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PSL-Research University, CMM, 35 rue Saint Honoré, 77305 Fontainebleau, France. *Correspondence e-mail:

loic.sorbier@ifpen.fr

The microstructure of heterogeneous catalysts often consists of multiscale

aggregates of nanoparticles, some of which are highly anisotropic. Therefore,

small-angle X-ray scattering, in classical or anomalous mode, is a valuable tool

to characterize this kind of material. Yet, the classical exploitation of the

scattered intensities through form and structure factors or by means of Boolean

models of spheres is questionable. Here, it is proposed to interpret the scattered

intensities through the use of multiscale Boolean models of spheroids. The

numerical procedure to compute scattered intensities of such models is given

and then validated on asymptotic diluted Boolean models, and its applicability is

demonstrated for the characterization of alumina catalyst supports.

1. Introduction

Heterogeneous catalysts are of primary importance in the

production of chemicals (Dingerdissen et al., 2008). These

catalysts often consist of nanoparticles (the active phase)

deposited on a nanostructured support with scales ranging

from nanometres to micrometres (Weckhuysen, 2009). The

support or the active phase may be viewed as a collection of

randomly stacked grains. This organization may be multi-

scaled, such as aggregates and agglomerates of platelets for

alumina supports (Speyer et al., 2020; Wang et al., 2015),

aggregates of cobalt nanoparticles for Fischer–Tropsch cata-

lysts (Humbert et al., 2018), or aggregates of sulfur slabs for

hydrodesulfurization (HDS) catalysts (Humbert et al., 2021).

The particle-size distributions of the support or active phases

are often well represented by a normal or lognormal distri-

bution law depending on whether they are formed by

coalescence or ripening (Granqvist, 1976; Datye et al., 2006).

Detailed characterization of the microstructure of hetero-

geneous catalysts is important to optimize their performance

(activity, selectivity) (Munnik et al., 2014).

Small-angle X-ray scattering (SAXS) probes the fluctuation

of electron density in a material (Li et al., 2016) at the nano-

metre scale. Therefore, it is well adapted to the characteriza-

tion of heterogeneous catalysts. Using the anomalous mode

(ASAXS) allows one to specifically probe the active phase

(Haubold & Wang, 1995; Benedetti, 1997; Polizzi et al., 2002).

SAXS has already been widely employed for the character-

ization of colloidal suspension and materials like cement,

metallic nanoparticles, oil, polymers, pharmaceuticals, food

and proteins (Li et al., 2016). SAXS relates the intensity I

scattered at a wavevector q with the Debye correlation func-

tion or normalized covariance of the sample �ðrÞ. Conven-

tional data processing is carried out by splitting the scattered

intensity into form and structure factors. Such an approach is
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very suitable for dilute suspensions, with the form factor being

restricted to simple morphology and the structure factor being

restricted generally to hard-core repulsion. However, for

microstructures such as heterogeneous catalysts, conventional

data processing may not be relevant. For instance, the multi-

scale models proposed by Beaucage (1995) give parameters

that are easily interpretable only for fractal morphology,

which is seldom encountered in heterogeneous catalysis. The

program MIXTURE (Konarev et al., 2003) fits the experi-

mental scattering curve by modeling the multicomponent

system with different form factors considering interparticle

interactions. These interactions are described by structure

factors calculated within the Percus–Yevick approximation for

hard-sphere or sticky hard-sphere potential. However, the

modeling of multiscale aggregation of particles is not obvious

and gamma or lognormal particle-size distributions are not

available. Another approach is proposed by Bressler et al.

(2015b) with the McSAS software and gives a distribution of

an arbitrary shape from a single form factor.

Exploitation of the SAXS intensity can also be performed

in a less classical way thanks to Boolean models, either by

direct calculation of IðqÞ from a known covariance or by

inverting the relation to extract �ðrÞ. The direct approach has

been applied on a one-scale Boolean model of spheres (Gille,

2011), a union and intersection of Boolean models, a dead

leaves model, a clipped Gaussian field model, and a Gaussian

field intersection model (Gommes, 2018). The reverse

approach has been applied for a one-scale Boolean model of

spheres with monodisperse or exponential size distribution,

Poisson polyhedra, the intersection of two Poisson polyhedron

models, and the intersection of a Poisson polyhedron and the

complement of a Poisson polyhedron (Sonntag et al., 1981).

Both approaches only require a single 1D Fourier transform

and a numerical differentiation to obtain the SAXS intensity,

which makes them computationally efficient. They are,

however, restricted to models with known analytical covar-

iance, namely spheres, and a very simple particle-size distri-

bution (Sonntag et al., 1981; Gille, 2011) or an arbitrary but

discrete distribution (Gommes, 2018). Sorbier et al. (2019)

proposed to extend this approach to multiscale Boolean

models of spheres with arbitrary distribution laws, giving

explicit formulae for lognormal, gamma and exponential

distributions. Their work is, however, restricted to spherical

particles and aggregates.

A matching correlation function does not unambiguously

define a microstructure (Gommes et al., 2012; Gommes, 2018).

Yet, some parameters of Boolean models can be constrained

either by knowledge of the synthesis process or from

complementary characterization techniques, which can

dramatically reduce the microstructures matching with a

specified correlation function and is the strength of this kind of

approach compared with conventional data processing.

The aim of this article is thus to extend the work of Gommes

(2018) and Sorbier et al. (2019) to spheroidal grains and/or

aggregates for interpretation of SAXS intensities by multi-

scale models. By multiscale we mean both the possibility to

take into account aggregation of objects on very different size

scales and allowing a size distribution of elementary objects or

aggregates. Such an approach would enable the simulation of

anisotropic morphology such as aggregation of platelets in an

alumina support or aggregation of sulfur slabs in an HDS

catalyst. In the limiting cases, it could approximate Boolean

models of rods or thin discs for very high and very low aspect

ratio of the spheroids, respectively. Section 2 recalls the basic

equations for Boolean models and how to compute the SAXS

intensity from the geometrical covariogram of the models.

Section 3 is devoted to the calculation of the geometrical

covariogram for a population of spheroids. In Section 4, we

show results for one-scale Boolean models of spheroids and

validate the approach with asymptotic models, isolated

spheroids, isolated needles and isolated discs. Finally, Section 5

is devoted to an example of an application of a multiscale

Boolean model of spheroids to the interpretation of SAXS

data obtained on alumina catalyst supports.

2. Computation of scattered intensities and Boolean
models

2.1. Computation of scattered intensities

For a known normalized covariance �(h) the SAXS inten-

sity reads (Levitz & Tchoubar, 1992)

I qð Þ ¼ Ie qð ÞVp 1� pð Þ�2�2�

q

@

@q
< F �ð Þ qð Þ½ �
� �

; ð1Þ

where q is the wavevector, Ie(q) is the intensity scattered by

one electron, V is the volume irradiated by the incident X-ray

beam, <ðzÞ is the real part of z, p is the grain volume fraction

and F is the Fourier transform defined by

F gð Þ qð Þ ¼
Rþ1
�1

g rð Þ expð�iqhÞ dh: ð2Þ

Equation (1) can be evaluated numerically by an efficient fast

Fourier transform (FFT) algorithm. The scattering intensity

for q! 0 is given by

I q! 0ð Þ ¼ Ie qð ÞVp 1� pð Þ�2A3; ð3Þ

where A3 is the integral range of � defined by

A3 ¼
R1
0

4�h2� hð Þ dh: ð4Þ

2.2. One-scale Boolean models

Boolean models are generated by sampling random Poisson

points with a � density and implanting on each Poisson point a

random primary grain A0 (Matheron, 1967, 1975; Jeulin, 2022).

The random Boolean set A is the union of the grains A0.

Overlapping of the grains is allowed. We will refer hereafter to

the case of a biphasic material where the solid fraction has a

finite (� > 0) electronic density and the void fraction has a � =

0 electronic density, otherwise known as a porous material.

The approach can, however, be easily extrapolated to mate-

rials with more than two phases.
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The geometrical covariogram of the grain A0 completely

defines one-point (porosity or solid fraction) and two-point

statistics (void–void, void–solid and solid–solid covariances).

The geometrical covariogram K(h) is defined as the expecta-

tion E of the volume of the intersection between the grain A0

and A0h, the grain translated by a vector h. In the following we

will restrict ourselves to isotropic models where K only

depends on h = khk:

K hð Þ ¼ E V A0 \ A0hð Þ
� �

: ð5Þ

The grain volume fraction p of a Boolean set is related to the

intensity of the process � and to K by

p ¼ 1� exp½��K 0ð Þ�; ð6Þ

where K(0) is the expectation of the volume of the primary

grains. The porosity of the model " = 1 � p is trivially related

to the volume fraction p. The two-point correlation function of

the set (of the solid phase) C11(h), the two-point correlation

function of the complement of the set (of the void phase)

C00(h) and the normalized covariance �(h) are related by

C00 hð Þ � "2
¼ C11 hð Þ � p2

¼ p"� hð Þ; ð7Þ

where the normalized covariance reads (Gommes, 2018;

Sorbier et al., 2019)

� hð Þ ¼
1� p

p
exp½�K hð Þ� � 1
� �

: ð8Þ

From the normalized covariance, it is possible to compute the

specific surface area SV by (Debye et al., 1957)

SV ¼ �4p 1� pð Þ
@� hð Þ

@h

����
h¼0

: ð9Þ

2.3. Union and intersection of models

Union and intersection of Boolean models allow one to

produce a grain-size distribution (union) or multiscale models

(intersection) while keeping closed analytical formulae.

The porosity or void–void two-point correlation function of

the union of Boolean models is the product of the porosity or

void–void correlation functions of each model. The solid

fraction or solid–solid two-point correlation function of the

intersection of Boolean models is the product of the solid

fraction or solid–solid correlation functions of each model

(Gommes, 2018; Sorbier et al., 2019). A one-scale Boolean

model with a size and shape distribution of grains may be

viewed as a union of Boolean models of these grains having a

specific size and shape. If K(h, R, �) is the geometrical

covariogram of a grain of size R and aspect ratio �, and

P(R, �) is the size and aspect-ratio distribution of the grains,

the geometrical covariogram of the set reads

K hð Þ ¼
R1
0

R1
0

P R; �ð ÞK h;R; �ð Þ dR d�: ð10Þ

The calculation of K(h, R, �) allows one to compute the

scattered intensities for the intersection and union of Boolean

models of grains with a size and shape distribution from

equations (1), (8) and (10).

3. Geometrical covariogram of spheroids

In this section, we consider spheroids as ellipsoids with semi-

axes (R, R, �R). Such a solid has a gyration radius of

RG ¼ R½ð2þ �2Þ=5�1=2.

3.1. Single size

In this subsection, the geometrical covariogram of single-

size spheroids is calculated, i.e K(h, R, �) in equation (10). To

this end, a change of coordinates is applied so as to transform

the spheroid into a unit sphere, the covariogram of which is

known (see Fig. 1):

ðx; y; zÞ ! X ¼
x

R
;Y ¼

y

R
;Z ¼

z

�R

� �
: ð11Þ

In these new coordinates the translation vector H is
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Figure 1
Coordinate change to transform a spheroid into a unit sphere, where rs is the norm of the translation vector in the new coordinates.



H ¼ dX ¼
dx

R
; dY ¼

dy

R
; dZ ¼

dz

�R

	 

: ð12Þ

The norm of the translation vector is denoted as rs = kHk. It is

given by

rs dx; dy; dz;R; �ð Þ ¼
1

R
dx2 þ dy2 þ

dz

�

	 
2
" #1=2

: ð13Þ

Now, the volume Vs of the intersection of two unit spheres

distant by rs = k(dX, dY, dZ)k is (Guinier & Fournet, 1955)

Vs ¼
4

3
� 1�

3

4
rs þ

rs
3

16

	 

H 1�

rs

2

� �
; ð14Þ

where H is the Heaviside step function.

Hence the volume V(dx, dy, dz) of the intersection between

the spheroid and its translation by the vector (dx, dy, dz) reads

V dx; dy; dzð Þ ¼ Vs�R3

¼
4

3
��R3 1�

3

4
rs þ

rs
3

16

	 

H 1�

rs

2

� �
; ð15Þ

where rs is defined by equation (13).

It remains to calculate the expectation of the volume

V(dx, dy, dz) for all possible translation directions [see

equation (5)]. If the translation vector is expressed in spherical

coordinates (see Fig. 2) as

h ¼ h cos � sin ’; h sin � sin ’; h cos ’ð Þ; ð16Þ

we have

rs h;R; �; ’ð Þ ¼
h

R
1þ

1

�2
� 1

	 

cos2 ’

� �1=2

; ð17Þ

where rs does not depend on �. This is due to the symmetry of

the spheroid with respect to � (the spheroid is a sphere

elongated or compressed along the z direction). The geome-

trical covariogram reads

K h;R; �ð Þ ¼
1

4�

Z�¼2�

�¼0

Z’¼�
’¼0

4

3
��R3 1�

3

4
rs þ

rs
3

16

	 


�H 1�
rs

2

� �
sin ’ d’ d�: ð18Þ

The integration over � is trivial (rs does not depend on �) and

the integration over ’ may be reduced to the ½0; �=2� range

due to the symmetry rs(�� ’) = rs(’) and sinð�� ’Þ ¼ sinð’Þ,
such that

K h;R; �ð Þ ¼
4

3
��R3

Z�=2

0

1�
3

4
rs þ

rs
3

16

	 


�H 1�
rs

2

� �
sin ’ d’: ð19Þ

3.2. Size distribution

In the following we will suppose that the spheroidal grains

have a size distribution of P(R) but a constant aspect ratio of

�. From equation (10), the geometrical covariogram reads

K hð Þ ¼

Z1
0

Z�=2

0

4

3
��R3 1�

3

4
rs þ

rs
3

16

	 


�H 1�
rs

2

� �
sin ’ d’P Rð Þ dR: ð20Þ

Let us define �ðh; �; ’Þ ¼ ðR=2Þ rs ðh;R; �; ’Þ. The symbol �
does not depend on R. Let us also remark that

H 1�
rs

2

� �
¼ H R 1�

rs

2

� �h i
¼ H R� �ð Þ: ð21Þ

After changing the order of integration with respect to ’ and

R, we have

K hð Þ ¼
4

3
��

Z�=2

0

Z1
0

R3 �
3

2
R2�þ

�3

2

	 


�H R� �ð ÞP Rð Þ dR sin ’ d’: ð22Þ

Since H(R� �) is equal to 0 for R < � and equal to 1 for R� �,

and since � does not depend on R, this expression can be

rewritten as

K hð Þ ¼
4

3
��

Z�=2

0

Z1
�

R3
�

3

2
R2�þ

�3

2

	 

P Rð Þ dR sin ’ d’: ð23Þ

If we define Sn
PðrÞ, the partial uncentered moment of order n

of P, by

Sn
P rð Þ ¼

R1
r

RnP Rð Þ dR; ð24Þ

then equation (23) can be expressed with these uncentered

moments as
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Figure 2
Spherical coordinates of the translation vector (original coordinates).



K hð Þ ¼
4

3
��

Z�=2

0

S3
P �ð Þ �

3

2
�S2

P �ð Þ þ
�3

2
S0

P �ð Þ

� �
sin ’ d’: ð25Þ

Provided that the P distribution allows one to evaluate its

partial moments in a closed analytical form, equation (25) can

be evaluated numerically. Partial moments can be analytically

evaluated for monomodal, exponential, gamma, lognormal

(Sorbier et al., 2019) and normal distribution laws, for

example.

3.3. Implementation in plug im! module

Equations (25), (8) and (1) have been implemented in

Fortran code and provided through a module called

SAXSBME for the plug im! platform (Moreaud, 2018). The

integral in equation (25) is numerically evaluated by the

QUADPACK routines of the SLATEC library (Piessens et al.,

1983). Intersections and unions of Boolean models of ellip-

soids on up to three scales are provided. Monomodal, expo-

nential, gamma and lognormal size distribution laws are

implemented with independent parameters for each scale. The

aspect ratio of ellipsoids is kept constant for each scale.

Equation (1) is implemented using the FFT routines of the

Intel Math Kernel Library. The sampling of the covariance

�(h) is performed in direct space with 2n points equally spaced

from 0 up to hmax ¼ 2mR1
G, where R1

G is the expectation of the

gyration radius of the larger scale. Parameters n and m control

the minimum and maximum scattered wavevectors (qmin and

qmax), the sampling step in q space (�q), and the computation

times. The minimum and maximum scattered wavevectors are

calculated as

qmin ¼ �q ¼
�

2n�mR1
G

ð26Þ

and

qmax ¼
2n�2 � 1ð Þ�

2n�m�1R1
G

: ð27Þ

Use of parameters n = 22 and m = 12 leads to computation

times in the order of a second on a standard laptop computer

(Intel Core i5-8250U, 8 GB RAM).

4. Validation on diluted models and one-scale Boolean
models

The asymptotic case of �! 0 yields isolated objects for which

analytical formulas are known or are numerically imple-

mented in independent software.

4.1. Isolated spheroids

The SASFit software (Breßler et al., 2015a; Kohlbrecher &

Breßler, 2022) allows the calculation of scattered intensity for

isolated spheroids. Fig. 3 compares the values of scattered

intensities from the reference SASFit software with those of

this work. A perfect agreement is found for any aspect ratio.

4.2. Isolated rods and discs

The formula for scattered intensity ID(q) from infinitely thin

discs of radius R [gyration radius R/(2)1/2] is already known

(Guinier & Fournet, 1955):

ID qð Þ ¼
2

q2R2
1�

J1 2qRð Þ

qR

� �
; ð28Þ

where J1 is the first-order Bessel function of the first kind. Thin

discs are the limiting case of a spheroid for �! 0. The scat-

tered intensity of infinitely thin rods of length 2�R (gyration

radius �R/3) is also known:
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Figure 3
Scattered intensities from isolated spheroids. The lines are from SASFit
computation and the symbols are numerical computation from this work.

Figure 4
Scattered intensities from isolated discs (blue) and rods (red). The lines
are analytical formulae (28) and (29), and the symbols are numerical
computation from this work.



IR qð Þ ¼
Si 2q�Rð Þ

q�R
�

sin2 q�R

q�Rð Þ
2 : ð29Þ

Thin rods are the limiting case of a spheroid for �!1. Fig. 4

shows a comparison of equations (28) and (29) with a

numerical computation (� = 0.001 for discs and � = 1000 for

rods). For low q (large scale) the agreement is very good,

whereas discrepancies are found at high q (small scale) due to

non-asymptotic values of �. These results indicate that there

are no numerical problems even for very high or very low

aspect ratio.

4.3. One-scale Boolean models of spheroids

Fig. 5 shows some simulated intensities for a one-scale

Boolean model of spheroids with monomodal size distribu-

tion. The case � = 1 corresponds to a one-scale Boolean model

of spheres. At a fixed volume fraction p, oscillations are more

marked for spheres and prolate spheroids (� > 1) than for

oblate spheroids (� < 1). At a fixed aspect ratio �, the higher

the volume fraction, the less pronounced the oscillations. One

realization for each model is illustrated in Fig. 6.
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Figure 5
A one-scale Boolean model of spheroids with monomodal size
distribution R = 10. (a) For p = 0.5 and varying aspect ratio �. (b) For
� = 0.2 and varying volume fraction p. RG is the gyration radius of the
primary grain.

Figure 6
A one-scale Boolean model of spheroids with monomodal size
distribution, p = 0.2 and varying aspect ratio: (a) � = 1, (b) � = 0.2 and
(c) � = 5.



5. Application to the characterization of alumina
catalyst supports

To highlight the interest of multiscale Boolean models of

spheroids, in this section we show how they can be used to

interpret SAXS data of alumina catalyst supports. Two

different samples are considered in this work: boehmite, and

�-alumina obtained by calcining this boehmite. Their textural

properties obtained from nitrogen physisorption and helium

pycnometry are detailed in Table 1. The first sample is an

extrudate of boehmite AlOOH. The raw boehmite was an

industrial product, provided by Axens (https://www.axens.

net), prepared by precipitation from aluminium sulfate and

sodium aluminate solutions. It was shaped by kneading

extrusion, and finally dried at 80�C. The alumina catalyst was

obtained by calcining the boehmite extrudates in an oven at

540�C. Catalyst supports are used as pellets in industrial

reactors. In addition to verifying the potential of this modeling

approach to simulate SAXS curves, we will take the oppor-

tunity to visualize the effect of calcination on the multiscale

arrangement of boehmite particles. Boehmite particle aggre-

gates present an elongated shape as observed by scanning

transmission electron microscopy (STEM) (Ferri et al., 2022).

Therefore, an ellipsoidal morphology makes sense to describe

these aggregates of particles.

5.1. SAXS data acquisition

SAXS was carried out on the SWING beamline of

synchrotron SOLEIL (Saclay, France) with a 12 keV incident

beam. Boehmite and alumina extrudates were first crushed to

obtain fine powders, before being pelleted (thickness 0.2 mm)

for analysis. In order to cover a wider range of q values, three

sample–detector distances (1, 3 and 6.7 m) were employed.

The scattering images were recorded using an AVIEX

PCCD170170 detector. To increase the statistics of the scat-

tering intensity, ten images were acquired at each detector–

sample configuration. Through 1D reduction, raw data were

corrected with respect to acquisition time, geometrical effects

like the projection of the detector plane on the sphere with

radius equal to the sample–detector distance and the incoming

photon flux, and then averaged to increase the statistics.

Finally, in order to calibrate the intensity in absolute units, i.e.

expressed as differential scattering cross section per unit

volume in cm�1, glassy carbon was measured, and a correction

factor was calculated from the ratio between the theoretical

data and the experimental data. Experimental SAXS data are

plotted for boehmite and alumina in Fig. 7(a) and nitrogen

sorption data are plotted in Fig. 7(b).

5.2. Fit on multiscale Boolean model of spheroids

The experimental data can successfully be fitted with SAXS

simulated curves obtained from two significantly different

multiscale Boolean models [see Figs. 8(a) and 8(b)]. These

models are represented in Figs. 9 and 10, which are further

discussed in Section 5.5 to highlight the effect of calcination.

Three scale levels are necessary to describe the boehmite and

alumina structures, as already seen in the literature from

STEM images (Speyer et al., 2020): the scales of particles,

aggregates and agglomerates. Hence, the models M have been

built by means of the intersection of three Boolean models, i.e.

M = A \ B \ C, where A, B and C are Boolean models of

spheroids accounting for the scales of particles, aggregates and
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Table 1
Textural properties of catalyst supports.

Sample
Specific surface
area SBET (m2 g�1)

Porous volume
VP (cm3 g�1)

Structural density
�S (g cm�3)

Boehmite AlOOH 288 0.33 2.8
�-alumina Al2O3 252 0.53 3.2

Figure 7
(a) Experimental SAXS data for boehmite and �-alumina. Intensities are
normalized by I(0) and the dashed line is a guide representing the Porod
regime (q�4). (b) Nitrogen physisorption data for boehmite and �-
alumina, where VAds is the volume adsorbed and P refers to pressure.



agglomerates, respectively. Each scale has its own aspect ratio

�, volume fraction p, and parameters � and 	 for modeling its

size distribution by a lognormal law. All parameters were

fitted, with the only constraint being that the mean size of

agglomerates is larger than that of aggregates whose mean size

is larger than that of particles. The complexity of the models

was fixed not from the shape of the SAXS intensities but from

the boehmite and alumina structures as described in the

literature (Speyer et al., 2020). The parameters of the model

are reported for both samples in Table 2. From the scale

parameter � and the shape parameter 	 of the lognormal law,

it is possible to calculate the mean radius (in volume) of the

ellipsoids RV and the corresponding gyration radius RG for the

three different scales by the following formulae:
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Figure 8
Experimental SAXS data (symbols) for (a) boehmite and (b) �-alumina,
and simulated SAXS data (curves) obtained from multiscale Boolean
models of spheroids. Intensities are normalized by I(0).

Figure 9
Simulation of boehmite with a Boolean model according to the
parameters in Table 2: left agglomerate scale (size 300 nm3,
0.3 nm voxel�1) and right aggregate scale (size 30 nm3, 0.1 nm voxel�1).
Agglomerates are too large to be seen at these scales.

Figure 10
Simulation of �-alumina with a Boolean model according to the
parameters in Table 2: left agglomerate scale (size 300 nm3,
0.3 nm voxel�1) and right aggregate scale (size 30 nm3, 0.1 nm voxel�1).
Agglomerates are too large to be seen at these scales.

Table 2
Parameters of the intersection M = A \ B \ C of Boolean models of
spheroids representative of the boehmite and �-alumina samples and
induced textural properties.

Scale Fit parameters Boehmite �-Alumina

Particles A �3 (Å) 3.46 –
	3 (Å) 0.1 –
�3 0.55 –
RV3

, �2RV3
(Å) 33, 18 –

RG3
(Å) 22 –

p3 0.93 1
Aggregates B �2 (Å) 2.7 3.22

	2 (Å) 0.48 0.15
�2 3.5 3
RV2

, �2RV2
(Å) 33, 117 27, 81

RG2
(Å) 56.3 40.2

p2 0.54 0.37
Agglomerates C �1 (Å) 7.2 7.2

	1 (Å) 0.48 0.45
�1 1 1
RV1

, �1RV1
(Å) 3000, 3000 2720, 2720

RG1
(Å) 2324 2110

p1 0.94 0.92
Total M SBET (m2 g�1) 304 230


meso = p1(1 � p2 p3) 0.47 0.58

 = 1 � p1p2 p3 0.53 0.66
Vmeso ¼ 
meso=ð1� 
Þ�S (cm3 g�1) 0.35 0.53
Vtot ¼ 
=ð1� 
Þ�S (cm3 g�1) 0.40 0.61



RV ¼ exp �þ
7	2

2

	 

ð30Þ

and

RG ¼ RV

2þ �2

5

	 
1=2

: ð31Þ

Furthermore, the specific surface areas and the porous

volumes have been calculated from equations (9) and (6) and

experimental values of structural densities. Due to the lack of

data at q < 10�3 Å�1, the parameters of the agglomerates scale

are very uncertain. For the boehmite model, the platelets are

modeled as flat ellipsoids that are twice as large as they are

thick and aggregates are modeled as elongated grains that are

3.5 times as long as they are large. For both samples, the scale

that contributes most to the scattering (p closest to 0.5) is the

aggregate scale made of elongated grains.

5.3. Comparison with nitrogen physisorption

No adequate analytical SAXS model allows one to correctly

describe the microstructure of alumina as the structure is very

complex due to the calcination effect. However, the specific

surface and the porous volume can be compared with those

measured by nitrogen physisorption on extrudates. Impor-

tantly, the two porous volumes must be compared with

caution. The nitrogen physisorption volume leads to a meso-

porous volume, considering pore sizes between 2 and 50 nm.

In comparison, the total porous volume calculated from the

Boolean model is the sum of micro-, meso- and macro-porous

volume, from �2 to �300 nm. The two are not directly

comparable. Thus, it seems more accurate to compare the

nitrogen physisorption porosity with the simulated intra- and

inter-aggregate porosity p1(1 � p2p3), excluding the inter-

agglomerate porosity (1 � p1). The simulated specific surface

areas, 304 and 230 m2 g�1 for boehmite and alumina, respec-

tively, are comparable to those obtained by nitrogen physi-

sorption, 288 and 252 m2 g�1, respectively. Considering the

uncertainties on the structural density (2.8 and 3.2 g cm�3)

and on the nitrogen physisorption values, the simulated values

are in good agreement with experimental ones. Concerning

the mesoporous volume, 0.35 and 0.53 ml g�1, respectively,

they are also in good agreement with those measured by

nitrogen physisorption (0.33 and 0.53 ml g�1, respectively).

5.4. Comparison with other SAXS data interpretation

Traditionally, absolute-scale measurements allow one to

calculate specific surface area from the Porod slope at large q

and the porosity from the whole curve. However, for multi-

scale material such as boehmite and alumina, the SAXS signal

takes into account all the kinds of porosity (microporosity,

mesoporosity and part of macroporosity) in the q range of

measurement. Hence, it is difficult to decorrelate all the

contributions and the calculated porosity cannot be directly

compared with the nitrogen physisorption. Moreover, in

boehmite and alumina, the quantity of adsorbed water mol-

ecules can significantly vary, which can impact appreciably the

electronic density of the material and so the calculation of

porosity and specific surface area. Besides, traditional data

interpretation is unable to provide more information such as

object anisotropy or the width of their size distribution. Data

processing using the Beaucage model (Beaucage, 1995) is only

possible for boehmite data (Speyer et al., 2020). This approach

has been applied to the boehmite sample and has led to the

estimation of various parameters: the gyration radius of the

particles RG3
¼ 11 Å, the aggregates’ gyration radius

RG2
¼ 60 Å, the aggregates’ mass fractal dimension df2

¼ 2:5,

the agglomerates’ gyration radius RG1
¼ 2560 Å and the

agglomerates’ fractal dimension df1
¼ 3:2, which corresponds

to a surface fractal dimension of 2.8 for dense objects (Speyer

et al., 2020). Compared with the Beaucage model value, the

simulated particle gyration radius is of the same order of

magnitude but quite a bit higher. However, the crystallite

gyration radius estimated by the Beaucage model is quite

uncertain as the curve inflection is not significant in the q

range corresponding to the crystallites, around 2 � 10�1 Å�1.

Nonetheless, the gyration radius estimated from the Beaucage

model and the simulated ones, for both aggregate and

agglomerate scales, are in very good agreement. The simulated

RG2
and RG1

, 56 and 2324 Å, respectively, are comparable to

the estimated values of 60 and 2560 Å, respectively, from the

Beaucage model. Finally, the simulated aspect ratios of the

aggregates and agglomerates can be compared with the fractal

dimensions obtained by the Beaucage model. The fractal

dimension of the aggregates is found to be 2.5, which is

representative of a moderately elongated structure, as a

dimension of 1 corresponds to a fiber morphology and 3 to a

sphere (Schaefer & Hurd, 1990). However, the dimension of

the agglomerates is higher than 3, which indicates dense and

almost spherical objects. The simulated ellipsoidal morphol-

ogies correctly convey these characteristics: ellipsoids related

to aggregates are more elongated, with �2 = 3.5, whereas

agglomerates are better represented with spheres (�1 = 1). To

conclude, spheroidal Boolean models are well adapted to

boehmite and alumina microstructure, and allow one to

simulate SAXS and nitrogen physisorption data comparable

to the experimental data.

5.5. Effect of calcination on the microstructure

As observed in Figs. 9 and 10, the microstructure before and

after calcination is significantly different. The agglomerate

scale is not modified by the calcination. The aggregate scale is

deeply altered, resulting in a change of porous volume and

specific surface area. In fact, during calcination, the aggregates

are densified, as their porosity decreases from 7 to 0% due to

the crystallite sintering phenomenon, which leads to a

decrease of the specific surface area. This densification is

accompanied by crystallographic transformation and dehy-

dration (from AlOOH to �-Al2O3), also resulting in a

decrease of material volume fraction at the agglomerate scale

p2 p3, from 0.50 to 0.37. The ratio between these two values,

1.36, is directly comparable with the theoretical ratio between

the AlOOH and �-Al2O3 molar volumes (1.34). The size of
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aggregates also reduces, with the gyration radius decreasing

from 56.3 to 40.2 Å, even more than the size decrease

expected from the volume fraction ratio. It can be assumed

that fragmentation phenomena also occur during calcination,

which could explain the significant decrease in aggregate size.

All these modifications are well illustrated in Figs. 9 and 10,

and explain the increase of the porous volume.

6. Conclusions

Numerical computation of scattered intensities of multiscale

Boolean models of spheroids allows one to take into account

anisotropic primary grains such as alumina platelets or sulfur

slabs. We provide a Fortran implementation via the plug im!

platform. The code has been validated by considering analy-

tical formulae and results from the SASFit software in the

asymptotic case of diluted models (isolated grains). Imple-

mentation is efficient enough to compute scattered intensities

on timescales of the order of a second. We have shown how

such an approach may help to interpret SAXS data acquired

on alumina catalyst supports. It has allowed us to interpret the

experimental data through geometrical parameters such as the

volume fraction, radius and elongation of particles, aggregates,

and agglomerates. The comparison of results obtained on

boehmite and on �-alumina, before and after calcination,

highlighted the major modifications due to sintering, crystal-

lographic, dehydration and fragmentation phenomena. Such a

study would not have been possible without the use of

morphological models and the computation of their SAXS

diagram. Moreover, morphological models make it possible to

compute other morphological properties such as specific

surface area, nitrogen physisorption isotherm (Hammoumi et

al., 2022), geometrical tortuosity (Chaniot et al., 2019) and

diffusion tortuosity factor (Wang et al., 2017).
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