is com-

patible with the increasing interest in big-data analysis and

artificial intelligence (AI), and its combination with AI tech-

niques is already in a prototyping phase.
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L., Hauser, G., Gorke, H., Ullrich, J., Schlichting, I., Herrmann, S.,
Schaller, G., Schopper, F., Soltau, H., Kühnel, K., Andritschke, R.,
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