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An approach is presented for analysis of real-time X-ray reflectivity (XRR)

process data not just as a function of the magnitude of the reciprocal-space

vector q, as is commonly done, but as a function of both q and time. The real-

space structures extracted from the XRR curves are restricted to be solutions of

a physics-informed growth model and use state-of-the-art convolutional neural

networks (CNNs) and differential evolution fitting to co-refine multiple time-

dependent XRR curves R(q, t) of a thin film growth experiment. Thereby it

becomes possible to correctly analyze XRR data with a fidelity corresponding to

standard fits of individual XRR curves, even if they are sparsely sampled, with a

sevenfold reduction of XRR data points, or if the data are noisy due to a 200-

fold reduction in counting times. The approach of using a CNN analysis and of

including prior information through a kinetic model is not limited to growth

studies but can be easily extended to other kinetic X-ray or neutron reflectivity

data to enable faster measurements with less beam damage.

1. Introduction

X-ray reflectivity (XRR) and neutron reflectivity (NR) are

well known techniques for studying ultra-thin layers (Tolan,

1999; Holý et al., 1999; Braslau et al., 1988; Skoda et al., 2017;

Russell, 1990; Kowarik et al., 2006; Pietsch et al., 2004). Due to

the penetrating nature of X-rays and neutrons, the measure-

ments can be taken in various environments, such as in a

vacuum, or in liquids or gases. This has led to numerous

applications in many fields that profit from in situ and real-

time measurements, such as the solid–electrolyte interface

growth during the process of lithiation in lithium-ion batteries

(Liu et al., 2016; Cao et al., 2016) and studies of layer-by-layer

growth (Kowarik et al., 2006; Hanke et al., 2012; Joress et al.,

2018; Krause et al., 2019; Bommel et al., 2014). Real-time

measurements usually consist of repeated reflectivity scans at

defined time intervals, and each measurement results in a

single reflectivity curve that represents the growth process at a

certain point in time. From these scans, structural film prop-

erties including thickness, roughness and scattering length

density (SLD) can be extracted as a function of time t,

although the analysis is non-trivial and fitting the reflectivity

Rðq; tÞ only as a function of q wastes information available

from data at adjacent time steps. An important challenge for

XRR and NR curves is the reconstruction of real-space

sample structures from reciprocal-space scattering data and

the reliability of this procedure. Using the Parratt formalism

(Parratt, 1954) to calculate reflectivity curves allows one to

easily obtain the shape of the reflectivity curve for a given thin
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layer structure. However, the inverse reconstruction of sample

parameters from an XRR curve is highly non-trivial (López

Garcı́a & Rivero, 2021) and multiple non-unique solutions are

possible. Results are usually obtained by iterative least mean

squares (LMS) fitting algorithms or advanced genetic algo-

rithms, which are available in various XRR and NR programs

(Nelson, 2006; Nelson & Prescott, 2019; Björck & Andersson,

2007; Danauskas et al., 2008; Lazzari, 2002).

In contrast to the traditional, manual fitting processes,

artificial intelligence techniques in the form of artificial neural

networks (NNs) (Bishop, 1994) have become available

recently for fast, accurate fits of XRR or NR curves without

human input (Greco et al., 2019, 2021; Liu et al., 2019; Park et

al., 2017; Vecsei et al., 2019; Chen et al., 2021; Kim & Lee, 2021;

Mironov et al., 2021; Doucet et al., 2021; Andrejevic et al., 2022;

Loaiza & Raza, 2021). The convolutional neural network

(CNN) approach for inverting XRR data has become popular

due to better computer performance resulting from relatively

cheap modern graphics and central processing units (GPUs

and CPUs), as well as the accessibility in recent years of free

CNN programming frameworks such as TensorFlow (https://

www.tensorflow.org/) and PyTorch (https://pytorch.org/). A

drawback of the CNN approach is that it needs a large volume

of training data for CNN training; however, in the case of

XRR and NR, these training data can be easily simulated. A

CNN trained on synthetic data can then be applied to

experimental data including time series of XRR curves. Owing

to the comparatively large number of data points, time-series

measurements can profit from automated CNN analysis and

co-refinement.

In real-time growth, most of the parameters of a thin film

structure change continuously and are dependent on each

other; for example, many individual thickness parameters for

each curve can be replaced by a growth rate. With a corre-

sponding growth model, we can re-parametrize (Campbell et

al., 2018) the structural models of the thin film at each time

step with very few parameters rather than using individual

parameter sets for each time step. Moreover, the XRR fits of

individual time steps are lacking the improvement of para-

meter estimates that co-refinement (McCluskey et al., 2019)

with previous or following curves can bring, and therefore the

prediction is noisier than one obtained by using an underlying

growth model. In this paper we report an implementation of a

growth model, whose parameters are determined with the

refnx software (Nelson & Prescott, 2019) in a growth model

co-refinement of the experimental growth data. Secondly, we

trained a CNN with synthetic data generated via the growth

model and then used the CNN to predict the structural

evolution from the experimental growth data. We show that

we can significantly speed up the measurement and reduce the

X-ray exposure of the sample through growth model co-

refinement and CNN approaches, because they allow one to

only use sparse sampling and shorten the exposure times.

This achievement is enabled through (i) the incorporation

of prior knowledge in the form of a growth model, (ii) re-

parametrization of the fit problem, and (iii) co-refinement or

CNN image recognition of multiple XRR curves at once.

2. Methods

2.1. Growth model

Using a (rate-equation) model for kinetic processes is

crucial for our goal of co-refinement of real-time XRR data

sets, and for our example of crystalline thin film deposition a

growth model is needed. Crystal growth of highly perfect

crystalline layers ideally proceeds in a layer-by-layer fashion,

but also deviations from a layer-by-layer type of growth and

roughening are common. Numerous models have been

developed over recent decades which can describe this layer-

by-layer growth of thin films (Cohen et al., 1989; Braun et al.,

2003; Trofimov et al., 1997). These models are quite general

and can all fit a variety of growth scenarios from layer-by-layer

growth to layer-plus-island growth or rough 3D growth. Here

we employ a model used by Woll et al. (2011) for organic

molecular thin films, even though we note that the above-

mentioned models could also be used. This model generates

the surface roughness and thickness evolutions with realistic

behavior, such as oscillating roughness for layer-by-layer

growth. The growth rate in the model is described via the

parameter Gn for the nth layer. A parameter �n,cr defines the

critical layer coverage of the nth layer, where the n+1-th layer

starts to nucleate on the top of the nth layer. Once nucleated,

the feeding zone �n then is the size of the zone on top of the

nth layer, where molecules contribute to the growth of the

n+1-th layer. Molecules outside the feeding zone will diffuse

over the edge into the nth layer.

d�n

dt
¼

R1 1� �1ð Þ þ Rn>1 �1 � �1ð Þ; n ¼ 1;
Rn>1 �n�1 � �nð Þ; n > 1;

�
ð1Þ

where Rn is the growth rate of the nth layer and the feeding

zone size is given as

�n ¼
0; �n <�n;cr;

1� expð�f½� lnð1� �nÞ�
1=2
� ½� lnð1� �n;crÞ�

1=2
g

2
Þ:

�

ð2Þ

On the basis of this model, the thickness and roughness of

the growing thin film can be calculated at each moment in

time, and together with the SLD, used to generate the corre-

sponding XRR curves. The SLD parameter is set as a fixed

value in our model even though different structural phases in

the first monolayers slightly modify the SLD (Kowarik et al.,

2006; Frank et al., 2014). Here, we intentionally use a simple

model of a fixed SLD for thin films and describe partially

filled, growing layers via an oscillating film roughness during

initial layer-by-layer growth. With the layer-by-layer growth

model, the evolution of the thin film can be defined with ten

parameters. Four growth rate parameters Gn were used to

account for different sticking coefficients on the substrate and

the first layers, where n = 1, 2, 3 stands for the growth rate of

the first, second and third layers, while G4 is used as the growth

rate for all the following layers. The next parameter to be

defined is �cr for each layer. To reduce the parameter space we

calculated �n,cr from the following equation:
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�n;cr ¼
a

0:5 tanh �0:5 t þ bð Þ½ � þ 0:5

0:5 tanh �0:5bð Þ þ 0:5
; �n;cr � c;

c� fð Þ exp½�dðt � tcÞ� þ f ; �n;cr < c;

8<
: ð3Þ

where a and b parametrize the time evolution of �n,cr with

growth time t. When the �n,cr value reaches a threshold,

represented by a crossover parameter c, the function for �n,cr is

switched to an exponentially decaying function. Here, the

parameter d is the steepness of exponential decay, f is the

asymptotic value for large t, and tc is the time when the �n,cr

value reaches the crossover value. All ten parameters were

randomly but uniformly distributed to generate a synthetic

data set for NN training and used as training labels. Note that

the above growth model and parametrization of �cr restrict the

possible growth scenarios we can fit and might lead to wrong

fit results if the real scenario is not covered. However, the

parameter ranges are chosen to be wide enough to include 3D

growth and roughening from the very first layer, to layer-by

layer growth followed by roughening as well as layer-by-layer

growth with continuing roughness oscillations over the whole

thickness range. The ten parameters are collectively denoted

as growth model parameters in the following.

2.2. XRR curve simulation

We simulated XRR layer-by-layer growth using an adap-

tation of the optical matrix method (Abelès, 1950; Heavens,

1960), which is computationally more efficient than the

recursive Parratt formalism (Parratt, 1954). For this purpose,

parts of the Refl1D (Kienzle et al., 2022) source code were

used. We assumed that our thin film sample consists of three

thin film layers: two for the substrate (silicon and native oxide)

plus the deposited thin film. The properties of Si/SiO2

substrates are known from our prior work and thus we used a

constant roughness for the SiO2 and Si layers of 1 and 2.5 Å,

respectively, and a native oxide thickness of 10 Å. Further-

more, the SLDs of those layers were assumed to be constant

with values of 17.8 � 10�6 and 20 � 10�6 Å�2, respectively

(Greco et al., 2019). The XRR curves were simulated in a q

range between 0.01 and 0.14 Å�1 at 109 equally spaced points.

For the following, we appended all individual XRR curves

corresponding to a given growth scenario into a single XRR

time-series matrix R(q, t). Due to the shape of the experi-

mental diindenoperylene (DIP) data, R(q, t) contains 109 q

points and 80 time steps; we also created a synthetic data set

with the same dimensions. Each one of the curves corresponds

to a certain thickness, roughness and SLD of the film layer

during the growth. The fixed SLD and the evolution of the

thickness d(t) and roughness �(t) are later on in the text

collectively referred to as a thin film growth scenario. The

growth of the simulated thin film started from a thickness of

0 Å and the final thickness was varied from 180 to 450 Å using

the growth rate parameters (G1, G2, G3, G4). The final

roughness of the film was allowed to vary from 8 to 40 Å. The

SLD was set in a range from 7 � 10�6 to 18.5 � 10�6 Å�2. We

simulated 25 000 R(q, t) data sets to get a sufficient quantity of

data for the CNN training. The simulated R(q, t) data were

split into training and validation data sets, where the valida-

tion data set contained 10% of the generated data, i.e. 2500

simulated data sets R(q, t). The data generation took 90 min

on 20 independent CPU threads; this procedure can be faster

if refnx is used. We took the natural logarithm of all generated

data sets and then normalized them to unity before using them

as an input for the CNN. This method of normalization is

widely used, including in previous work by us; however, we

note that there are alternatives for normalizing reflectivity

data (Loaiza & Raza, 2021; Doucet et al., 2021; Kim et al.,

2021). In this way, we reduced the value spread of the input

data set, because the CNN training is faster for input and
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Figure 1
From a time-dependent XRR data set Rðq; tÞ a CNN predicts ten parameters of a time-dependent layer-by-layer growth model. From these parameters,
the thin film growth scenario with thickness and roughness evolution is calculated. For different growth scenarios, we create simulated XRR and
synthetic Rðq; tÞ data sets that can be used to train the CNN before applying it to real data.



output data in the range of 0 to 1. Therefore, all growth model

parameters which are the output of the CNN were also

normalized to unity.

2.3. Neural network

We utilized 2D CNNs, commonly used for image recogni-

tion, to predict growth model parameters from the 2D data set

R(q, t). We employed a smaller version of the standard

VGG16 CNN which is a common architecture used for image

recognition (Simonyan & Zisserman, 2015). In this archi-

tecture, 2D data are processed from a set of input neurons to a

set of output neurons through hidden layers of neurons. The

input layer of the CNN takes the R(q, t) data. The architecture

of our CNN is graphically depicted in Fig. 1. As an activation

function, a simple ReLU (rectified linear function) unit was

chosen for all layers. The optimization algorithm employed in

this work is adaptive moment estimation (ADAM) (Kingma &

Ba, 2015). Our code was written in Python 3.7 with the use of

the TensorFlow software library. The CNN was trained for

3000 epochs (4 h) on a GPU (Nvidia GeForce RTX 2080 Ti)

and Intel Core i5-9600K CPU.

2.4. Experimental data

As an experimental example, we used the previously

published (Kowarik et al., 2006) real-time XRR data set

related to growth of the organic semiconductor molecule DIP

via organic molecular beam deposition on an Si/SiO2 wafer at

403 K substrate temperature. The experiments were per-

formed at beamline ID10B at the ESRF in Grenoble, France,

in a small ultra-high vacuum chamber, equipped with a Be

window, effusion cells and thickness monitor, at X-ray wave-

lengths of 0.903 Å. The original experimental data set was

measured with 52 q points per curve and interpolated to 109

points per curve in the same q range. For our CNN approach,

the experimentally obtained R(q, t) was used as CNN input,

from which the CNN predicted growth model parameters and

the corresponding thin film growth scenario. For the CNN

performance evaluation on the experimental data, the thin

film growth scenario determined by the model was compared

with a manual LMS fit using the Parratt32 software (Goedel et

al., 1999). The output of Parratt32 is the thickness, roughness

and SLD for every curve, which is more than 240 parameters.

The only varying parameters were parameters corresponding

to the thin DIP layer, and the q range was the same as for the

CNN, from 0.01 to 0.14 Å�1. Refnx (Nelson & Prescott, 2019)

was used to co-refine all XRR curves, with the growth model

being incorporated into the analysis, reducing the number of

fit parameters to 10. In this last approach the varying growth

model parameters are used to calculate the thickness/rough-

ness of the system at each of the time steps.

3. Results

We used our CNN to predict the growth model parameters

from the experimental R(q, t) shown in Fig. 2(a). Then these

parameters were used to generate a new fitted RCNN(q, t)

[Fig. 2(b)], and we compared the two R(q, t)’s by calculating a

�2 value as a measure of goodness of fit, with �2 defined as

�2
¼
Xn

i¼1

log½Rfitðq; tÞ�i � log½Rexpðq; tÞ�i
� �2

log½Rexpðq; tÞ�
i

: ð4Þ

From the comparison in Figs. 2(a) and 2(b), it is obvious that

the Kiessig fringes in the experiment and in RCNN(q, t) are at

the same position. Moreover, the damping of oscillations

increases at higher q and t due to increased roughness in both

Rðq; tÞ’s. The reflectivity range and minimum reflectivity

values agree very well in the two images. The �2 deviation

between the experiment and RCNN(q, t) was calculated as 5.0.

For the Parratt32 fit where we fit curves individually (indivi-

dual fit), we found �2
Parratt = 1.7. Finally, with an automatic

growth model co-refinement using refnx we obtained �2
co-refine =

9.2. The fitted XRR curves RParratt(q, t) and Rco-refine(q, t) are

shown in Figs. 2(c) and 2(d) and also are very similar to the

experimental data. All the �2 errors were calculated by the

same method, without use of Parratt32 or refnx implemented

error calculations. The individual Parratt32 curve fit adapts to

spurious experimental noise features (red circle) which partly

explains the lower �2 value of the individual curve Parratt32 fit

compared with the CNN fit. The results are plotted as a

function of q and exposure. The exposure is tj, where t is the

time and j is the molecular flux. In an experimental setup, the

molecular flux does not need to be always constant and it is

straightforward to implement these changes when the expo-

sure is used as the axis. Note that the Parratt32 manual fit is a

slow process (hours) where the user selects bounds and

starting points in the fit of thickness, roughness and SLD of the

DIP layer for every curve. The growth model co-refinement

approach is significantly faster (30 min) than the Parratt32
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Figure 2
The experimental Rðq; tÞ in (a) is compared with different fitted XRR
curves. (b) shows the CNN prediction with a �2 deviation value of 5.0; a
manual Parratt32 fit (c) has a lower deviation of �2

Parratt = 1.7 as it also fits
experimental noise (red circle). The growth model co-refinement (d)
yields �2

co-refine = 9.2.



manual fit but still much slower than a CNN prediction, which

takes up to 55 ms, when not counting the 5.5 h of CNN data

generation and training time.

Besides the comparison of raw experimental data and the

various fits of Rðq; tÞ, we also evaluated the thin film growth

scenarios obtained with the CNN, independent RðqÞ fits and

the growth model co-refinement [Figs. 3(a)–3(c)]. In the plots

of the thickness evolution during growth [Fig. 3(a)] and the

SLD [Fig. 3(b)] the CNN prediction, independent fit and

growth model co-refinement closely align. The roughness

comparison in Fig. 3(c) shows that all fits are roughly

comparable with some deviations for the growth model co-

refinement method. The oscillations of the roughness visible in

the CNN fit at the beginning of the growth are due to the

layer-by-layer growth as filled layers are smoother and half-

filled layers during layer-by-layer growth are rougher. Overall,

the growth model based on the CNN predictions and the

growth model co-refinement can explain the real-time XRR

curves with far fewer parameters and produce results that

come close to manual fits in terms of the �2 metric of the fit

quality and match well the results of the thin film growth

scenarios.

3.1. Reducing the number of data points in a measurement –
sparse sampling

In the following, we demonstrate the high performance of

the CNN and the growth model co-refinement approach on a

sparsely sampled data set with a very low quantity of data. The

Rðq; tÞ of DIP has been reduced using a dropout layer from

Keras (Ketkar, 2017) to remove a certain percentage of the

experimental data points by setting them to zero. These points

can therefore be skipped in a faster measurement. For the

CNN to work with reduced data sets, it is necessary to further

train the CNN so that it learns to ignore unavailable data

points. We retrained the previously optimized CNN with a new

data set of 120 000 Rðq; tÞ’s which had a varying degree of

dropout reduction from 0 to 99.9%. The CNN was retrained

for 30 epochs without any sign of overfitting. The experimental

Rðq; tÞ with a reduced number of data points was then used as

an input for the retrained CNN.
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Figure 3
(a) Thickness, (b) SLD and (c) roughness predictions derived from the experimental XRR data Rðq; tÞ in Fig. 2 agree reasonably well between standard
individual curve fits, growth model based CNN and co-refinement results. (d)–( f ) For a reduced data set of only 200 reflectivity points in Rðq; tÞ, the CNN
and the growth model co-refinement fit still fit the data set correctly. A set of CNN prediction curves are shown for different, random selections of 200
points out of the full data set, giving an indication of the CNN prediction variability. (g)–(i) For noisy data, the growth model co-refinement needs a count
rate of only �1000 counts in the total reflection region to allow for adequate reconstruction, while the CNN can fit data even with �300 counts in the
total reflection region. Again, CNN predictions of a set of curves with different simulated photon shot noise are shown to indicate the variability of CNN
predictions.



To demonstrate the accuracy of predictions with reduced

data sets, we compare the CNN prediction and growth model

co-refinement from only 200 Rðq; tÞ data points and the

baseline individual curve fit from the full data set in Figs. 3(d)–

3( f). We find that the growth model predictions/fits are close

to the benchmark of individual curve fits of the full data set.

Note that the CNN predictions are shown as a set of curves,

each of which corresponds to a different set of randomly

selected sets of 200 data points. This illustrates the fairly

narrow spread of the predicted results and demonstrates that

the result does not strongly depend on a specific set of Rðq; tÞ

points. The growth model co-refinement is also able to fit

reduced Rðq; tÞ XRR data sets down to 200 reflectivity points

and is very similar to CNN performance.

In Figs. 4(a)–4(c) we show how the fit results degrade when

systematically reducing the number of XRR data points

entering the fit. This allows us to quantify the gains in speed

and/or reduction in X-ray dose that are possible by reducing

the XRR data-set size. We compare independent fits of all the

individual curves using the batch fit mode of refnx, a growth

model co-refinement of all curves at once and the CNN

analysis of all curves. As three figures of merit, we choose the

mean absolute error (MAE) for thickness d(t), density SLD(t)

and roughness �(t) in Figs. 4(a)–4(c) calculated for each of the

above three analysis strategies in relation to our manual fit of

the whole data set. A reasonable threshold for an acceptable

MAE was set to the value indicated by the horizontal lines in

Fig. 4, which corresponds to a doubling of the lowest MAE

value for the full data set. We find that the growth model co-

refinement and CNN predictions provide almost identical

results as the error stays below our limit down to 200 data

points, meaning that each XRR curve contains only two or

three data points. The independent fit of each XRR curve by

itself starts to fail earlier, at 1700–2200 points in the data set.

This is understandable, because two to three data points do

not constitute an XRR curve that can be fitted, and between

20 and 30 points are needed for fitting each of the 80 time steps

of the growth. Also note that, while the growth model co-

refinement and the CNN both perform well for sparsely

sampled data sets, the batch fit takes 30 min to fit the data set

and CNN can make a prediction in �55 ms. This faster

prediction time from a CNN enables us to randomly select 100
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Figure 4
(a)–(c) The mean absolute error of the thickness, roughness and SLD increases when fewer data points are available for fitting. The CNN and the growth
model co-refinement can analyze sparsely sampled data with a 6–11� lower number of measured reflectivity values compared with the individual fit.
Panels (d)–( f ) illustrate the effect of simulating increasing amounts of photon shot noise for the Rðq; tÞ data, which would occur for shorter integration
times or weaker X-ray sources. The growth model co-refinement is accurate for noise levels more than two orders of magnitude higher than for the
independent fit of individual XRR curves. The CNN can predict correct parameters with even higher noise levels than the co-refinement approach.



different sets for each point in the curve and run the CNN

prediction 100 times, so that we can give a confidence interval

for the MAE in the CNN analysis.

3.2. Reduced counting time or lower X-ray flux

As a second strategy to speed up the measurement and

reduce the X-ray dose, we also investigated the effects of

reduced count rate per data point instead of reducing the

number of data points. Through a shorter integration time, or

alternatively lower incident X-ray flux, the photon shot noise

increases. This can be modeled by replacing the count rate

Rðq; tÞ at a given q point with a random value of counted

photons x selected according to a Poissonian probability

distribution:

probability xð Þ ¼
½CRðq; tÞ�

x exp½CRðq; tÞ�

x!
: ð5Þ

Here, C is the maximum number of counts in the total

reflection region. Since the normalized XRR intensities Rðq; tÞ

only range from 0 to 1, they must be scaled by the count rate C

before calculating the photon shot noise. This assumes

constant integration times and disregards the footprint

correction needed for small sample sizes, but both these

effects can be easily accounted for if needed in a particular

experiment. A reflectivity value Rðq; tÞ is then replaced by

xðq; tÞ=C. We introduced the Poisson-distributed noise into

our training data and created a data set of 500 000 Rðq; tÞ in

the range of C from 5 to 1 � 108. With the new noisy data set,

we retrained our CNN for 20 epochs.

Next, we introduced the Poisson-distributed noise into the

experimental data and generated Rðq; tÞ where the range of C

was from 5 to 106 counts in the total reflection region. We used

the retrained CNN to predict the thin film growth scenario

from the noisy experimental Rðq; tÞ, finding good CNN

prediction performance even for extremely low X-ray flux.

Next, we fitted noisy data with the growth model co-refine-

ment of all curves. In Figs. 3(g)–3(i) we compare CNN

prediction from noisy data with C = 300 and the growth model

co-refinement with C = 1000 counts at the total reflectivity

edge. Note that the 100 CNN prediction curves show each

result from a different realization of shot noise to illustrate the

variance in CNN predictions introduced by shot noise. The

results are compared with our independent fit of the experi-

mental Rðq; tÞ without added noise as reference. We get

reasonable results for thickness, SLD and roughness, but note

that the CNN prediction with only 300 counts overestimates

the final roughness. This is not surprising, because the data at

high q/low reflectivity will be significantly degraded because of

the reduced count rate. For example, if the direct beam rate is

1000 Hz, and the background is 1 Hz, then one will not be able

to go below R = 0.001.

In Figs. 4(d)–4( f) we quantify the performance of the CNN

fit, growth model co-refinement and independent curve fits on

data with different levels of noise. The point of reference is

our manual fit of the full experimental data set without added

noise. Again, the individual curve fit performs worst, and

introduction of a physics-based growth model in either the co-

refinement or the CNN fit significantly increases the robust-

ness to noise and lowers the MAE. The growth model co-

refinement can fit noisier data with a 200� to 500� reduction

in counting time/X-ray flux over the individual curve fit of

noisy data. The exact gain depends on the parameter, with

roughness being the hardest to predict, offering only a 200�

gain, and thickness being the easiest to predict and offering a

500� gain. Interestingly, the CNN outperforms both the

individual curve fit and the growth model co-refinement, and

can predict thickness from 3000� noisier data than the indi-

vidual fit and SLD from up to 50 000� noisier data than the

individual fit. In Table 1, we summarize the speed-up provided

by the growth model implementation into the fitting

algorithms. We used the same range in which the thin

film parameters were allowed to vary for the growth model

co-refinement and CNN. For the independent fit of each

individual curve, we were not able to use exactly the same

parameters but we used comparable thickness, roughness and

SLD parameter ranges. Performance gains through using re-

parametrization and co-refinement with the CNN are shown

to be greater than sevenfold for data reduction and more than

200-fold for noisy data sets from shorter integration times or

lower flux.

4. Discussion

The approach presented here enables a more than two orders

of magnitude reduction in X-ray/neutron photon dose and

faster experiments due to the implementation of a physics-

based growth model and analysis of all real-time XRR data

sets at once. It has already been shown that the prediction of

CNN for a single noisy XRR curve is possible (Greco et al.,

2021) and an analysis of intentionally high-noise NR was

published recently (Aoki et al., 2021; Doucet et al., 2021). All

these studies show that an NN can perform well on noisy

XRR or NR data. However, the re-parametrization and co-

refinement of multiple XRR curves used here enable us to
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Table 1
Limits of data reduction and artificial noise for an acceptable performance of the individual curve fit, growth model co-refinement and CNN predictions.

Sparse data set
Minimum number of data points gain: x times

Noisy data
Minimum count rate at total reflectivity edge gain: x times

Thickness SLD Roughness Thickness SLD Roughness

Benchmark: individual fit 1700 1700 2200 1 � 105 1 � 105 5 � 105

Growth model co-refinement 200/8� 200/8� 200/11� 300/300� 500/200� 1000/500�
CNN 240/7� 200/8� 200/11� 30/3000� 500/200� 10/5 � 104

�



achieve correct prediction from an even lower quantity of data

than reported before. This performance increase can be

obtained either by the implementation of the growth model

into a co-refinement approach or by using a CNN. The growth

model co-refinement is better for single experiments because

it does not need any training data or CNN training time.

However, the analysis of the data set is significantly slower at

�30 min compared with 55 ms with a CNN. The growth model

co-refinement could be sped up by implementing a simpler

growth model, but our example of a rate equation/differential

equation based temporal model is not untypical for processes

measured in real time. Moreover, we expect that some further

speed-ups may be achievable by improving the ordinary

differential equation solving step in Python. For the CNN case,

implementing a growth model for training data generation and

training of the CNN take 5.5 h, which is slower than a single

growth model co-refinement.

The CNN analysis has advantages if a growth study

encompasses repeated measurement under varying conditions

and necessitates several fits. Also, the CNN predictions lie

closer to results from a manual fit in Fig. 3 than growth model

co-refinement. Due to its prediction speed, the CNN could be

used as a process analytical technique that enables online

analysis or even feedback during processing. Lastly, while the

performance of growth model co-refinement and the CNN is

similar on sparsely sampled data, the CNN has advantages

when analyzing noisy data. The choice of analysis strategy

therefore depends strongly on the experimental setup and the

number of experiments to be analyzed. Using a weak source

with low flux or short integration times results in noisy data

and would favor the use of a CNN approach. In applications

where the motor movement times of a diffractometer are

limiting the time resolution, our sparse sampling approach

with fewer data points and fewer motor movements is a viable

alternative for speeding up measurements. Both growth model

co-refinement and the CNN approach perform similarly with

respect to the possible reduction in data points needed and fit

errors in this case. Note that both sparse sampling approaches

presented here can also deal not just with data collected at

random q points but also with data collected at one or several

fixed q points as a function of time. Examples of such growth

studies include measurements of the anti-Bragg oscillations at

q = 1/2qBragg, which both our CNN and growth model co-

refinement can analyze. However, a single q point measured at

80 time steps is below our lower limit of 200 data points for a

reasonable accuracy (see Table 1), so that it is advisable to

measure also at other q points beyond the anti-Bragg point,

e.g. at q = 1/3qBragg and 1/4qBragg (Kowarik et al., 2009).

The CNN and refnx co-refinement approach allow one to

implement models not just for growth processes but also for

other time-dependent XRR problems. Kinetic models can, for

example, be included as prior information in the CNN via a

simulation of the corresponding training data with the kinetic

model, the parameters of which become training labels.

Alternatively, the kinetic model can be directly incorporated

into a refnx co-refinement. Note that a CNN can learn about

physically sensible solutions not just via the choice of training

data, as presented here, but also via a careful choice of a

physics-informed loss function, as has recently been demon-

strated (Raissi et al., 2019). Through their flexibility, the CNN

and the growth model co-refinement lend themselves to

numerous applications in fields that profit from in situ and

real-time measurements, such as electrochemical changes at

interfaces, but the co-refinement approach is also useful for

data acquired e.g. with different contrasts in NR.

5. Conclusion

In this article we have shown the possibilities of the NN and

growth model fit approaches for fitting in situ XRR

measurements using co-refinement of multiple XRR curves.

Prior knowledge is implemented in the analysis in the form of

a kinetic growth model. This model re-parametrizes the

structural evolution with far fewer parameters than indepen-

dent structural film properties at each time step. The CNN and

batch fit directly predict growth model parameters without the

need for independent single XRR curve fitting. The co-

refinement of many XRR curves enables predictions for

sparsely sampled data sets that have insufficient information

for single curve fits or single curve NN predictions. We tested

our CNN and growth model co-refinement approaches on

experimentally measured data where we reduced the number

of reflectivity points from 4160 measured reflectivity data

points to 200 randomly distributed data points that were

sufficient to make correct thin film parameter predictions. This

significantly undercuts the minimum number of 1700 data

points needed for individual curve fitting. By combining fast

data analysis and accurate prediction from a sparse data set,

we can go beyond the state of the art in XRR measurements

and effectively speed up XRR measurements by almost an

order of magnitude. This allows one to analyze sensitive

samples without beam damage or increase the throughput in

experiments.

Moreover, we tested our NN and growth model co-refine-

ment on data with high photon shot noise, as occurs for short

data acquisition times or weak X-ray sources. We showed that

our CNN can predict correct structural film properties even

from extremely noisy data. In comparison with a conventional

independent XRR curve fit, the exposure of the sample can be

three orders of magnitude lower and the CNN prediction still

corresponds to a real thin film growth scenario. This result will

allow significantly faster measurements to be made at

synchrotron facilities with high flux or enable the use of lower-

brightness laboratory sources for real-time measurements.

The supporting information associated with this article is

also available in a GitHub repository: https://github.com/

kowarik-lab/XRR-model-based-co-refinement-CNN-refnx.
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