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Serial crystallography experiments produce massive amounts of experimental

data. Yet in spite of these large-scale data sets, only a small percentage of the

data are useful for downstream analysis. Thus, it is essential to differentiate

reliably between acceptable data (hits) and unacceptable data (misses). To this

end, a novel pipeline is proposed to categorize the data, which extracts features

from the images, summarizes these features with the ‘bag of visual words’

method and then classifies the images using machine learning. In addition, a

novel study of various feature extractors and machine learning classifiers is

presented, with the aim of finding the best feature extractor and machine

learning classifier for serial crystallography data. The study reveals that the

oriented FAST and rotated BRIEF (ORB) feature extractor with a multilayer

perceptron classifier gives the best results. Finally, the ORB feature extractor

with multilayer perceptron is evaluated on various data sets including both

synthetic and experimental data, demonstrating superior performance

compared with other feature extractors and classifiers.

1. Introduction

In recent years, serial femtosecond crystallography (SFX) has

made remarkable progress in the measurement of macro-

molecular structures and dynamics using intense femtosecond-

duration pulses from X-ray free-electron lasers (FELs)

(Wiedorn et al., 2018; Chapman et al., 2011). It is well under-

stood that intense X-ray pulses can produce strong diffraction

patterns from weakly diffracting crystals. However, the

process relies on an effect known as ‘diffraction before

destruction’, where the crystal is completely destroyed by the

FEL pulse. Therefore, the experiment requires patterns from

many crystals, resulting in large quantities of data. For

example, SFX experiments at the Linac Coherent Light

Source (LCLS) produce images at a rate of 120 Hz, producing

data volumes usually amounting to tens of terabytes. Yet

despite these large-scale data sets, only a small percentage of

the data may actually contain diffraction patterns from the

target of interest.

For example, a typical SFX experiment at the European

X-ray FEL involving lysozyme produced 749 874 images in

83 min of measurement time at 150 pulses per second, of

which 25 193 images (3.4%) were observed to contain

diffraction from a protein crystal, as identified in the offline

analysis (Wiedorn et al., 2018). In addition, new free-electron

laser facilities such as LCLS-II will handle experiments with

repetition rates over 100 kHz, resulting even higher data

volumes (Galayda, 2018). These scenarios present an

imperative challenge for the efficient processing and analysis

of diffraction data obtained during SFX experiments.
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In a typical SFX experiment (Fig. 1), diffraction patterns

may register single-crystal ‘hits’ as well as empty shots

(‘misses’) and multiple-crystal hits. In other words, diffraction

patterns may register Bragg peaks from crystal hits that are

otherwise absent in empty shots. Considering the nature of

SFX experiments, it is clear that only crystal hits with Bragg

peaks are useful for downstream analysis (Wiedorn et al.,

2018). Therefore, existing statistical methods utilize peak

finding to identify and discern diffraction patterns that contain

Bragg peaks and remove any patterns which only contain

empty shots, resulting in considerable data reduction (Hadian-

Jazi et al., 2021, 2017; Barty et al., 2014; Mariani et al., 2016;

Thayer et al., 2017). Typically, peak finding methods attempt to

find all the Bragg peaks in these diffraction patterns, which can

be computationally expensive. In addition, existing methods

require carefully crafted parameters from human experts in

the field.

More recently, the astonishing success of image classifica-

tion with machine learning, or more specifically deep learning,

has been adapted to classify diffraction patterns (Souza et al.,

2019; Ke et al., 2018; Becker & Streit, 2014). Intuitively, deep

neural models can encode features of diffraction patterns,

including background and Bragg peaks, to classify them into

hit or miss categories in order to reduce the data.

In this work, our goal is to build a data reduction method

for serial crystallography that is computationally cheaper and

less reliant on parameters. Thus, we propose a novel

mechanism to detect and identify key points representing

‘some’ Bragg peaks in diffraction patterns. Specifically, we use

the oriented FAST and rotated BRIEF (ORB) handcrafted

method to extract key points representing Bragg peaks,

inheriting good performance numbers and low computational

cost (Rublee et al., 2011). Afterwards, we train a multilayer

perceptron (MLP) on these extracted features to distinguish

between hits and misses in diffraction patterns, resulting in

data reduction. Our results on synthetic and experimental data

indicate that the extracted key points encode Bragg peak

information and thus provide suitable input for the classifi-

cation task. Our main technical contributions are as follows:

(i) A handcrafted method based on ORB features to extract

key points that contain Bragg peak information and then train

an MLP to classify diffraction patterns for data reduction.

(ii) A novel study to compare various handcrafted feature

extractors along with machine learning classifiers on synthetic

and real experimental data. Our study reveals that ORB

features effectively encode Bragg peaks and are robust against

anomaly scenarios compared with other state-of-the-art

feature extractors.

(iii) An automated pipeline based on ORB features to label

diffraction patterns for supervised machine learning methods.

2. Related work

There are two broad ways of reducing serial crystallography

data: compressing images and rejecting bad images. (Naturally,

both of these methods can be applied to a data set.) In turn,

rejecting bad images can be done in two ways: using peak

finding methods based on statistical frameworks, or machine

learning. Typically, peak finding methods accept or reject a

diffraction pattern by finding Bragg peaks and counting the

total number of peaks. Machine learning techniques extract
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Figure 1
A typical SFX experiment at the European XFEL, producing bursts of X-ray pulses at a megahertz repetition rate, repeating at 10 Hz frequency. Note
that the diffraction from the sample is measured using an adaptive gain integrating pixel detector (AGIPD), which is capable of measuring up to 3520
pulses per second at megahertz frame rates (Wiedorn et al., 2018).



features and classify images by learning from training data,

without necessarily finding peak locations.

Data compression is a procedure in which the size of the

data set is reduced by re-encoding the data to use fewer bits of

storage than the original data. Compression algorithms can be

lossless (information is fully preserved and compression is

achieved purely by removing statistical redundancy) or lossy

(some information is lost, reducing the resolution of the data).

In experiments at synchrotrons, photon-counting detectors

are typically used, giving images where each pixel records the

integer number of photons that hit it during the exposure.

Under these conditions, good compression ratios can be

achieved using lossless compression methods. However, in

experiments at FELs all the photons arrive in a pixel simul-

taneously, which means that integrating detectors are

required, where each pixel measures the total energy depos-

ited with a certain amount of electronic noise. Under these

conditions, lossy compression is typically required for

reasonable compression ratios.

Leonarski et al. (2020) investigated the efficacy of the SZ

compressor technique (Di & Cappello, 2016) on the data

generated by a JUNGFRAU detector. They demonstrated

that, while vast compression ratios (up to 168�) are possible

with SZ 2.1.7 (compression ratios relative to float32), this can

result in poor quality, particularly in regions with small local

intensity changes. Therefore, their method can only utilize

relatively small error bounds to guarantee the reconstructed

data quality, which results in moderate compression ratios (up

to 10�).

A novel data compression method developed for use in

upcoming high-data-rate facilities such as LCLS-II-HE has

been presented by Underwood et al. (2022). This method is

region of interest binning with SZ lossy compression

(ROIBIN-SZ), a novel parallel and accelerated compression

technique that splits the dynamically selected protection of

key regions with lossy compression of background informa-

tion.

Techniques for detecting Bragg peaks in diffraction patterns

are a crucial building block in both rejecting bad images and

analysing data. Peak finding methods employ carefully crafted

threshold mechanisms based on statistical frameworks to

separate Bragg peaks from the background signal (Parkhurst

et al., 2016; Hadian-Jazi et al., 2017, 2021). For example, Li &

Zatsepin (2018) used a simple global threshold mechanism to

separate the background signal from the Bragg peaks.

Although the mechanism is straightforward, its effectiveness is

often highly dependent on the correct tuning of many input

parameters.

In turn, various tools have been built that make use of these

peak finding methods. For example, the Cheetah software suite

(Barty et al., 2014) has been developed to filter diffraction

patterns to give a significant reduction in the data. It employs

key data quality metrics such as the number of Bragg peaks to

retain samples with a high probability of being usable for

structure determination. The principal parts of Cheetah

perform detector corrections, detect Bragg peaks from the

diffraction pattern, sort crystal diffraction patterns, and

convert them into a facility-independent format for further

analysis such as indexing and determining the orientation of

crystal planes. Detector corrections include specifying and

flagging bad and dark pixels of each module from the detector

and applying individual gain corrections for each pixel. When

the corrected image is obtained, Cheetah explores potential

Bragg peaks in the diffraction image using a threshold

mechanism called the Peakfinder8 algorithm. This algorithm

finds all Bragg peaks with a size of more than nmin but

fewer than nmax connected pixels with intensities above a

radially dependent threshold, which is computed from the

averaged background intensity. If the number of found peaks

with an adequately high signal-to-noise ratio surpasses a

certain minimum number npeaks, the image is considered as

a hit image. Finally, reduced data are output in a facility-

independent HDF5 format, enabling the use of downstream

analysis software suites such as CrystFEL (White et al., 2012)

which are typically employed to view, index, integrate, merge

and evaluate the quality of the diffraction data. More recently,

the OnDA (Mariani et al., 2016) software suite provides real-

time monitoring of X-ray diffraction data along with experi-

mental conditions. While peak finding methods and tools can

successfully handle, process and analyse diffraction data, they

require carefully curated input parameters from experts.

At XFELS in particular, where experimental teams can

involve many researchers, scientists and users, experimental

results need to be communicated effectively to all groups,

including sample preparation units, beamline scientists,

sample injection groups and data analyst engineers. All the

data processing must also be automated to let scientists,

researchers and users spend time investigating the experi-

mental data specifically, instead of being distracted by the

techniques and mechanics of submitting many jobs and

monitoring their state. The cctbx.xfel GUI (Brewster et al.,

2019), which is a graphical user interface application, open-

source software, and part of the cctbx and DIALS software

packages (Grosse-Kunstleve et al., 2002; Winter et al., 2018),

allows crystallography scientists and researchers to move

rapidly through all steps of data reduction, especially for serial

crystallography.

As mentioned, rejecting bad images can also be done using

machine learning. The past decade has seen unprecedented

breakthroughs for a wide variety of computer vision tasks

based on the subset of machine learning methods referred to

as deep learning (LeCun et al., 2015). Other fields such as text

(Mikolov et al., 2013), audio (Nagrani et al., 2017; Saeed et al.,

2021) and more recently serial crystallography have success-

fully used deep learning (Becker & Streit, 2014). Specifically,

Ke et al. (2018) adapted a deep neural model with a structure

similar to that of AlexNet (Krizhevsky et al., 2012) to encode

Bragg peaks to classify crystallographic diffraction patterns.

Similarly, Souza et al. (2019) used a residual neural network

with 50 layers (ResNet-50) dubbed DeepFreak to classify

patterns from both synthetic and real diffraction data. In

addition, they presented a comparative study of deep neural

models and a few computer vision feature extractors, with the

former outperforming the latter. It is well understood in the
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computer vision community that deep neural models often

outperform traditional computer vision feature extractors on

image classification tasks (Sharif Razavian et al., 2014).

However, deep neural models are computationally expensive.

In contrast to existing methods, our work differs in

following respects: (i) the proposed pipeline does not require

carefully selected parameters to detect Bragg peaks to accept

or reject diffraction patterns in order to reduce serial crys-

tallography data, and (ii) we have made a novel comprehen-

sive study to compare various handcrafted feature extractors

along with machine learning classifiers on both synthetic and

real experimental data. We observe that the existing literature

lacks a comprehensive comparative study using serial crys-

tallography data.

3. Proposed pipeline

Our goal is to classify X-ray crystallography diffraction data

into hit (the X-ray beam hits a crystal) and miss (the X-ray

beam does not hit a crystal) categories to reduce the data,

using machine learning. Thus, we propose a pipeline with four

main components consisting of feature extraction, repre-

senting extracted features using the bag of visual words

(BoVWs) method, diffraction pattern labelling and classifi-

cation with machine learning (Fig. 2). The pipeline contains a

feature extractor to encode key points representing Bragg

peaks (Section 3.1). We compared several well known feature

extraction methods from computer vision in order to find the

best candidate. BoVWs were then created using K-mean

clustering to generate the codebooks and treating features as

words (Section 3.2). In addition, the pipeline includes an

automated labelling mechanism using ORB key points and

descriptors (Rublee et al., 2011) along with a threshold value

to label diffraction patterns (Section 3.3). Finally, we use a

machine learning classifier to categorize the diffraction

patterns, comparing the performance of four supervised

machine learning models: MLP, support vector machine,

random forest and naı̈ve Bayes (Section 3.4).

3.1. Handcrafted feature extractors

Handcrafted feature extractors encode the content of an

image using a number of points or neighbourhoods. Typically,

the encoding can vary from raw values to histograms of

gradients and point-wise comparisons. In ground-breaking

work, Schmid & Mohr (1997) presented local features which

are computed at automatically detected interest points for an

image retrieval task. Since then, handcrafted features have

made remarkable progress, handling various computer vision

tasks (Dalal & Triggs, 2005; Lowe, 2004; Perronnin et al.,

2010). In this work, we studied several well known feature

extractors from the computer vision community (ORB, SIFT,

BRIEF, Haris, SURF, FAST, Shi-Tomasi, HOG) to extract

features from diffraction patterns. Our experimental results

show that the SIFT, SURF and Shi-Tomasi algorithms extract

feature vectors even from the background of the image and

not only from the Bragg peaks. The BRISK, BRIEF and Haris

algorithms extract features from Bragg peaks but the number

of detected key points is lower than with ORB. We also

implemented the histogram of oriented gradients (HOG)

feature descriptor. HOG counts events of gradient orientation

in a specific piece of an image or region of interest. The HOG

feature extractor focuses on the structure of the object and

extracts many features from the background of the image.
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Figure 2
The proposed computation pipeline that extracts key points to train and test a machine learning classifier. It extracts key points from diffraction patterns
representing Bragg peaks with a feature extractor. Afterwards, similar features are grouped together with the ‘bag of visual words’ method. Finally, a
machine learning classifier is trained with the features.



As shown in Section 4.3.1, the ORB feature extractor

produces the best results in both the number of detected key

points and the matching of key points to Bragg peaks; there-

fore, we will describe this particular method in more detail.

3.1.1. Oriented FAST and rotated BRIEF. ORB is a well

known robust local feature detector and is extensively applied

in computer vision tasks (Rublee et al., 2011). It is based on

features from the accelerated and segments test (FAST) key

point detection approach and a modified version of the binary

robust independent elementary features (BRIEF) key point

descriptor algorithm, inheriting reliable performance and low

cost (Rublee et al., 2011). For each pixel p in an image, the

FAST algorithm compares the brightness of p with the

neighbouring 16 pixels that are in a circle around that pixel.

Pixels within the circle are then ordered into three categories

(lighter than p, darker than p or similar to p; Fig. 3). If more

than eight pixels are brighter or darker than p then it is picked

as one key point. Thus key points detected by the FAST

approach provide us with information on the position to

determine the edges in an image.

Nevertheless, FAST features are without orientation and

multiscale components. Therefore, the ORB feature extrac-

tion method applies a multi-scale pyramid. A pyramid is a

multiscale illustration of a particular input sample with several

series of images at varying resolutions of the original image. In

this case, each level in the pyramid is downsampled from the

previous level. Once ORB has built a pyramid, it employs the

FAST approach to identify key points in the image. By

detecting all potential key points at each level of the pyramid,

ORB efficiently discovers key points on a varying scale,

making it scale invariant. Fig. 4 shows an example of a multi-

scale diffraction pyramid.

Experimental results show that most of the key points are

detected on an earlier level of the pyramid (Fig. 5). Therefore,

in order to have a faster computation time, we have extracted

key points in just the first layer of the pyramid and ignored the

key point detection in the other layers.

In the next step, ORB allocates an orientation for each

detected key point depending on how the levels of intensity

shift around that key point. It employs intensity centroiding

(Rosin, 1999) in order to detect intensity variations. The

intensity centroid estimates that a key point’s intensity is

offset from its centre and this vector may be used to assign an

orientation. First, the moments of a patch are defined as

mpq ¼
P
x;y

xpyqIðx; yÞ; ð1Þ

where x and y are pixel coordinates and I(x, y) is the grey

value of the corresponding pixel. With these moments, ORB

finds the centroid, the ‘centre of mass’, of the patch as

C ¼
m10

m00

;
m01

m00

� �
; ð2Þ

where the zeroth moment (m00) is the mass of the image block

and the first moment (m10 , m01) is the centroid of the image

block.

We can create a vector from the corner’s centre O to the

centroid, OC. The orientation of the patch is then given by

� ¼ arctan 2ðm01;m10Þ: ð3Þ

Once the orientation of the patch has been computed, it is

possible to rotate it to a canonical rotation and then compute

the descriptor, resulting in rotation invariance. The key points

detected with the FAST method are given to BRIEF,

converting them into a binary feature vector (also known as

binary feature descriptor).

The BRIEF feature describes a diffraction pattern by a set

of key points, with each one being described by a feature

vector consisting of 128–512 bits. BRIEF uses a Gaussian

kernel for smoothing the diffraction pattern to avoid the

descriptor being sensitive to high-frequency noise. Then a
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Figure 4
A diffraction pattern multiscale image pyramid with width x and height y,
including various versions of downsampled input diffraction patterns
from which key points can be extracted.

Figure 3
The FAST key point detection mechanism. A pixel p is compared with 16
neighbouring pixels in a circle formulation. If more than eight pixels are
darker or brighter than p then it is selected as a key point.



random pair of pixels are picked from a pre-specified neigh-

bourhood, which is a square of some pixel width and height,

known as a patch, around each computed key point. The first

pixel in the randomly picked pair is drawn from a Gaussian

distribution by a standard deviation or spread of sigma

centred around the key point, and the second pixel is drawn

from a Gaussian distribution centred around the first pixel by

a standard deviation or spread of two sigma (Rublee et al.,

2011). If the first pixel is brighter than the second one, the bit

is set to 1; otherwise it is set to 0. Again BRIEF chooses a

random pair of pixels and indicates the value to them. For a

128 bit vector, it repeats 128 times and generates one vector

for each detected key point from the input. The same random

pairs are used for each key point, so that identical features will

produce identical feature vectors.

Mathematically, the method can be described as follows.

Consider a smoothed image patch p. A binary test � is defined

by

�ðP; x; yÞ :¼
1 for PðxÞ<PðyÞ,

0 for PðxÞ � PðyÞ,

�
ð4Þ

where P(x) is the intensity of P at point x. A vector of n binary

tests is defined by a feature as

f ðnÞ ¼
P

1<i<n

2i�1�ðp; xi; yiÞ: ð5Þ

Nevertheless, the basic version of BRIEF described thus far

is not robust against rotation variation; if two otherwise

identical features are rotated with respect to each other by

more than a few degrees, they will produce different feature

vectors. ORB uses rotation-aware BRIEF (rBRIEF) in order

to make it robust against rotation variation. In this method, for

each given feature the set S of n binary tests at position (xi , yi)

is defined as a 2 � n matrix,

S ¼
x1; . . . ; xn

y1; . . . ; yn

� �
: ð6Þ

It uses the patch orientation � and the corresponding rotation

matrix R� to construct a steered version S� of S,

S� ¼ R� S: ð7Þ

The rBRIEF operator is now

gnðP; �Þ :¼ fnðPÞ j xi; yið Þ 2 S�: ð8Þ

Finally, the discretization of the angle is formed at increments

of 2�/30 (12�) and a lookup table of precalculated BRIEF

patterns is generated. While the orientation of each key point

� is consistent across views, the correct set of points S� will be

employed to compute its descriptor.

3.2. Bag of visual words

In natural language processing, the bag of words method

represents text information with a simple histogram of word

frequencies. Similarly, BoVWs takes features extracted from

an image and creates a histogram of different features (Sivic &

Zisserman, 2003; Csurka et al., 2004). To do this, however, a

codebook that groups features into different categories must

be created. A codebook is recognized as a representation of

various similar patches. In our pipeline, we used ORB features

to generate the codebook for the BoVW model. In order to

generate the codebook, we applied the mini batch K-means

clustering approach (Sculley, 2010) over features (ORB) and

the visual words in the codebook are defined by the centres of

the learned clusters. Therefore, each patch in the image is

mapped to a specific codebook within the clustering process

and, finally, the image is represented by a histogram of visual

words. The generated histograms are then used to train a

machine learning classifier.

Mini batch K-means clustering is a faster version of the K-

means algorithm which can be used instead of the latter when

clustering on huge data sets. It makes random batches of data

that are stored in memory, and then a random batch of data is

collected on each iteration to update the clusters. We consider

nclusters = 5nclasses, where nclusters is the number of clusters,

known as the size of the codebook, and nclasses is the number of

classes in the data set. We also consider b = S/3 as the batch

size, where S is the length of all feature vectors for all classes,

and intsize = 3b as the initial size of clustering, and these are

inputs for the mini batch K-means clustering. Fig. 6 shows a

block diagram for the generation of BoVWs.
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Figure 5
Detected key points at different pyramid levels of the ORB feature detection (green circles show detected key points).
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Figure 6
An illustration of the bag of visual words approach. The first row shows the process of learning a vocabulary of visual words by computing the ORB
descriptor and clustering the collection of descriptors into groups whose centres will define the visual words by K-means clustering. The second row
shows how we use the visual word tree. Given a diffraction pattern, we compute the ORB descriptors. For each descriptor we then find the closest cluster
centre and increment the frequency count for that visual word. The result is a histogram of visual word counts.

Figure 7
The success rates of the ORB key points compared with a human annotator and the DIALS automatic spot finder for each of the four data sets studied
here. (a) L498, (b) LN84, (c) LN83 and (d) LO19.



3.3. Diffraction pattern labelling

It is vital to build a high-quality labelled data set for

supervised machine learning (Russell & Norvig, 2002). Typi-

cally, supervised machine learning methods infer a function

from labelled training data consisting of a set of training

samples. Due to the nature of SFX experiments, it is a chal-

lenging task to label large-scale unlabelled diffraction

patterns. Typically, diffraction patterns are labelled with the

help of human annotators (Ke et al., 2018) or an automated

mechanism such as the diffraction integration for advanced

light sources (DIALS) spot finder (Parkhurst et al., 2016). Our

proposed labelling method extracts ORB key points from a

diffraction pattern, capturing some of the Bragg peaks.

Specifically, the method extracts key points by considering the

pixel brightness around a given area. Afterwards, the detected

key point is converted into a vector typically known as a

descriptor. Intuitively, the ORB key point detector works like

a peak finder, so we use the detector to count the number of

Bragg peaks and employ a threshold value � to label a

diffraction pattern as a hit or miss. Given the nature of SFX

experiments, the number of Bragg peaks can vary between

diffraction experiments, so the threshold value � is data set

specific. To find the optimal value for each data set, we varied

the threshold value (�) and compared the results with those

from human annotation and the DIALS spotfinder. For

experimental data, we selected four diverse XFEL experi-

mental data sets (denoted L498, LN84, LN83 and LO19),

containing diffraction patterns from different detectors,

samples and delivery methods (see Section 4.1 and Table 1).

We found � = 30, 30, 25 and 40 for L498, LN84, LN83 and

LO19, respectively (Fig. 7).

3.4. Classification

X-ray diffraction pattern classification is a two-step process.

In the first step, the ORB feature extraction technique is

applied to obtain key points, feature vectors and descriptors

from labelled patterns. In the second step, a machine learning

algorithm is trained to classify images into data categories. We

compared four supervised classifiers, namely MLP, support vec-

tor machine (SVM), random forest (RF) and naı̈ve Bayes (NB).

3.4.1. Multilayer perceptron. This is a feed-forward neural

network that consists of a unidirectional network distributed

in a set of input and output layers (Ramchoun et al., 2016). It

consists of at least three layers: an input layer to receive the

input feature vectors, one or more hidden layers allowing the

capability to learn nonlinear models (Lippmann, 1987; Duda et

al., 2000), and an output layer to make a prediction (Lu &

Weng, 2007).

For hyperparameter tuning, we used the GridSearchCV tool

from the Sklearn library (Pedregosa et al., 2011). We experi-

mented with different sizes of hidden layers, activations (tanh,

ReLU), solvers (SGD, adam), alphas (0.0001, 0.05) and

learning rates (constant, adaptive). After hyperparameter

tuning, the parameters were as follows: stochastic gradient

descent (SGD) was used for weight optimization; seven

hidden layers were used, with L neurons in each layer where

L = {50, 30, 20, 20, 20, 30, 50}; the activation function was the

rectified linear unit (ReLU) which returns f ðxÞ ¼ maxð0; xÞ;

and the regularization term was 1� 10�5. The number of input

neurons is different for each data set and it is equal to the

number of clusters in the mini batch K-means clustering

algorithm used in performing the BoVWs step.

3.4.2. Support vector machine. This is a supervised

machine learning technique that can be used for either image

classification or regression problems. The SVM classifier

applies a method called the kernel trick, which separates data

points using a hyperplane with the largest amount of margin.

In other words, the kernel takes low-dimensional input data

and transforms it into a higher-dimensional space in order to

convert nonseparable problems to separable problems by

adding more dimensions. Additionally, the SVM performs

good generalization, which avoids overfitting (Duda et al.,

2000). In our work, we used the radial basis function (RBF)

kernel with a � parameter of � = 0.001. The RBF kernel is one

of the most common kernel functions used in SVM classifi-

cation. It has the form

Kðx; yÞ ¼ exp ��
Pp
j¼1

xij � yij

� �2

" #
; ð9Þ

where � is a tuning parameter which accounts for the

smoothness of the decision boundary and controls the

variance of the model. Intuitively, the value of � determines

how far the influence of a particular training sample reaches,

with low values indicating ‘far’ and high values indicating ‘close’.

3.4.3. Random forest classifier. RF is one of the most

common supervised machine learning techniques and is based

on decision-tree algorithms. Like SVM, RF is also used to

solve regression and image classification problems. It uses

ensemble learning, which is a method that mixes many clas-

sifiers to solve complex problems. The RF technique formu-

lates the result on the basis of the predictions of the decision

trees. It is a meta estimator that implements a number of

decision-tree classifiers on different sub-samples of the input

data, and employs averaging to increase the predictive accu-

racy and control overfitting. Increasing the number of trees

also increases the precision of the outcome. Generally, for a

classification problem, the output of the RF is the class

selected by most trees. We have used the RF classifier because

it is more accurate than the decision-tree approach and it can

provide a reasonable prediction without any need for hyper-

parameter tuning (Breiman, 2001). In this paper, we consid-

ered nestimators = 100 as the number of trees in the forest and

the ‘Gini impurity’ as a function to measure the quality of a

split as follows:

IGðpÞ ¼
PJ

i¼1

pi 1� pið Þ; ð10Þ

where pi is the probability of a certain classification i, as per

the training data set.

3.4.4. Naı̈ve Bayes classifier. This is a straightforward and

powerful supervised learning technique for classification tasks.

NB classifiers are probabilistic classifiers based on Bayes’

theorem which assume statistical independence between the
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features of the data set. The primary idea of the NB model is

that each class has its own distribution over the codebooks

where the distributions of each class are noticeably different.

Classification is done by finding the class with the highest

posterior probability (Lu & Weng, 2007). This approach is

known as maximum a posteriori (MAP) and is defined as

c� ¼ arg max
c

pðc j wÞ

¼ arg max
c

pðcÞ pðw j cÞ

¼ arg max
c

pðcÞ
QN
n¼1

p wn j cð Þ; ð11Þ

where c refers to classes, w refers to features and the algorithm

will pick the class c with the highest probability.

In this paper, we have used the Gaussian NB classifier,

where the assumption is that data from each class are drawn

from a simple Gaussian distribution. As we demonstrated in

Section 3.2, it is possible to generate a simple model by

assuming that the ORB extracted features for each class are

described by a Gaussian distribution with no covariance

between feature spaces. This model can be fitted simply by

using the mean and standard deviation of the features inside

each class, which are all the parameters needed to determine

such a distribution. In this case the formula for the conditional

probability changes as follows:

P xi j yð Þ ¼
1

2��2
y

� �1=2
exp �

xi � �y

� �2

2�2
y

" #
; ð12Þ

where � is the standard deviation and � is the mean for xi .

4. Experimental details

In this section, we discuss the experimental data along with the

implementation details of our pipeline. In addition, we

provide experimental results and discussions of various

feature extractors used on the classification task.

4.1. Data sets

In our experiments, we used both synthetic and real

experimental serial crystallography data to evaluate the

pipeline. The synthetic data set named DiffraNet is generated

with the nanoBragg simulator using a single-crystal structure

(Souza et al., 2019). Variations in image quality are achieved

by varying the X-ray beam intensity or by modelling imper-

fections in the crystal by breaking it up into smaller crystals.

Other parameters include sources of background noise and

the crystal orientation. It consists of 25 000 diffraction patterns

with an image size of 512 � 512, divided into five classes

(Blank, No crystal, Weak, Good, Strong) to perform the

classification task. In addition, we created another set named

DiffraNetHM where the No crystal and Weak classes are

merged into misses while the other classes are grouped into

hits, to make it consistent with real experimental data sets.

For experimental data, we selected four diverse experi-

mental data sets to reflect different imaging detectors, beam

energies and sample delivery methods and to include crystals

with different space groups and unit-cell parameters. Table 1

lists these protein serial crystallography diffraction data sets,

which were collected on the Coherent X-ray Imaging (Boutet

et al., 2016) and Macromolecular Femtosecond Crystal-

lography (Bostedt et al., 2016) instruments at the Linac
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Figure 8
Key point detection of various feature extractors. Key points indicate that the ORB extractor extracts regions roughly equal to the number of Bragg
peaks in the diffraction pattern.



Coherent Light Source (Bostedt et al., 2016) (LCLS, Menlo

Park, California, USA). Recently, Ke et al. (2018) unpacked

the first 2000 images from the native LCLS data format and

converted them to a four-byte integer HDF5 format for

further study. We used the same diffraction patterns and

evaluation protocols in our experiments.

4.2. Implementation details

Our pipeline consists of feature extractors and machine

learning components. We evaluated the performance of the

pipeline with standard classification evaluation metrics, i.e.

accuracy, precision, recall and F1 scores. Experiments were

performed with the Python 3.6, OpenCV (https://opencv.org/)

and scikit-image (https://scikit-image.org/) libraries, on an

Intel Core i5 CPU operating at 2.21 GHz, with 1 MB L2 cache,

8 MB L3 cache and 16 GB RAM.

4.3. Experimental results

4.3.1. Feature extractors – qualitative and quantitative
results. Generally, features obtained from an extractor are

used to train the machine learning model, so it is essential to

extract key regions from a diffraction pattern representing

Bragg peaks. In other words, features with Bragg peaks will be

essential to train a robust machine learning classifier. In this

section, we visualize key regions of a diffraction pattern

representing Bragg peaks using various feature extractors

(Fig. 8). Our qualitative results indicate that the ORB feature

extractor extracts key points corresponding to the Bragg

peaks in the diffraction pattern. Other feature extractors

extract either too few or too many key points from the

background, which is not suitable for training a machine

learning model. Quantitatively, the results show that the ORB

extractor is superior to the others. Table 2 shows a comparison

of the feature extractors used here in terms of memory,

execution time and classification performance.

In addition, we visualized the ORB features extracted from

the diffraction patterns, with each pattern describing a point in

the feature or embedding space (Fig. 9). It is evident that hit

and miss classes are well separated by their ORB features,

indicating the discriminative nature of the method.

4.3.2. Robustness against anomalies. X-ray images can

contain other features aside from the crystal X-ray diffraction

we want to measure. Some of these features are digital arte-

facts produced by the detector itself, whereas others are

produced by X-rays scattering from other material in the

experiment. Some kinds of X-ray diffraction pattern anoma-

lies are water scattering (background ring), loop scattering,

non-uniform detector responses, ice rings, low crystal signal-

to-noise ratio (strong background) and digital artefacts

(Czyzewski et al., 2021). These anomalies can change the

regular shape of a diffraction pattern. Our qualitative results

show that the ORB feature extractor is robust against

anomalies. Fig. 10 shows that ORB extracts features from

Bragg peaks with diffraction patterns containing different

anomalies.

4.3.3. Diffraction pattern labelling method. Our labelling

method automatically labels diffraction patterns into hit or
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Figure 9
Feature distributions of various serial crystallography data sets.

Table 1
Experimental data.

LCLS data set (proposal, run) Incident energy (eV) Protein Space group, unit cell (Å) Instrument Sample delivery Detector

L498, 27 9773 Thermolysin P6122, a = 93, c = 130 CXI MESH CSPAD
LN84, 95 9516 Photosystem II P212121, a = 118, b = 223, c = 311 MFX Conveyor belt Rayonix
LN83, 18 9498 Hydrogenase P212121, a = 73, b = 96, c = 119 MFX Conveyor belt Rayonix
LO19, 20 9442 Cyclophilin A P212121, a = 42, b = 52, c = 88 MFX Liquid jet Rayonix

Table 2
Memory and time for each extractor representing a single feature.

Classification performance is included with MLP on the LN84 data set.

Descriptor SIFT-128 SURF-64 Shi-Tomasi BRIEF ORB FAST

Memory (bytes) 128 64 64 32 32 16
Time (ms) 2.776 1.024 0.088 0.224 0.179 0.092
Accuracy (%) 51.66 68.49 12.78 59.18 96.5 41.38

Table 3
Success rate (%) of ORB labelling compared with the DIALS- and
human-predicted labels.

L498 (� = 30) LO19 (� = 40) LN84 (� = 30) LN83 (� = 25)

ORB
label Hit Miss Hit Miss Hit Miss Hit Miss

DIALS
label

Hit 95.19 4.81 96.12 3.88 96.94 3.06 96.63 3.37
Miss 7.28 92.72 3.59 96.41 6.83 93.17 5.36 94.64

Human
label

Hit 94.21 5.79 95.49 4.51 95.07 4.93 95.18 4.82
Miss 4.53 95.47 6.29 93.71 8.42 91.58 9.81 90.19



miss classes to train supervised machine learning models. The

labelling method extracts key points from a diffraction pattern

with the ORB detector. Afterwards, a threshold value is

selected to label a pattern into one of the classes (see Fig. 7).

We evaluated our method with two ground-truth labels

collected from a human expert and the automated DIALS

spot finder (Ke et al., 2018). Table 3 shows the performance of

our labelling method along with that of the human expert and

DIALS spot finding ground-truth label for four data sets.

Although our labelling method requires a manual selected

threshold value, the results indicate that it can be reliably used

to label offline diffraction patterns for supervised machine

learning models.

4.3.4. Classification results. In this section, we provide

details of the classification performance using the MLP, SVM,

NB and RF classifiers trained on ORB features.
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Figure 10
ORB feature extraction from Bragg peaks with various anomalies.

Table 4
Classification performance of four classifiers trained on ORB features, using human, DIALS and ORB labels.

ORB+MLP ORB+SVM

Data set Labels F1 (%) Precision (%) Recall (%) Accuracy (%) Data set Labels F1 (%) Precision (%) Recall (%) Accuracy (%)

L498 Human 90.26 89.16 88.27 90.12 L498 Human 90.08 90.40 87.18 88.72
DIALS 90.43 89.59 89.69 90.83 DIALS 90.32 91.41 89.00 89.17
ORB 89.42 88.54 87.52 89.71 ORB 89.12 90.36 86.00 88.50

LO19 Human 92.23 93.45 91.72 92.59 LO19 Human 85.61 87.66 83.49 85.71
DIALS 92.65 93.97 91.88 92.82 DIALS 85.98 87.71 83.92 85.88
ORB 91.91 92.85 91.00 92.00 ORB 85.12 87.36 83.00 85.50

LN84 Human 96.71 97.46 96.73 96.22 LN84 Human 94.31 94.44 94.39 94.14
DIALS 96.78 97.36 96.49 96.97 DIALS 94.25 94.49 94.77 94.18
ORB 96.48 96.96 96.0 96.5 ORB 93.53 93.06 94.0 93.5

LN83 Human 93.73 94.97 93.38 93.79 LN83 Human 92.14 93.39 91.54 92.50
DIALS 95.11 94.96 92.77 94.38 DIALS 91.40 94.84 92.00 93.50
ORB 93.40 94.84 92.00 93.50 ORB 91.83 93.75 90.00 92.00

DiffraNet Simulated 97.51 97.02 98.00 97.50 DiffraNet Simulated 95.52 95.04 96.00 95.50

ORB+RF ORB+NB

Data set Labels F1 (%) Precision (%) Recall (%) Accuracy (%) Data set Labels F1 (%) Precision (%) Recall (%) Accuracy (%)

L498 Human 80.66 80.50 81.54 80.72 L498 Human 82.09 82.71 81.39 82.18
DIALS 80.99 80.79 81.73 80.81 DIALS 82.45 82.91 81.68 82.33
ORB 80.59 80.19 81.0 80.5 ORB 81.81 82.65 81.0 82.0

LO19 Human 82.94 84.39 80.12 82.73 LO19 Human 81.36 82.65 80.17 81.83
DIALS 83.12 84.78 80.42 82.84 DIALS 81.88 82.92 80.18 81.91
ORB 82.05 84.21 80.0 82.5 ORB 81.21 82.47 80.0 81.5

LN84 Human 88.93 90.55 87.52 89.51 LN84 Human 89.77 89.71 90.00 90.04
DIALS 89.38 90.87 87.47 89.57 DIALS 89.91 89.72 90.00 90.11
ORB 88.77 90.62 87.0 89.0 ORB 89.55 89.10 90.0 89.5

LN83 Human 92.18 92.53 92.42 92.12 LN83 Human 83.18 88.72 77.71 82.97
DIALS 92.40 92.84 92.73 92.50 DIALS 83.41 88.97 77.92 83.06
ORB 92.0 92.0 92.0 92.0 ORB 82.52 88.54 77.27 82.85

DiffraNet Simulated 94.58 93.20 96.00 94.50 DiffraNet Simulated 92.07 91.17 93.00 92.00



The entire feature extraction and classification pipeline was

performed on an Intel Core i5-10310U CPU (consisting of

four-core chips, 1.7 GHz) with 6 MB cache and 16 GB RAM,

running Microsoft Windows 10, with code programmed in

Python. In all our classification experiments, we used different

images for training and testing to avoid overfitting. In our first

set of experiments, we looked at each data set independently.

We trained using 80% of the images from the data set and then

tested using the remaining 20%, employing the fivefold cross-

validation method to improve statistics. Table 4 shows the

classification results for F1 score, Precision, Recall and

Accuracy with the same training and testing strategy on both

synthetic and real experimental data, where

Precision ¼
TP

TPþ FP
; ð13Þ

Recall ¼
TP

TPþ FN
; ð14Þ

Accuracy ¼
TPþ TN

TPþ TNþ FPþ FN
; ð15Þ

F1 score ¼
2� Precision� Recall

Precisionþ Recall
: ð16Þ

TP is defined as true positive, TN as true negative, FP as false

positive and FN as false negative.

These results clearly demonstrate that the ORB+MLP

method produces superior performance across all data sets. In

addition, ORB+MLP produces performance above 90%, with

the exception of data set L498. The L498 data set contains a

relatively small number of Bragg peaks compared with the
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Figure 11
Confusion matrices for the classification DiffraNet data set with five classes. (a) ORB+MLP, (b) ORB+SVM, (c) ORB+RF and (d) ORB+NB.



other data sets, which makes the classification task more

challenging. A similar conclusion was drawn by Ke et al.

(2018).

Table 5 shows a comparison of processing times for the

various components of our proposed method and the CNN

base image classification system (Ke et al., 2018).

In the second type of classification experiments, we

performed cross-data training and testing, where for each pair

of data sets we first trained on one data set and then tested on

the other. This approach tests the possibility of deploying our

pipeline for real-time classification of new experimental data

that presumably make use of similar sample delivery systems

and detectors to those used for the training data. Table 6

shows the results for training and testing cross data sets,

resulting in a drop in performance due to the domain gap. In

addition, Fig. 9 shows the variation in embedding space for the

hit classes from four different data sets (LN84, LN83, L498

and DiffraNet). In other words, differences in experimental

features such as the sample delivery method and detector may

affect the performance of our proposed pipeline.

Finally, we compared the ORB features with various

machine learning classifiers on the DiffraNet data set. We

tested the machine models to classify the diffraction patterns

into five classes, namely Blank, No crystal, Weak, Good and

Strong. Fig. 11 shows the confusion matrices for various

machine learning models on DiffraNet. Most of the mis-

classification cases happen between neighbouring classes such

as Weak, Good and Strong.

5. Conclusions and future work

In this work, we have investigated the practicability of using

handcrafted feature extraction methods with a novel pipeline

for diffraction patterns obtained in serial crystallography

experiments. Our experimental results show that ORB feature

extraction is the best candidate. The major benefit of the ORB

feature extractor is that it does not require a precise char-

acterization of the Bragg peaks or of the many undesirable

artefacts present in the diffraction patterns.

We observed that a classifier trained on one data set cannot

necessarily be applied to data collected with different

experimental settings. Although it is desirable to train a

classifier that can be used on all experiments, it is challenging

to collect a large-scale data set representing various experi-

mental settings. Therefore, we want to take advantage of

domain adaptation methods to bridge the performance drop

due to changes in the experimental setting (Morerio et al.,

2017).
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Table 6
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with ORB+MLP.

Numbers in bold indicate the best performance.

Train/test LO19 L498 LN83 LN84
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LN83 72.3 78.4 93.5 80.1
LN84 79.1 75.9 72.6 96.5

Table 5
Processing time (ms) for various components of our proposed method
compared with the CNN method (Ke et al., 2018) on 64 images.

CNN ORB+MLP

Processes LCN CNN Total time ORB BVWs MLP Total time

Train 5700 260 5960 11.264 3171 197.3 3379.564
Test 5700 50 5750 11.584 3099 101.03 3211.614
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