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An open source Python package named xrd_simulator, capable of simulating

geometrical interactions between a monochromatic X-ray beam and a

polycrystalline microstructure, is described and demonstrated. The software

can simulate arbitrary intragranular lattice variations of single crystals

embedded within a multiphase 3D aggregate by making use of a tetrahedral

mesh representation where each element holds an independent lattice. By

approximating the X-ray beam as an arbitrary convex polyhedral region in space

and letting the sample be moved continuously through arbitrary rigid motions,

data from standard and non-standard measurement sequences can be simulated.

This implementation is made possible through analytical solutions to a modified,

time-dependent version of the Laue equations. The software, which primarily

targets three-dimensional X-ray diffraction microscopy (high-energy X-ray

diffraction microscopy) type experiments, enables the numerical exploration of

which sample quantities can and cannot be reconstructed for a given acquisition

scheme. Similarly, xrd_simulator targets investigations of different measurement

sequences in relation to optimizing both experimental run times and sampling.

1. Introduction

Three-dimensional X-ray diffraction (3DXRD) covers a class

of experimental techniques that facilitate the nondestructive

study of polycrystalline materials on an inter- and intra-

granular level. In its original form, 3DXRD, which is some-

times referred to as high-energy X-ray diffraction microscopy

(HEDM) (Bernier et al., 2020), was pioneered by Poulsen

(2004) and co workers. The data for 3DXRD are acquired

using monochromatic, parallel, hard X-ray beams (10–

100 keV) and a 2D area detector that integrates the diffraction

signal from a rotating polycrystalline sample. The samples

typically studied using 3DXRD, in contrast to those studied

with powder diffraction techniques, are polycrystals with a

limited number of grains, allowing individual diffraction peaks

to be resolved on the 2D detector image. The recorded

diffraction peaks can be analysed using a plethora of methods

to reconstruct, among other things, grain orientations (Laur-

idsen et al., 2001; Sharma et al., 2012a,b), grain topology

(Poulsen & Schmidt, 2003; Poulsen & Fu, 2003; Alpers et al.,

2006; Batenburg et al., 2010), and grain strain or stress tensors

(Oddershede et al., 2010). The beam cross section and angular

step size in 3DXRD must be selected such that a limited

number of grains are illuminated during detector readout,

limiting spot overlap and revealing the individual diffraction

peaks from grains within the aggregate in the 2D detector

images. 3DXRD geometries using a narrow beam cross

section, smaller than the grain diameter, are often referred to
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as scanning-3DXRD (Hayashi et al., 2015). These methods

allow for the study of intragranular effects (Hayashi et al.,

2017; Hektor et al., 2019; Henningsson et al., 2020) at the cost

of having to scan the sample across the narrow beam to collect

the full diffraction signal. Another branch of 3DXRD is

diffraction contrast tomography (DCT) (Ludwig et al., 2009),

where the detector is placed close to the sample such that the

projection of individual grain shapes can be seen in the

recorded diffraction image. Using iterative reconstruction

methods [e.g. Reischig & Ludwig (2020)] in conjunction with

DCT methods, excellent resolution of the grain shapes can be

achieved at the cost of strain resolution (Nervo et al., 2014).

For an in-depth summary of the state of the art in hard X-ray

microscopy see Poulsen (2020).

In all of the aforementioned 3DXRD methods, to recon-

struct the sample it is necessary to model the sample on a

granular or even intragranular level, which stands in contrast

to powder-like diffraction experiments where the sample is

treated as a continuum. To produce a diffraction pattern of

sufficient quality to reconstruct the desired sample details

requires selection of experimental parameters such as sample

rotation axis, sample translations, X-ray beam shape, detector

geometry and sample rotation sequence adapted to the posi-

tion, shape, orientation and strain of the individual crystals

within the polycrystalline aggregate to be studied. The inter-

actions between these acquisition and sample characteristics

regulate the quality/resolution of the reconstructions of the

sample microstructure as well as the total acquisition times,

which can become unrealistically long. The question as to how

measurements should be acquired and how many acquisitions

are needed to recover a target quantity in a polycrystal are,

thus, key in the field of 3DXRD. For instance, by analytical

means, Lionheart & Withers (2015) showed that the full strain

tensor could be recovered using direct methods if the

diffracting sample was allowed to rotate consecutively around

three orthogonal axes. On the other hand, using mechanical

constraints, it was found that strain reconstructions could be

achieved from single axis rotation data (Henningsson &

Hendriks, 2021). On another note, recent advances in acqui-

sition strategies for laboratory-based DCT (Oddershede et al.,

2022) suggest that more complex scan geometries could be

used to improve sampling in 3DXRD experiments. From a

practical point of view, considering scanning 3DXRD, the

typical wall times to measure a single sample volume are often

in the range of hours or even days [e.g. Hektor et al. (2019)],

making efficient measurement schemes that can reduce the

amount of data that need to be collected attractive.

As 3DXRD is a high-energy synchrotron technique, access

to experiments is precious and the number of facilities in the

world that offer 3DXRD controls the pace of the method

development. An alternative route for development is the use

of software simulation tools that can serve as a research

primer, allowing ideas to be established or discarded at a

theoretical stage. Many tools for simulating X-ray diffraction

from individual crystals exist [e.g. Macrae et al. (2006),

Momma & Izumi (2008), Soyer (1996), Campbell (1995),

Huang (2010), Kanagasabapathy (2016), Weber (1997) and

Laugier & Bochu (2001)]. Additional tools exist for simulating

2D diffraction patterns from arbitrarily textured samples

(Poulsen, 2004; Le Page & Gabe, 1979; E et al., 2018; Huang et

al., 2021a,b; Knudsen, 2009; Bernier et al., 2011; Pagan et al.,

2020; Fang et al., 2020; Sørensen et al., 2012). However, for

many questions related to 3DXRD techniques, the geometry

of the polycrystal grains and the X-ray beam, together with

intragranular lattice variations, must be accounted for. At the

same time, the diffracting sample must be allowed to move

along an arbitrary rigid body motion path, to explore different

scan sequences.

Frameworks similar to those developed by Wong et al.

(2013) and Song et al. (2008) provide important contributions

in this direction, incorporating a spatial description of the

sample microstructure by making use of a tetrahedral mesh

representation. However, this previous work was limited to

full-field illumination and sample motions derived from rota-

tions about a fixed axis. Finite beam sizes, illuminating a

subvolume of the samples during diffraction, is especially

important to simulate scanning 3DXRD were the beam cross

section is smaller than the sample.

In conclusion, no open source software exists with the set of

capabilities needed to freely explore acquisition strategies in

3DXRD [see supplementary material of Huang et al. (2021b)

for a useful summary of existing software capabilities].

We report on the development of new software, named

xrd_simulator, that draws on concepts described by Fang et al.

(2020) and extends the work of Wong et al. (2013), to take the

beam geometry, the grain shapes and intragranular lattice

variations into account using a tetrahedral mesh representa-

tion. Additionally, we derive analytical solutions to the Laue

equations to calculate the diffraction volumes and vectors for

arbitrary positions and orientations of the sample. This

enables simulation of diffraction as the sample undergoes

user-specified rigid body motion sequences during diffraction

readout and can be viewed as a generalization of the equations

provided by Wong et al. (2013) for single-axis rotation. By

making xrd_simulator open source and easily accessible, we

provide a means to accelerate the rate at which 3DXRD-type

methodologies can evolve.

The paper is structured as follows. In Section 2 we present

the diffraction approximations made in xrd_simulator and

derive the analytical expressions needed for its implementa-

tion. In Sections 3 and 4 we comment on the software archi-

tecture and availability and provide references to external

tutorials and documentation. In Section 5 we comment on the

computational aspects of the software and provide sample

benchmarks. Finally, in Section 6 we provide some concluding

remarks. Additionally, we append a case study comparison of

simulations performed with xrd_simulator and data collected

at the ESRF ID11 beamline.

2. Diffraction approximations

X-ray diffraction is computed in xrd_simulator by defining a

series of mathematical model components, including a poly-

crystal, an X-ray beam and a detector. In this section we
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describe the formulation of these models and discuss their

interactions. In the following, any vector v is normalized by the

inclusion of a symbol �̂� such that v̂v ¼ v=ðvTvÞ1=2.

Four Cartesian coordinate systems are used; the laboratory

coordinate system, the sample coordinate system, the crystal

coordinate system and the detector coordinate system (Fig. 1).

The crystal, sample and detector coordinate systems are all

fixed in relation to a lattice, a polycrystalline sample and a

detector plane, respectively. Transformations of these three

coordinates systems are tracked by the laboratory coordinate

system, which serves as a global frame of reference.

The morphology of a polycrystalline sample is defined in the

global laboratory reference frame with axes x̂xl; ŷyl; ẑzl. As a

starting point, the internal sample coordinate system, with

axes x̂xs; ŷys; ẑzs, is aligned with the laboratory system. Once the

sample has moved, to transform a point pl from laboratory to

sample coordinates we apply a rigid body motion through a

rotation matrix, R, and a translation vector, �x as

ps ¼ Rpl þ�x: ð1Þ

The single crystal elements constituting a polycrystalline

sample each have their own crystal coordinate reference

frame with axes x̂xc; ŷyc; ẑzc. A vector, pc, described in crystal

coordinates is transformed to the sample frame via the crystal

orientation matrix, U, as

ps ¼ Upc: ð2Þ

The detector coordinate system, with in-plane axes ẑzd; ŷyd and

normal n̂nd, defines the plane at which a diffraction pattern can

be collected. A point on the detector surface, pl, can be

described by its projection onto the in-plane detector axes

pd ¼
pT

l ẑzd

pT
l ŷyd

� �
¼

zd

yd

� �
: ð3Þ

2.1. Diffraction equations

We define an incident wavevector, k, to point in the

propagation direction of a parallel monochromatic X-ray

beam. The diffraction vector, G, is defined as

G ¼ k0 � k; ð4Þ

where k0 is an elastically scattered wavevector. The Euclidean

norm, || � ||, of the wavevector is defined as

jjk0jj ¼ jjkjj ¼ 2�=�; ð5Þ

where � is the X-ray wavelength.

From equation (4) and the elastic scattering condition it

follows that

k0TĜG ¼ �kTĜG ¼ jjGjj=2: ð6Þ

Considering equation (6) together with equation (5), it follows

that k and �k0 form the same angle, �/2 � �, to G. The Bragg

angle, �, can be found as

� ¼ arccos ðk̂k
0Tk̂kÞ=2: ð7Þ

For diffraction to occur from a set of lattice planes the Laue

equations require that

aT

bT

cT

2
4

3
5G ¼ Ghkl; ð8Þ

where a, b and c define a unit cell and Ghkl = [h k l ]T holds the

integer Miller indices of the diffracting lattice plane family.

Introducing the unique multiplicative decomposition of the

inverse matrix [a b c]�T into a unitary rotation matrix, U, and

an upper triangular matrix, B, with positive diagonal elements,

we write equation (8) as

G ¼
aT

bT

cT

2
4

3
5
�1

Ghkl ¼ UBGhkl: ð9Þ

In this description U is the crystal lattice orientation matrix

while B is defined from the lattice unit cell.

2.2. Polycrystalline sample representation

A polycrystalline sample is represented by a tetrahedral

mesh with each individual tetrahedron being modelled as a

single crystal; grains are thus defined by adjacent cells with the

same (or similar) unit-cell parameters (Fig. 2). The single

crystal elements are defined through a reference unit cell, a

phase, a symmetric infinitesimal strain tensor (laboratory

coordinates), ���l, and a crystal orientation matrix, U. Each of

these four quantities remain constant over each element

volume and spatial variations in the lattice structure are

modelled by letting neighbouring elements hold different

lattice states. The nodal vertices of a tetrahedron are denoted

(c0, c1, c2, c2), as illustrated in Fig. 2.

To compute the B matrix, given the quantities associated

with a single tetrahedron for use in equation (9), we use xfab,

which is part of the 3DXRD Fable suite (Sørensen et al., 2012).
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Figure 1
Illustration of xrd_simulator laboratory (subscript l), sample (subscript s),
crystal (subscript c) and detector (subscript d) coordinates systems. The
three corners of the detector (d0, d1, d2) define its position and
orientation in space.



2.3. Beam representation

A beam of X-rays is represented by a convex polyhedron

with n vertices, bi, indexed as i = 0, 1, . . . , n. The X-ray

propagation direction is defined by the unit vector n̂n. The

photon density is taken to be uniform within the beam hull

and the X-rays are assumed to be linearly polarized in the

direction of a unit vector, "̂""""". An example geometry of an X-ray

beam is illustrated in Fig. 3.

The use of a convex polyhedron to represent the beam

shape, as opposed to an axis-aligned box for instance, is

motivated by the need for xrd_simulator to facilitate numer-

ical investigations of scan sequences in far-field X-ray

diffraction. Optimal selection of beam cross section shape and

scan pattern remain open research questions in scanning

3DXRD experiments. Moreover, the use of a convex beam

allows indirectly for simulations of variable beam intensity

profiles. This can be achieved by repeatedly computing

diffraction from sub regions of a composite beam, one

diffraction pattern at a time, to produce a weighted sum of

diffraction.

2.4. Scattering unit

The volume intersection between an illuminated diffracting

single crystal element and the beam is defined as a scattering

unit. As both the beam and the single crystal tetrahedrons are

convex, their intersections will also form convex polyhedrons.

The scattering units each have a diffracted wavevector k0 and

serve as the basis for rendering diffraction patterns onto the

detector area. A simplified 2D illustration of a scattering unit

is given in Fig. 4

To compute the scattering unit polyhedron we use the SciPy

(Virtanen et al., 2020) wrapper for the Qhull (Barber et al.,

1996) library. The algorithm is seeded with an interior point of

the scattering unit polyhedron, which can be found either by

trial and error or by solving a linear program, as described in

the scipy.spatial.HalfspaceIntersection docu-

mentation. Since the computation of the scattering unit

polyhedron is expensive, xrd_simulator implements a collision

detection algorithm that checks for intersections between

element bounding spheres and the beam hull. This allows

xrd_simulator to quickly exclude elements of the mesh that

cannot take part in diffraction.

2.5. Detector representation

A detector is represented by an arbitrary rectangular plane

segment holding a grid of rectangular pixels with user speci-

fied size (pzd
; pyd

). As depicted in Fig. 1, the detector can be

parameterized by three vectors (d0, d1, d2) extending from the

laboratory origin to the detector corners. The three detector

corners are arranged in clockwise order, with respect to the

detector normal, and the detector coordinate system origin is

taken as d0. Since the detector corners d0, d1 and d2 may be

arbitrarily specified in 3D space it is possible to simulate

arbitrary detector tilts and misalignments in xrd_simulator.

The detector coordinate axes are defined as

ŷyd ¼ ðd1 � d0Þ=jjd1 � d0jj;

ẑzd ¼ ðd2 � d0Þ=jjd2 � d0jj:
ð10Þ

The detector normal is defined through the cross product,

n̂nd ¼ ẑzd � ŷyd ð11Þ

Additionally, a point spread function, PSF(zd, yd), simulating

blurring due to the detector optics can be specified. When

computing the simulated diffraction data the point spread
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Figure 3
Example of a possible X-ray beam geometry with a total of eight nodes,
bi, forming a convex hull in 3D space. Photons propagate in the direction
of n̂n and are linearly polarized along "̂""""". The photon intensity inside the
beam hull is uniform.

Figure 2
Illustration of a polycrystal representation in xrd_simulator. The
tetrahedral single crystal elements form a mesh, representing a
polycrystalline aggregate. Each individual tetrahedron can hold a unique
lattice and phase.

Figure 4
A simplified 2D example of a scattering unit formed as the intersection
between the X-ray beam and a single crystal element. Note that
xrd_simulator uses 3D representations for both beam and crystals.



function is convoluted with the 2D diffraction image, as a final

step.

2.6. Sample motion

Before the derivation of diffraction vectors can be consid-

ered, we must first describe the motion path of the sample

during detector readout. An arbitrary rigid body motion of the

sample is defined by a unit rotation axis, r̂r ¼ r̂rx r̂ry r̂rz

� �T
, a

rotation angle, �! 2 (0, �), and a translation vector, �x. The

motion is executed over the unitless time interval t 2 [0, 1]

during which a single detector frame is collected. At the start

of detector readout, before the sample has moved, t = 0, and at

the end of readout, when the sample has translated by �x and

moved �! radians around r̂r, t = 1. In this way, arbitrary scan

sequences can be modelled using different sample motions for

each detector frame readout.

The sample is modelled to move uniformly over t 2 [0, 1]

such that at some intervening time, 0 < t < 1, the coordinates of

a node, ci = ci(t), in the sample mesh can be found as

ciðtÞ ¼ RðtÞciðt ¼ 0Þ þ t�xl; ð12Þ

R is a Rodriguez rotation matrix, defined as

RðtÞ ¼ ðIþ K2
Þ þ sinðt�!ÞK� cosðt�!ÞK2; ð13Þ

with unity matrix I, and

K ¼

0 �r̂rz r̂ry

r̂rz 0 �r̂rx

�r̂ry r̂rx 0

2
4

3
5: ð14Þ

With the motion path of the sample defined through equations

(12), (13) and (14), we may now proceed to compute diffrac-

tion vectors.

2.7. Diffraction computation

By the introduction of arbitrary rigid body motions of the

sample in equation (12), the Laue equation (9) becomes time

dependent. Solutions to these equations for a fixed rotation

axis and no sample translations have been derived by Wong et

al. (2013). In the following we generalize these results to

facilitate an arbitrary axis of rotation as well as an arbitrary

sample translation.

Considering a single crystal element, equations (9) and (13)

yield the scattering condition at time t as

GðtÞ ¼ RðtÞUBGhkl: ð15Þ

By finding solutions to equation (15) over t 2 [0, 1], the

position of the crystal element nodes at the times when

diffraction from the volume element can occur can be estab-

lished through equation (12) together with the diffracted

wavevector equation (4). This information defines the scat-

tering unit. The lack of solutions to equation (15) over t 2

[0, 1] means that the crystal cannot diffract over the given

sample motion.

To derive solutions to equation (12) in t we start by intro-

ducing a scalar form of the Laue condition. From equation (6)

it follows that

kTGðtÞ þ
GðtÞTGðtÞ

2
¼ 0: ð16Þ

Introducing G0 = UBGhkl and combining equation (13) with

equation (16) we find

kT
ðIþ K2

ÞG0 þ sinðt�!ÞkTKG0

� cosðt�!ÞkTK2G0 þGT
0 G0=2 ¼ 0; ð17Þ

where we use the fact that GT(t)G(t) = G0G0 since R(t) is

unitary. Introducing the scalars

�0 ¼ �kTK2G0;

�1 ¼ kTKG0;

�2 ¼ kT
ðIþ K2

ÞG0 þGT
0 G0=2;

ð18Þ

we may write equation (17) as

�0 cosðt�!Þ þ �1 sinðt�!Þ þ �2 ¼ 0: ð19Þ

Introducing the variable s ¼ tanðt�!=2Þ we find from the

double-angle formula that

�0

1� s2

1þ s2
þ �1

2s

1þ s2
þ �2 ¼ 0: ð20Þ

Since equation (20) is a scalar quadratic equation, one, two or

zero solutions must exist. Solving for s when �2 6¼ �0 we find

that

s ¼
��1

ð�2 � �0Þ
�

�2
1

ð�2 � �0Þ
2 �
ð�0 þ �2Þ

ð�2 � �0Þ

� �1=2

: ð21Þ

In the special case of �2 = �0 equation (20) reduces to

�1sþ �0 ¼ 0; ð22Þ

such that a single solution, s =��0/�1, can be found, given that

�1 6¼ 0. Finally, the sought time, t, in equation (15) is found by

reversing the tangent substitution,

t ¼
2

�!
arctanðsÞ: ð23Þ

We remind the reader that the derived solutions, t, are the

relative moments in time, during a frame acquisition, at which

a single crystal element will diffract the incident X-rays. The

position of the element nodes during diffraction can, thus, be

computed through equation (12) and the geometry of the

scattering unit is found by computing the intersection of the

updated tetrahedral element and the X-ray beam. With this

information available we may proceed to propagate the

diffracted X-rays onto the 2D detector area.

2.8. Ray tracing

Once the scattering units have been established, the

diffracted wavevectors, k0, are traced onto the detector

surface. Two options for ray tracing are available in xrd_

simulator. Either rays are traced from the centroids of the

individual scattering units or, alternatively, rays are traced

from the detector pixel centroids back through the scattering

units. The latter of the two models can be considered to

produce a more accurate projection approximation while the

former will be computationally faster. As illustrated in Fig. 5,
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ray tracing driven by the detector grid pixels will produce

space-filling projections, while ray tracing driven by the scat-

tering unit centroid will approximate a diffraction peak as a

point cloud.

Considering a point x in the sample volume associated with

a scattered wavevector k0, we may parameterize a scattered

ray through a scalar h as

pðhÞ ¼ xþ hk0: ð24Þ

The point of intersection, p(h*), between scattered ray and

detector is found from

n̂n
T
d ðxþ h�k0 � d0Þ ¼ 0: ð25Þ

Solving equation (25) for h� yields

h� ¼
n̂n

T
d ðd0 � xÞ

n̂n
T
d k0

: ð26Þ

The detector coordinates of the intersection point can now be

found through equation (10),

yd ¼ðxþ h�k0 � d0Þ
Tŷyd;

zd ¼ðxþ h�k0 � d0Þ
Tẑzd:

ð27Þ

By setting x in equation (27) as the scattering unit centroid,

ray tracing can be performed. When ray tracing using the

detector pixels as source points is considered instead, x in

equation (24) must be taken as a point in the detector plane.

By solving equation (24) for the intersections with the planes

that define the facets of the scattering unit, an intersection

length, l, between the ray and polyhedron can be established.

To do so, we have implemented the clipping algorithm

developed by Cyrus & Beck (1978). To speed up the compu-

tations, the vertices of a scattering unit are first projected onto

the detector plane, establishing a feasible region on the

detector where the projection may fall. In this way equation

(24) is only solved for a sub-grid of the detector.

2.9. Intensity model

Once the diffracted rays of a scattering unit have been

mapped to the pixels of the detector, the scattered intensity, I,

can be computed and deposited. If ray tracing based on the

scattering unit centroids is used, the intensity is modelled to be

proportional to the scattering unit volume, V, polarization

factor, P, Lorentz factor, L, and structure factor, Fhkl, as

I ¼ VPLFhkl: ð28Þ

If, instead, ray tracing is driven by the detector pixels, the

intensity is modelled as

I ¼ lPLFhkl; ð29Þ

where l is the intersection length between the scattered ray

and the scattering unit polyhedron.

The inclusion of the factors P, L and Fhkl in the intensity

model of xrd_simulator can be toggled by the user. Since

xrd_simulator is designed to separate the computation of

scattering units from the diffraction pattern image rendering,

several different intensity and ray tracing combinations can be

tested without having to solve equation (15) repeatedly. It is

also possible to access the scattering units directly in xrd_

simulator, allowing for custom intensity and ray tracing

models to be tested.

2.9.1. Structure factors. To compute structure factors we

use the open source tool xfab, which is available as part of

the FABLE-3DXRD software suite (Sørensen et al., 2012;

https:// github.com/FABLE-3DXRD/xfab). An introduction

to structure factors is provided by, for example, Als-Nielsen

& McMorrow (2011). To include structure factors in the

intensity model the user is expected to provide a crystal-

lographic information file (Hall et al., 1991) to xrd_simulator,

specifying the properties of the simulated material phases. If

structure factors are not needed, the user may alternatively

define the material phase by passing a set of unit-cell para-

meters.

2.9.2. Lorentz factors. As stated by Lauridsen et al. (2001),

for a single axis rotation geometry, where the rotation axis is

aligned with ẑzd, the Lorentz factor can be approximated as

Lð�; �Þ ¼
1

sinð2�Þ jsin �j
; ð30Þ

where � denotes the angle between the projection of the

rotation axis, r̂r, and scattered ray direction, k̂k
0

, onto the ẑzd–ŷyd

plane. In xrd_simulator each detector frame has an arbitrary

sample rotation axis and � can be found as

� ¼ arccos r̂r
T

ŵw
� �

;

w ¼ k0 � k̂kk0
T

k̂k:
ð31Þ

By additionally recovering � from equation (7), the Lorentz

factor can be computed from equation (30). Note that the

expression for the Lorentz factor in equation (30) is approx-

imate. Especially, for � = 0 or � = 0, the intensity will diverge,

and xrd_simulator will insert numpy.inf values at the

corresponding detector pixels.

2.9.3. Polarization factors. For linearly polarized X-rays

(Als-Nielsen & McMorrow, 2011) the polarization factor takes

the form
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Figure 5
Illustration of a single simulated diffraction peak (right) for an elliptical
grain meshed by 3283 elements (left). The difference between ray tracing
driven by the scattering unit centroids (A) can be compared with ray
tracing driven by the detector pixels grid (B).



Pð"̂"""""; "̂"""""0Þ ¼ j"̂"""""
T
"̂"""""0j2; ð32Þ

where "̂""""" and "̂"""""0 are the unit polarization vectors of the incident

and scattered X-rays, respectively. An observer of an oscil-

lating electron sitting on the scattered ray will only see oscil-

lations that exist in the plane perpendicular to the propagation

direction of the X-rays. Thus, we can describe "̂"""""0 by the

projection

"̂"""""0 ¼
"̂"""""� k̂k0"̂"""""

T
k̂k0

jj"̂"""""� k̂k0"̂"""""
T

k̂k0jj
: ð33Þ

Inserting equation (33) in equation (32) we find

Pð"̂"""""; k̂k0Þ ¼ 1� ð"̂"""""
T

k̂k0Þ2: ð34Þ

3. Software architecture

xrd_simulator is a Python library organized around four

Python objects: an X-ray beam, a polycrystalline sample, a

detector and a sample motion. These four Python objects are

implementations of the mathematical concepts previously

outlined in Section 2 and define together a diffraction

experiment simulator. The end user of xrd_simulator can

define their own simulations through Python scripts, instan-

tiating each of the four necessary objects as desired. By

passing a motion object to the polycrystalline sample, together

with a beam and detector, diffraction vectors can be

computed. Scattering units are computed and stored in the

detector object. The user may then call a detector rendering

method to compute a diffraction pattern image.

A schematic overview of the xrd_simulator architecture can

be found in Fig. 6. Detailed code samples and beginners

tutorials on how to use xrd_simulator can be found both at

GitHub (https://github.com/FABLE-3DXRD/xrd_simulator)

as well as in the externally hosted documentation (https://

fable-3dxrd.github.io/xrd_simulator/).

4. Software availability

The source code of xrd_simulator is openly distributed with an

MIT open source licence at GitHub (https://github.com/

FABLE-3DXRD/xrd_simulator). xrd_simulator features cross-

platform support and can be installed using the Python

package installer, pip, or alternatively the Anaconda package

manager. Documentation on installing xrd_simulator can be

found at the GitHub source location or, alternatively, in the

externally hosted documentation (https://fable-3dxrd.github.

io/xrd_simulator/).

5. Computational tractability

The core computations of xrd_simulator can be summarized in

three steps. Firstly, solutions to equation (17) are established.

Secondly, polyhedral intersection regions between the X-ray

beam and mesh elements are computed. Thirdly the diffrac-

tion signal is rendered into a diffraction pattern image. The

total time needed to compute a diffraction pattern therefore

scales with the number of elements within the mesh, the beam

cross section and the angular range of the sample rotation. To

enable computation of state-of-the-art data sets xrd_simulator

implements a multiprocessing option using the Python native

multiprocessing library. In Fig. 7 we provide some typical run

times of xrd_simulator simulating a 10 � 10 pencil beam raster

scan with 180 rendered frames in intervals of 1.0�. Considering

the selected detector dimensions (2048 � 2048) the

computed data consisted of, in total, 10 � 10 � 180 � 2048 �

2048 	 1011 floating point numbers. The timings presented in

Fig. 7 were achieved on a Lenovo ThinkStation P330 MT

deploying six Intel Core i7-8700K 3.70 GHz CPUs.

In conclusion, diffraction computations from samples with

up to 	106 elements are feasible with xrd_simulator within 25

or 17 h, depending on what ray tracing model is selected.
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Figure 6
Four Python objects – an X-ray beam, a polycrystalline sample, a detector
and a sample motion – define an experiment in xrd_simulator. Scattering
units are computed and stored in the detector object. By selecting a ray
tracing and intensity model a diffraction pattern image can be rendered.

Figure 7
Typical compute times of xrd_simulator for a 10 �10 � 180 � 2048 �
2048 pencil beam raster scan simulation. Diffraction was simulated from
samples with random crystal orientations [coloured by one of their Bunge
Euler angles in (a)–(e)]. For samples with many elements, a reduction in
compute time is observed for the simplified ray tracing model described
in Section 2.8.



6. Conclusions

An open source Python package for simulation of X-ray

diffraction by polycrystals, named xrd_simulator, has been

developed. By representing a polycrystalline sample as a

tetrahedral mesh, an arbitrary sample morphology and micro-

structure can be modelled. Diffraction vectors are computed

from the solutions of a time-dependent version of the Laue

equations, enabling arbitrary rigid body motions of the sample.

Diffraction peak intensities are computed as the product of

scattering volumes and Lorentz, structure and polarization

factors. Combining these features, xrd_simulator presents new

opportunities to develop and understand the impact of

different acquisition schemes for 3DXRD-type experiments

such that optimal schemes can be defined in terms of acqui-

sition time and resolution of the target parameters.

APPENDIX A
Experimental verification

To demonstrate the use of xrd_simulator we have simulated

diffraction on the basis of measurements performed at the

ESRF ID11 beamline. By comparing the results of xrd_

simulator with the data from the experiment we explore the

diffraction model limitations. The measured sample consisted

of 12 quasi-spherical silica (SiO2) grains confined within a

cylindrical polyether ether ketone tube and subject to 20 N of

uni-axial loading along the laboratory z-axis direction. The full

3D grain volume was scanned with a scanning 3DXRD

geometry (Hayashi et al., 2015) first using a 20 mm � 20 mm

pencil beam and then a 20 mm-height letter-box beam

(covering the full sample in the x̂xl–ŷyl plane). The data from the

pencil beam scan were used to perform tomographic recon-

struction of the grain shapes, using a method similar to that

reported by Poulsen & Schmidt (2003) [Fig. 8(a)]. The same

pencil beam scan data were used to derive average crystal-

lographic orientations and strain tensors of individual grains in

the volume, using methods from ImageD11 (Wright, 2005). A

20 mm-high slice (in the x̂xl–ŷyl plane) was extracted from the 3D

tomographic reconstruction, to provide an equivalent volume

to one of the 20 mm letterbox 3DXRD acquisitions. This

volume was used to derive a grain mesh that was input to

xrd_simulator [Fig. 8(b)] together with a crystallographic

information file corresponding to �-quartz. In this way the

input microstructure for xrd_simulator was derived soley from

the pencil beam scan data while any of the following

comparisons between simulated and measured diffraction

patterns are made with the independently measured letterbox

beam data.

Diffraction was simulated for the 20 mm-high slice through

the sample by integrating the diffraction signal over a 10�

rotation. The resulting 2D diffraction patterns were log-

normalized and compared with the corresponding measured

log-normalized signal (Fig. 9) from an equivalent letterbox

acquisition.

Visual comparison between columns A and C in Fig. 9

shows similar diffraction patterns. However, the subset of dif-

fraction peaks in Figs. 9-A2 and 9-C2 show some discrepancy

between simulated and measured peak shapes. This is not

unexpected and several potential sources of errors can be

listed. These include:
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Figure 8
Exploded view of 12 �-quartz grains measured at the ESRF ID11
beamline (a). A single 20 mm-thick slice featuring four distinct grains was
extracted and considered for simulation (b).

Figure 9
Simulated (A, B) and measured (C) log-normalized diffraction patterns
from four 20 mm-thick x̂xl–ŷyl grain slices of �-quartz (SiO2). The
diffraction pattern was integrated over a 10� sample rotation interval
and is displayed with increasing levels of magnification in columns A, B
and C, with the full tiled detector depicted in A1, B1 and C1. Diffraction
peaks present in the true measured data which are only captured after the
introduction of a random mosaicity are marked with circles. Diffraction
peaks present in the simulated data but missing in the measurements are
marked with squares.



(1) Unknown detector point-spread function will influence

the peak shapes and maximal peak intensities.

(2) Low signal-to-noise ratio will influence low intensity

scattering regions, which can lead to the removal of peaks or

distortion of peak boundaries during background subtraction.

(3) Unknown mosaicity and intragranular strain will affect

which peaks appear or not, as well as the peak shapes and

intensities.

Turning our attention to the last of these error sources (3)

we expect some, unknown, intragranular strain and orienta-

tion variations to be present within the individual grains. As a

result the diffraction peak shapes will be deformed. Addi-

tionally, the set of possibly diffracting lattice plane families will

be modified as the Bragg condition is shifted. To demonstrate

these effects, modest, uniformly random mosaicity and strain

variation were introduced into the simulation (Fig. 9

column B). First, each mesh element was seeded with the

corresponding reconstructed grain average orientation matrix

(derived from the pencil beam scan data). Next, the seeded

orientation matrix was perturbed by a uniformly random

rotation in the range 0.0–0.125�. Likewise, each component of

strain was uniformly perturbed in the range 0–0.005. The

magnitudes of the perturbations were chosen arbitrarily.

With the inclusion of random intragranular variations, we

observe new, additional, diffraction peaks in Fig. 9-C as

compared to Fig. 9-A. Although some diffraction events will

now inevitably be erroneously pushed into their favourable

Bragg conditions (marked with white squares in Figs. 9-A2,

9-B2 and 9-C2) several diffraction peaks originally missing in

the simulation are now recovered (as marked with red circles

in Figs. 9-A2, 9-B2 and 9-C2). This serves to illustrate how

xrd_simulator captures the strong dependence between the

measured diffraction signal and the underlying sample

microstructure present in these types of experiments.

APPENDIX B
Highlights of software capability

xrd_simulator features space filling descriptions of polycrystals

where each element of the tetrahedral mesh can have an

individual phase, strain tensor and lattice orientation. To show

how the spatial variation in a polycrystal can impact simulated

diffraction patterns we provide far-field diffraction simulations

from a multi-phase deformed polycrystal (Fig. 10) in this

appendix section. As depicted in Fig. 10(c), a copper (Cu)–tin

(Sn) aggregate composed of 64 grains with a combined total of

120282 individual tetrahedrons is considered. The individual

grains were each seeded with a mean strain tensor and

orientation matrix over which linear gradients in random

directions were superimposed [Figs. 10(a) and 10(b)]. The

aggregate was considered to be fully illuminated by 68.88 keV

X-rays propagating along the x axis while the sample was

rocked 1.0� around the z axis. To highlight the impact of the

spatial deformation of the polycrystal, diffraction was simu-

lated both with and without the prescribed strain and misor-

ientations. The two resulting 2048 � 2048 pixelated diffraction

patterns originating from a deformed and an undeformed
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Figure 10
Phantom polycrystalline Cu–Sn aggregate composed of 120282 tetra-
hedral elements: (a) strain xx component, (b) Bunge Euler angle ’1 and
(c) Cu–Sn phase map.

Table 1
Simulation parameters used to render the diffraction patterns in Fig. 11
using the Cu–Sn phantom depicted in Fig. 10.

Detector distance (mm) 191023.9164
Detector centre pixel z 1024.2345
Detector centre pixel y 1023.1129
Pixel side length z (mm) 50.4234
Pixel side length y (mm) 48.2343
Number of detector pixels z 2048
Number of detector pixels y 2048
Wavelength (Å) 0.18
Beam side length z (mm) 400
Beam side length y (mm) 400
Rotation step (1.0�) 1.0
Rotation axis [0 0 1]

Figure 11
Simulated diffraction pattern from the phantom sample depicted in
Fig. 10. Column (a) contains diffraction from an undeformed sample
while column (b) depicts diffraction from a deformed version of the
phantom. As a result, the diffraction peaks in the zoomed in area (b1) are
distorted compared with the round diffraction peaks in (a1).



sample can be viewed in Figs. 11(a2) and 11(b2), respectively.

As depicted in Figs. 11(a1) and 11(b1) the impact of the lattice

spatial variation is evident in the distorted diffraction peaks.

Details of the experimental setup are presented in Table 1.

xrd_simulator offers a means to understand how the

diffraction peak distortions relate to the internal grain

deformation. To provide an example of how this can be

utilized we have considered diffraction from a single Cu grain

in the polycrystalline ensemble. The result of introducing a

misorientation gradient around the beam direction and the

axis of rotation are depicted in Figs. 12(b) and 12(c), respec-

tively, where the resulting 3D peak shapes for the 204 reflec-

tion have been rendered. Likewise, the effect of a strain

gradient in the (204) crystal planes is depicted in Fig. 12(d).

Comparing with a perfect crystal state [Fig. 12(a)], we see how

the diffraction peak arcs over the detector for a misorientation

around the beam axis while a misorientation around the

rotation axis extends the angular range of diffraction. Finally,

we can see the effect of a strain gradient in Fig. 12(d) resulting

in a radially broadened and angularly extended diffraction

peak.
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Figure 12
Single copper (Cu) grain extracted from the phantom in Fig. 10 composed
of 4195 tetrahedral elements. The top row depicts induced deformation
states while the bottom row shows the corresponding 204 reflection
rendered as a 3D peak, with sample rotational position as the third
dimension.
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