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Germany

1This article is part of a virtual special issue on

Magnetic small-angle neutron scattering – from

nanoscale magnetism to long-range magnetic

structures.

Keywords: small-angle neutron scattering;

small-angle X-ray scattering; magnetic

nanoparticles; superparamagnetic iron oxide

nanoparticles; reverse Monte Carlo simulations.

A reverse Monte Carlo algorithm to simulate
two-dimensional small-angle scattering intensities1

Lester C. Barnsley,a,b* Nileena Nandakumaran,c,d Artem Feoktystov,b Martin

Dulle,e Lisa Fruhnere and Mikhail Feygensonf,e

aAustralian Synchrotron, ANSTO, Clayton 3168, Australia, bForschungszentrum Jülich GmbH, Jülich Centre for Neutron
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Small-angle scattering (SAS) experiments are a powerful method for studying

self-assembly phenomena in nanoscopic materials because of the sensitivity of

the technique to structures formed by interactions on the nanoscale. Numerous

out-of-the-box options exist for analysing structures measured by SAS but many

of these are underpinned by assumptions about the underlying interactions that

are not always relevant for a given system. Here, a numerical algorithm based on

reverse Monte Carlo simulations is described to model the intensity observed on

a SAS detector as a function of the scattering vector. The model simulates a two-

dimensional detector image, accounting for magnetic scattering, instrument

resolution, particle polydispersity and particle collisions, while making no

further assumptions about the underlying particle interactions. By simulating a

two-dimensional image that can be potentially anisotropic, the algorithm is

particularly useful for studying systems driven by anisotropic interactions. The

final output of the algorithm is a relative particle distribution, allowing

visualization of particle structures that form over long-range length scales (i.e.

several hundred nanometres), along with an orientational distribution of

magnetic moments. The effectiveness of the algorithm is shown by modelling a

SAS experimental data set studying finite-length chains consisting of magnetic

nanoparticles, which assembled in the presence of a strong magnetic field due to

dipole interactions.

1. Introduction

Small-angle neutron scattering (SANS) and small-angle X-ray

scattering (SAXS) are important experimental techniques for

studying the behaviour and properties of materials on the

nanoscale. Small-angle scattering (SAS) has been used to

investigate systems relevant to a range of scientific fields,

including proteins (Bizien et al., 2016; Mahieu & Gabel, 2018;

Brosey & Tainer, 2019), polymers (Mortensen, 2001; Jaksch et

al., 2016; Papadakis et al., 2019; Wei & Hore, 2021), micelles

(Das et al., 2012; Kelly et al., 2019), inorganic nanoparticles

(Mehdizadeh Taheri et al., 2015; Fu et al., 2016; Bender et al.,

2017; Krycka et al., 2018), battery materials (He et al., 2017)

and magnetic vortices (Mühlbauer et al., 2009; Demirdiş et al.,

2016). While the technique is well established for its versatility

and compatibility with a range of sample environments for in

situ studies, analysis of experimentally acquired data is still

challenging, particularly in light of the growing complexity of

the structures and their temporal and spatial arrangements,

which can be readily affected by external parameters.
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The conventional approach to analysis of SAS results is to

fit experimental data with a set of relevant semi-analytical

models to infer the structural properties and extract physical

parameters about the measured ensemble. A huge range of

out-of-the-box options for fitting models to SAS data is readily

available and this approach is highly effective for simple

systems, particularly when the measured sample consists of a

highly monodisperse suspension of particles with minimal

aggregations. However, this approach can only provide limited

information from complex systems, particularly systems

involving particles that consist of multiple phases and/or

geometries, or assemblies that are partially ordered or aniso-

tropic. The variety of form factors and structure factors typi-

cally available in modelling software often require

assumptions that may not be relevant to a given system (e.g.

isotropic distributions, well described interaction potentials or

long-range order).

Numerical techniques are becoming increasingly popular

(and necessary) to fully describe the non-trivial particle

geometries and structures that are investigated by SAS

(Frenkel et al., 1986; Svergun & Koch, 2003; Olds & Duxbury,

2014; Honecker et al., 2020). Numerical analysis of SAS data

can be helpful to defer or even bypass many of the assump-

tions required by semi-analytical models. Numerical techni-

ques for SAS analysis can be broadly divided into two

categories (Olds & Duxbury, 2014). The first uses reverse

Monte Carlo simulations, in which particle positions and

properties are freely distributed inside a physical space with

fixed boundaries and treated as separate scattering sites

(Pedersen et al., 2003; Musino et al., 2018). The second

approach is based on either discrete or fast Fourier transforms,

in which a physical distribution is cast to a real-space grid and

then transformed into a scattering intensity profile in reci-

procal space (Schmidt-Rohr, 2007; Bender et al., 2017). The

relative advantages of both approaches have been debated

but, in simplistic terms, reverse Monte Carlo simulations are

more effective for modelling structure factors from assemblies

of simple particles, while Fourier transforms are proficient for

solving form factors of advanced non-trivial particle geome-

tries.

Conventionally, analysis of SAS data has been focused on

the radially averaged intensity profiles from isotropic systems,

but experimental detectors are typically two dimensional,

making them sensitive to two components of the scattering

vector, and, therefore, anisotropic intensity distributions that

are projected in the detector plane. Fully accounting for the

two-dimensional detector image is particularly important in

experiments studying magnetic systems, as the externally

applied field defines an axis of anisotropy. In particular, SANS

is sensitive to magnetic scattering, which is enhanced by

leveraging neutron polarization, either by polarizing the

incident neutron beam (polarization) and/or by filtering by the

neutron spin, post-scattering (analysis). The scattering cross

sections of the various polarization analysis SANS spin

channels are well known in certain cases, e.g. weakly inho-

mogeneous ferromagnets or well dispersed two-phase

magnetic systems [see Michels (2014) for a detailed discus-

sion], and the data analysis often focuses on describing the

angle dependence of the observed intensity (Oberdick et al.,

2018; Ijiri et al., 2019; Zákutná et al., 2020). However, in the

presence of interacting particles with non-trivial structure

factors, the conventional analysis is not straightforward.

In this article, we introduce an algorithm that uses reverse

Monte Carlo simulations to model scattering intensities

observed by a two-dimensional detector. The algorithm

considers magnetic scattering, finite instrument resolution and

the individual properties of particles (including polydispersity

and magnetization direction), making no assumptions about

the underlying particle interactions except to exclude colli-

sions between particles. While the algorithm performs best for

modelling ensembles of particles with well described form

factors (i.e. collections of spherical nanoparticles), functions

exist to simulate scattering contributions for more advanced

particles with non-trivial geometries by utilizing discrete

Fourier transforms.

The main application is to model scattering profiles with

structure factors that are either anisotropic or partially

disordered. This approach was used to successfully model

results from a set of SANS experiments studying nanochain

formation from iron oxide nanoparticles induced by magnetic

interactions (Nandakumaran et al., 2021). The output of the

model is a set of real-space particle configurations, including

magnetic moment orientations, which can be visualized and

further analysed to make inferences about physical distribu-

tions and magnetic ordering that are consistent with the

observed scattering intensity. The capability for the algorithm

to model polarized SANS (SANSPol) data is also demon-

strated. The algorithm is written using Python 3, a modern

open-source object-orientated programming language, in

order to maximize flexibility and extendibility, and is under-

pinned by open-source packages that are readily available on

the Python Package Index. The physics simulated by the

algorithm is an extension of the concept described by Musino

et al. (2018), in which reverse Monte Carlo simulations are

used to model the structure factor observed in one-dimen-

sional scattering profiles from aggregations of surface-coated

silica nanoparticles.

2. Methods

2.1. Scattering simulation

The scattering cross section of an ensemble of N non-

magnetic particles in a box with volume V is given by

d�

d�
Qð Þ ¼

1

V

XN

i¼0

Fi Qð Þ exp �iQ � Rið Þ

�����
�����

2

; ð1Þ

where Q = (Qx, Qy, Qz) is the scattering vector, Fi is the form

amplitude of an individual particle i associated with its form

factor and Ri = (xi, yi, zi) is the position of the particle. For

advanced particle geometries, the form amplitude can be

numerically calculated and broadcast (or ‘mapped’) to Q, but

in the case of simple particles (e.g. radially symmetric parti-

cles), an analytical expression for the function Fi(Q) can be
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provided. For example, in the general case of a radially

symmetric particle,

Fi Qð Þ ¼ 4�

ZR

0

�� rð Þ
sin Qrð Þ

Qr
r2dr; ð2Þ

where R is the radius of the particle, ��(r) is the contrast

between the particle and solvent scattering length densities

(SLD) at distance r from the centre of the particle, and Q is

the magnitude of the scattering vector. In the specific case of a

core–shell particle, this is

Fc�sh Qð Þ ¼ Vc ��c ���shð Þ� QRcð Þ þ Vsh��sh� QRshð Þ; ð3Þ

where Rc is the radius of the core, Vc ¼ 4�R3
c=3 is the volume

of the core, Vsh = 4�(Rc + tsh)3/3 is the volume of the overall

particle, tsh is the thickness of the shell, ��c is the contrast

between the core and solvent SLD values, ��sh is the contrast

between the shell and solvent SLD values, and

� xð Þ ¼
3 sin xð Þ � x cos xð Þ½ �

x3
: ð4Þ

More advanced particle geometries may be considered

numerically. To save computation time, we leverage the fact

that, conventionally, a SANS detector is sensitive to two

dimensions of the scattering vector, Qx and Qy, with Qz set to

0. This allows separation of the z dependency of ��(x, y, z), so

that

Fi Qx;Qy

� �
¼
R
x

R
y

exp �i QxxþQyy
� �� �

dx dy

�
R
z

�� x; y; zð Þ dz: ð5Þ

The two separate integrals imply two separate numerical

summations. The integral on the second line involves summing

the SLD along the z axis to the xy plane, which is performed

first. The second step is then to broadcast the resultant sum to

Qx and Qy, which can be computed as either a discrete or a fast

Fourier transform. Much of the computation advantage is

obtained by caching the form amplitude and the result of

FNðQÞ ¼ FiðQÞ expð�iQ � RiÞ as arrays in NumPy (an open-

source Python library for working with numerical arrays;

https://numpy.org/; Harris et al., 2020), where FN is referred to

as the nuclear scattering amplitude.

Magnetic scattering is calculated in an analogous way,

except that FM(Q) = bHVMM(Q) is a vector with three spatial

components. Here M(Q) = [Mx(Q), My(Q), Mz(Q)] is the

Fourier transform of the magnetization vector M(r) =

[Mx(r), My(r), Mz(r)], bH = 2.91 � 108 A�1 m�1 is a conversion

constant for the magnetic scattering length (derived from

other physical constants) (Honecker & Michels, 2013; Mühl-

bauer et al., 2019) and VM is the scattering volume of a

magnetic particle. Due to the nature of the neutron interaction

with the internal field, only the magnetization component

perpendicular to the scattering vector is detected, resulting in

M? Qð Þ ¼
Q� M Qð Þ �Q½ �

Q2
: ð6Þ

A given component (in this case, the y component) of the

magnetic form amplitude for a spherical particle, i, in a non-

magnetic solvent is calculated by

FMiy Qð Þ ¼ 4�

ZR

0

�My rð Þ
sin Qrð Þ

Qr
r2dr; ð7Þ

where �My(r) = bHMy(r) is the magnetic SLD. The particle

position is encoded by multiplying by expð�iQ � RiÞ, analo-

gously to equation (1), and the other components of FMi(Q)

are computed by following the same method, to obtain the

individual particle contributions. The individual particle

contributions are summed to obtain the total amplitudes,

which are processed analogously to equation (6) to obtain the

components of the magnetic amplitude perpendicular to the

scattering vector: F?Mx, F?My and F?Mz.

In an experiment using polarized neutrons, the contribution

of the magnetic scattering to the final detector signal can be

controlled by spin filtering, either before sample scattering by

using an incident-beam polarizer and/or after sample scat-

tering by using neutron-spin filters. For simplicity, we consider

the case where the sample field is aligned with the y axis and

the beam direction is aligned with the z axis, and we leave

correction of spin inefficiencies as a step for data reduction.

The four polarization analysis cross sections [based on the

Moon, Riste and Koehler equations (Moon et al., 1969)] are

d���
d�
¼

1

V
FN � F?My

�� ��2;
d���

d�
¼

1

V
F?Mx � iF?Mz

�� ��2; ð8Þ

for the non-spin-flip and spin-flip signals, respectively. The

‘spin down’ and ‘spin up’ SANSPol intensities are obtained by

summing the above cross sections with the same incident

polarization state so that

d�#
d�
¼

d�þþ
d�
þ

d�þ�
d�

;

d�"
d�
¼

d���
d�
þ

d��þ
d�

;

ð9Þ

and the unpolarized cross section is recovered by adding the

SANSPol intensities:

d�

d�
¼

1

2

d�#
d�
þ

d�"
d�

� �
: ð10Þ

Here, ‘spin up’ is used to indicate a spin flipper in the on state,

equivalent to a ‘minus’ subscript.

In the case where the applied field is strong enough to

approach saturation magnetization (and there is a unity

structure factor), the SANSPol intensities with an imperfect

polarization efficiency can be reduced to

I" Q; �ð Þ ’ F2
N Qð Þ þ F2

M þ 2�PFNFM Qð Þ
� �

sin2 �

I# Q; �ð Þ ’ F2
N Qð Þ þ F2

M � 2PFNFM Qð Þ
� �

sin2 �;
ð11Þ

where P is the beam polarization, � is the angle between the

field and the scattering vector, and FNFM is the nuclear–

magnetic interference term (or ‘cross term’), which can be
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determined explicitly from the difference between I" and I#
(Michels, 2014). We assume that the spin-flipper efficiency

� ’ 1.

2.2. Detector simulation

Typically, one of two approaches are followed when it

comes to treating the finite resolution of SANS instruments,

either to smear the simulated intensity or to desmear the

experimental intensity. Desmearing typically involves an

iterative process to find a model intensity that corresponds to

the experimental intensity after processing with the instru-

ment resolution function, but this can be computationally

intensive and prone to introducing artefacts into the data due

to the sensitivity to initial parameter inputs and choice of

algorithm (Vad & Sager, 2011). Therefore, we take the

approach of smearing the simulated intensity by the instru-

ment resolution function.

The instrument resolution is calculated in different ways,

depending on the instrument. For a monochromatic pin-hole

SANS instrument [e.g. KWS-1/2 at the Jülich Centre for

Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum

(MLZ)], close to the beamstop, the resolution is mostly

determined by geometric considerations (i.e. detector and

collimation distances, sample and collimation aperture sizes,

and detector pixel size); but away from the beamstop, wave-

length spread dominates (Pedersen et al., 1990; Barker &

Pedersen, 1995). On a two-dimensional detector, the resolu-

tion has two components: one parallel to the Q vector (�k) and

one perpendicular (�?). The perpendicular resolution encodes

the geometric factors, while the parallel component depends

on both the geometry and the wavelength spread.

Smearing is performed by processing the simulated cross

section by the instrument resolution function (Pedersen et al.,

1990; Mildner et al., 2011) as follows:

I Qx;Qy

� �
¼

Z
< Q0x;Q0y
� � d�

d�
Q0x;Q0y
� �

dQ0x dQ0y: ð12Þ

Here, the resolution function is a two-dimensional Gaussian

function:

< Q0x;Q0y
� �

¼ < �Qk;�Q?
� �

¼
1

2��k�?

� exp �
1

2

�Qk

�k

� �2

þ
�Q?
�?

� �2
" #( )

: ð13Þ

�Qk and �Q? (the parallel and perpendicular components of

the change in scattering vector, respectively) are derived from

Q = (Qx, Qy) and Q0 ¼ ðQ0x;Q0yÞ as follows:

�Qk ¼ Q0 �Qð Þ � bQQ;
�Q? ¼ Q0 ��QkbQQ�Q

��� ���; ð14Þ

where bQQ is the unit vector parallel to Q. Smearing acts to

smooth the simulated data in a way relevant to the experi-

mental configuration and allows the experimentally detected

Q space to be decoupled from the simulated Q space. The

added flexibility means that the Q space onto which the

simulated cross section is broadcast can have both a higher

resolution and a wider range than the experimental detector.

Smearing is a computationally expensive step in the process,

but time can be saved by pre-computing the resolution func-

tion, <ðQ
0

x;Q
0

yÞ, and caching the result as NumPy arrays.

2.3. Functional overview of algorithm

A functional overview of how the algorithm works is shown

in Fig. 1. The first step is to construct one or more physical

boxes with dimensions set by 2�/Qmin, where Qmin is the

smallest Q value on the detector. Each box is filled with

particles up to the nominal concentration (set as the known

concentration of the experimental sample) and all particles

are forced to random positions to simulate a well dispersed

suspension, checking for the absence of collisions. If the

particle concentration is too high, finding a well dispersed

starting configuration within the bounds of the box becomes

improbable and an error will be raised. We also find that

loading times and initial collision checks become problematic

when the number of particles per box exceeds 	1500. For

magnetic simulations, each particle is initially assigned a

magnetization vector that points in a random direction but has

a magnitude given as an input setting. The number of simu-

lation ‘cycles’ is input at the start of the simulation.

At each iteration of the simulation, an action, chosen at

random, is performed on a single random particle. Following

Musino et al. (2018), actions can entail a small perturbation to

a particle’s position or a jump to be adjacent to another

particle. Other actions are also possible, including an orbit

around a neighbouring particle, maintaining a constant

separation, or a jump to a random empty position, or a

physical rotation of the particle or a coherent rotation of the

particle’s magnetization vector. An action may also involve

varying the scale of the simulated intensity. A ‘cycle’ is

considered complete when all particles have been acted upon

once, at which point a new cycle is started.

After each action, the simulation decides if the action is

accepted or rejected. First, the simulation checks that the

action is physically accepted (i.e. all parameters are still within

bounds and no particles impinge on each other). The simu-

lated detector image is generated, smeared and compared with

the experimental intensity. The model fitness can be deter-

mined in a number of ways but conventionally a reduced chi-

squared is used, where

�2
R ¼

1

Npts � Npar

X Iexp Qx;Qy

� �
� Isim Qx;Qy

� �� �2

�Iexp Qx;Qy

� �2 : ð15Þ

Here, Iexp(Qx, Qy) is the experimental intensity, �Iexp(Qx, Qy)

is the experimental uncertainty, Isim(Qx, Qy) is the simulated

intensity after smearing, Npts is the number of points on the

detector and Npar is the number of free parameters, which is

typically neglected since, for a two-dimensional detector, we

assume that Npts
 Npar. The simulated intensity may also be

calculated by averaging the intensity (after smearing) from
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multiple independent boxes, each containing the same number

of particles.

The goal of the simulation is to minimize j�2
R � 1j. The

simulation is compatible with any number of minimizing

algorithms, but a modified Metropolis–Hastings algorithm is

typically used (i.e a simulated anneal). If a simulation step

results in a negative change to the reduced chi-squared, ��2
R,

the step is instantly accepted. The step can also be accepted if

a random number generator produces a value between 0 and 1

that is less than expð���2
R=TÞ, where T is the temperature of

the simulated anneal. The annealing schedule for T is set

depending on the cycle number and type of simulated anneal.

For example, a fast anneal goes as T = T0/k (where T0 is the

starting temperature and k is the cycle number) (Szu &

Hartley, 1987), while a very fast simulated anneal will set

T ¼ T0 expð�ckÞ, where c is a rate-controlling constant

(Ingber, 1989). Setting T = 0 simplifies to a ‘greedy’ algorithm,

where only negative values for ��2
R lead to acceptance. Once

all cycles are completed or a satisfactory fit is obtained (i.e.

��2
R < 1), the simulation is terminated. If a user is unsatisfied

by the result of a simulation (for example, they may wish to

perform more cycles), a new simulation can be loaded from

the state of a previously completed one.

The code base is written in Python 3.8 and underpinned by

open-source data science libraries available on the Python

Package Index (including NumPy and Pandas; The pandas

development team, 2022). A typical simulation consisting of

100 particles and 200 cycles can be completed on a computer

with an Intel Core i9 processor and 16 GB RAM in 152 min.

2.4. Structural overview of algorithm

Structuring the code base to be mostly object orientated

allows the algorithm to be assembled from modular flexible

components that can be readily modified and substituted.

Components and classes have been designed to have a single

responsibility where feasible and as few dependencies as

possible. In this section, we briefly describe the responsibility

of each class or component (Fig. 2).

Individual particles are represented by an instance of a

particle object, which stores information about the state of the

particle, including its position, orientation and physical para-

meters. A cache of form amplitudes is also stored here, in the

form of NumPy arrays. The box object stores a list of particles,

and tracks if the particles are inside the box and in a physically

acceptable configuration, free from collisions. The scattering

simulation is responsible for performing the calculation of

detector intensities described in Sections 2.1 and 2.2, and also

for determining the goodness of fit with the experimental

intensity.

The state of any of these components can only be modified

by a command. A command encapsulates an action,

performed either on the particle or on the scattering simula-

tion, that changes the state of the simulation. The controller is
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responsible for maintaining a ledger of commands and

updates the state of the simulation depending on the current

command. The evaluator looks at the scattering simulation

before and after a command has been performed, adjudicates

if the command is acceptable, and then updates the state of the

command to reflect whether its action has been accepted or

rejected. Finally, the simulator oversees the entire simulation

by iterating through commands in the controller and coordi-

nating the evaluator.

By structuring the code base to be modular, a high degree of

flexibility is enabled. Different components can be substituted

with others using slightly different implementation details,

and, provided the components expose the same protocol, they

can be substituted without loss of functionality.

2.5. Experiment methods

SANS experiments were carried out at the KWS-1 instru-

ment operated by JCNS at MLZ in Garching, Germany

(Feoktystov et al., 2015; Frielinghaus et al., 2015). The samples

were dispersed in a mixed protonated/deuterated toluene

solution inside a quartz Hellma cell with a 1 mm path length,

and set inside a 3 T superconducting magnet, with the samples

measured at room temperature. The incident neutron wave-

length � was 5 Å and the wavelength spread ��/� was 10%.

The incident neutron polarization was set using a supermirror

polarizer with a radio-frequency spin flipper. The sample-to-

detector distance was varied between 2 and 20 m, to cover a Q

range of 0.002–0.5 Å�1. Data reduction was performed using

the QtiKWS software provided by JCNS, correcting for

detector and polarizer efficiencies along with background, cell

and solvent contributions. The intensity was brought to an

absolute scale using plexiglass as a secondary standard. The

final output was intensity, I, and intensity uncertainty, �I, as a

function of Qx and Qy. The parallel and perpendicular

components of the instrument resolution, �k and �?, were also

calculated as part of the data-reduction process.

Laboratory SAXS measurements were performed on the

GALAXI instrument, which is operated by JCNS,

Forschungszentrum Jülich (Kentzinger et al., 2016). The

samples were dispersed in toluene and filled in borosilicate

capillaries with a 2 mm path length. The wavelength was

1.34 Å and the sample-to-detector distance was 3.5 m,

covering a Q range of 0.004–0.1 Å�1. Full details about the

SANS and SAXS experimental results are described by

Nandakumaran et al. (2021).

3. Results and discussion

Fig. 3 shows how numerical form factors can be calculated by

projecting the scattering length density of a particle onto a

two-dimensional real-space grid. The pixel size in Figs. 3(a)

and 3(d) is 0.4 � 0.4 nm. A higher pixel density results in a
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scattering intensity that is closer to the analytical expression,

but at the expense of computation time. Given the resolution

and Q range of a typical SAS instrument, a pixel size of

approximately this magnitude is sufficient for most applica-

tions. A core–shell particle is shown in Fig. 3(a). The dumbbell

particle shown in Fig. 3(d) is notable for the presence of an

excluded volume in the offset particle, which is typical for

dumbbell nanoparticles in which a particle is grown on a

spherical seed (Wang et al., 2009). The form factor for this type

of advanced particle geometry is not trivial to solve analyti-

cally (Obeidat et al., 2015). The form factors shown in Figs. 3(b)

and 3(e), given by |Fi(Qx, Qy)|2, are determined by considering

the discrete Fourier transform of the SLD shown in Figs. 3(a)

and 3(d), respectively. For a non-spherical particle [such as the

dumbbell particle in Fig. 3(d)], the discrete Fourier transform

in two dimensions depends on the particle orientation. The

resultant radial averages of the two distributions are shown in

Figs. 3(c) and 3( f), with normalization performed by scaling

based on a single particle in a box with dimensions determined

from the Qmin of the two-dimensional images. The numerical

distribution for the core–shell particle shown in Fig. 3(c) is in

good agreement with the analytical profile expected from

equation (3). A fit of the dumbbell profile to a Guinier

approximation (Jacques & Trewhella, 2010) is shown in

Fig. 3( f), obtaining a radius of gyration of 9.85 nm. Given that

the radii of the simulated dumbbell components are 9.0 and

8.0 nm, and the centre-to-centre distance is 10.0 nm, a cylinder

that encloses this dumbbell would have a radius of gyration of

10.06 nm.

Fig. 4 shows the effect of applying a smearing function to

the simulated intensity at every step of the algorithm. The

SANS experiment was performed on a solution of spherical

iron oxide nanoparticles dispersed in toluene under an applied

field of 2.2 T. The SAXS experiment was performed with the

applied field set to 0.9 T (the highest available field for this

instrument). The particle form-factor parameters and poly-

dispersity were determined by previous experiments, with a

nominal volumetric concentration fraction of 1.7 � 10�3

(Nandakumaran et al., 2021). The simulation used 100 parti-

cles with a size distribution that followed the experimental

polydispersity. For these simulations, particle motions were

restricted to the xy plane. Qualitatively, the chains simulated

by the SAXS data are longer, which is attributed to the higher

resolution of the SAXS instrument. The final �2
R without the

smearing algorithm for the SANS data set was 6.75 after 200

cycles, contrasting with 2.52 with the smearing algorithm for

the same number of cycles, demonstrating that a better fit is

obtained when the smearing algorithm is used. The final �2
R for

the SAXS data set was relatively high (979), though this is

attributed to a possible underestimation of the intensity

uncertainty. The sector analyses in Figs. 4(c), 4( f) and 4(i)

were taken by averaging over segments between � � 5�,

where � is the angle with respect to the Qx axis in this case.

The performance of a set of different simulated annealing

schedules is shown in Fig. 5. The target of each anneal was to

fit the SANS data set shown in Fig. 4, with the smearing

function turned on at every step. Three different annealing

schedules were used: a fast simulated anneal starting with an

annealing temperature of 10 (chosen as an arbitrarily large

value), a very fast simulated anneal with the same starting

temperature and a rate-controlling constant of 0.1 per cycle,

and a greedy anneal with zero temperature for every cycle.
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Figure 3
Numerical form-factor simulations. The top row shows (a) a real-space projection of the scattering length density of a core–shell particle, (b) the square
of the modulus of the particle form amplitude as a function of Qx and Qy, and (c) the radial average of the scattering intensity compared with the
analytical profile expected from equation (3). The bottom row (d)–( f ) shows the same distributions for a dumbbell particle. A fit to a Guinier
approximation is shown for comparison.



The simulations were run for 200 cycles and, in every case, the

annealing temperature was set to zero after 100 cycles. Fig. 5(a)

shows the annealing schedule for the fast and very fast

simulated anneals. The final output of each algorithm is

displayed in Fig. 5(b), with the very fast anneal achieving the

best fit quality after 200 cycles (by a small amount). The

success rate of each cycle is shown in Fig. 5(c), defined as the

ratio between the number of successful steps per cycle and the

total steps per cycle. Here, the success rate falls rapidly for the

greedy algorithm, while, for the fast schedule, it remains

relatively high until the annealing temperature is turned off,

suggesting that the temperature is too high to effectively

distinguish moves that improve the fit. Implementing an

adaptive simulate anneal, in which the temperature is adjusted
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Figure 4
A comparison of the output of the reverse Monte Carlo algorithm with and without detector smearing applied to the simulated intensity. Comparisons
are between the experimental intensity (left) and the final simulated intensity (right): (a) SANS with no smearing, (d) SANS with smearing and (g)
SAXS with no smearing. (b), (e) and (h) show the particle distributions in the xy plane that yielded the final simulated intensities in (a), (d) and (g),
respectively. (c), ( f ) and (i) show sector analyses of the data shown in (a), (d) and (g), respectively, with the symbols representing experimental data and
the lines displaying the simulations. Each profile is shifted by a factor of 102 compared with the one below. The field direction is parallel to the y axis. The
experimental data set is based on results described by Nandakumaran et al. (2021)

Figure 5
Algorithm performance as a function of different annealing schedules. (a) Annealing temperature for fast and very fast simulated anneals. After 100
cycles, the temperature is set to 0 for all schedules. The annealing schedule for the greedy algorithm is not shown as the temperature is always 0. (b) The
�2

R values at the end of each cycle. (c) The success rate for each cycle.



according to the success rate of the most recent cycle, could be

a focus for future development.

The effectiveness of the algorithm to model SANSPol data

is shown in Fig. 6. The experimental data were collected by

scattering from 20 � 1.8 nm iron oxide nanoparticles

dispersed in toluene, with the incident neutron beam polarized

in one of two possible states. The simulations were performed

by fitting the spin-up and spin-down detector images [Figs. 6(a)

and 6(b), respectively] simultaneously, with 100 particles

following a size distribution determined by experiments in a

nominal volumetric concentration fraction of 0.72 � 10�3 and

an initial (random) magnetization vector with a given

magnitude. For the purposes of this simulation, an additional

action involving a small coherent rotation of a given particle’s

magnetization vector was included with all other actions

previously described. An additional parameter to linearly

scale all magnetic scattering contributions was also included

(and varied) during the simulation. Multiple starting magne-

tization values were tested but we obtained the best agree-

ment when we used a starting value of 279 kA m�1, which was

estimated from experimental magnetic measurements

reported previously (Nandakumaran et al., 2021). In this case,

the cycle number was initially set for 200 cycles but the

simulation was terminated after 91 cycles, once �2
R dropped

below 1. A less satisfying fit (not shown here) was obtained by

setting the starting magnetization value to 470 kA m�1, which

is approximately the saturation magnetization of iron oxide

(Margulies et al., 1996). The intensity profiles did not show a

strong influence from a structure factor.

Fig. 7(a) shows the angle dependence of the intensity of the

I" � I# detector image shown in Fig. 6(c). If we assume that

the system approaches saturation, the angle dependence of the

intensity should be well described by the sin2 � expression

given in equations (11). The nuclear and magnetic scattering

intensities are separated by fitting sin2 � to the I" � I# detector

image across the measured Q range and recovering the

magnetic scattering from ðFMFNÞ
2=F2

N (Wiedenmann, 2000).

On the basis of refinements of the nuclear and magnetic

scattering intensities, we estimate a core diameter of 20.3 nm

and a magnetization of 293 kA m�1, in good agreement with

the magnetic measurements.

The distribution of particle magnetization vectors and

positions is represented in Fig. 8(a). The net magnetization of

the final distribution can be determined from the total net

moment as follows:

Mtotal ¼

PN
i MiVmiPN

i Vmi

; ð16Þ

where Vmi is the magnetic volume of a particle i (typically the

volume of the iron oxide core) and Mi is the particle magne-

tization vector. For this distribution, Mtotal has a magnitude of

268 kA m�1. In comparison, the net magnetization of the

initial (random) configuration had a magnitude of 11 kA m�1,

coincidentally pointing mostly antiparallel to the field direc-

tion. The orientational distribution is displayed in Fig. 8(b),

which shows a histogram of the angles made between the

particle magnetization vectors and the direction of the field.
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Figure 6
Simulated and experimental SANSPol intensities measured from 20 nm
iron oxide nanoparticles at 3 T. (a) The spin-up detector image. (b) The
spin-down detector image (c) Intensity difference between spin up and
spin down. (d) The unpolarized intensity, recovered by averaging the two
SANSPol intensities. The field direction (parallel to the y axis) is
indicated by the blue arrow.

Figure 7
(a) Angle dependence of the ‘difference’ detector image shown in Fig. 6(c), at various Q values. The symbols represent experimental data, while the lines
show simulated data. (b) The nuclear, magnetic and cross-term intensities determined by fitting the angle dependencies of the difference and unpolarized
intensities to equations (11). Symbols and lines represent experiment and simulation, respectively.



This shows that the majority of particles are aligned to within

�/10 rad of the field direction. We found satisfactory agree-

ment by relying on values for the saturation magnetization

based on measurements with supplementary techniques,

which is important given that this value for nanoparticles is

often reduced when compared with bulk saturation (Goss,

1988; Kodama, 1999; Nedelkoski et al., 2017). However, we

recognize that there may also be cases where a good fit may

only be achieved by also allowing the radius of the magnetic

volume to vary during the simulation, along with the magni-

tude of the particle magnetization. This would be consistent

with experimental findings that the magnetic core size and

magnetic SLD are field dependent, and not necessarily fixed to

the physical size of the oxide phase (Zákutná et al., 2020).

4. Conclusions

We have reported on a reverse Monte Carlo algorithm for

simulating the two-dimensional detector image observed

during either a small-angle neutron scattering or a small-angle

X-ray scattering experiment. The algorithm works by consid-

ering an ensemble of particles in a box and moving the

particles in an iterative manner until the simulated scattering

intensity matches an experimentally acquired image. Particle

polydispersity and the finite resolution of small-angle scat-

tering instruments are intrinsically accounted for within the

simulations. Scattering simulations are underpinned by cross

sections based on the Moon, Riste and Koehler equations,

allowing simulations to take advantage of the sensitivity of

small-angle neutron scattering experiments to neutron polar-

ization and magnetic scattering, which is one of the greatest

benefits of the experimental technique. The ability to account

for two-dimensional scattering intensities and the neutron

polarization state to model the magnetic scattering contribu-

tion distinguishes the present algorithm from previous

numerical models, which have typically focused on one-

dimensional scattering profiles from non-magnetic entities.

Smearing of the detector image using a process underpinned

by the experimental configuration is also featured, and

accelerated by caching pre-calculated resolution functions.

The algorithm can be used to compute fully numerical form

factors, but is also compatible with analytical expressions for

particle form factors, by specifying functions that calculate the

form amplitude from the scattering vector. However, the most

effective use of the algorithm is to model structure factors,

particularly those observed in experiments where particles

self-assemble into structures that are either anisotropic or

short-range ordered. Because the code base is arranged in an

object-orientated structure in a modern open-source

programming language, Python 3, the algorithm is highly

flexible and could be readily adapted for a range of possible

applications.

A maintained repository containing the full code base is

available at https://github.com/lestercbarnsley/SasRMC and is

released for free under the MIT license. We encourage the

community’s participation in future development.
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Mühlbauer, S., Binz, B., Jonietz, F., Pfleiderer, C., Rosch, A.,
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