
research papers

128 https://doi.org/10.1107/S160057672201069X J. Appl. Cryst. (2023). 56, 128–134

Received 24 July 2022

Accepted 7 November 2022

Edited by J. Keckes, Montanuniversität Leoben,

Austria

Keywords: X-ray diffraction; nanocrystals;

kinematic scattering.

Kinematic scattering by nanocrystals

Olivier Thomasa,b* and Ismail Cevdet Noyanb
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Various formulations are compared which describe diffraction from ultra-thin

single-crystal films in the symmetric scattering configuration, showing that, for

this thickness range, several implicit assumptions in these formulations are no

longer satisfied. Consequently, the position, integrated intensity and integral

breadth of a diffraction peak cannot be related to the lattice spacing of the

material or the number of unit cells along the diffraction vector using traditional

analysis methods. Some simple equations are proposed to obtain the correct

values of these parameters for this specific sample/diffraction geometry

combination. More generally, the development of rigorous formalisms for

analyzing diffraction from nanocrystals is proposed.

1. Introduction

X-ray diffraction techniques are routinely used for non-

destructive characterization of crystalline materials. These

methods can be applied to individual crystals or crystalline

aggregates and yield quantitative structural and micro-

structural data from analysis of the position and shape of the

relevant Bragg peaks. Structural information such as the

symmetry, dimensions and atomic occupancy of the unit cells

in the sample are primarily obtained from the angular posi-

tions and relative intensities of the Bragg peaks. Any shifts of

these Bragg peaks from their ideal positions can be used to

compute long-range internal elastic strains and/or composition

gradients. Microstructural information such as phase fractions,

dimensional parameters (grain size, film thickness), strain and

lattice parameter distributions, the presence and concentra-

tion of line and planar defects etc. is obtained from the

intensities, breadths and shapes of the Bragg peaks.

In the past few decades these diffraction techniques have

been applied to the characterization of nanocrystalline

samples. However, in analogy to the ‘emergent’ properties of

nano-solids, some aspects of the scattering process are selec-

tively enhanced on these size scales. This necessitates a careful

examination of the canonical formalisms. For example, it was

recently shown that, for nanocrystals smaller than 20 nm or so,

the classical Lorentz factor and binomial sampling statistics

are not applicable, since the multiplicity mhkl used in these

approaches becomes a stochastic parameter for smaller crys-

tallites (Öztürk et al., 2014, 2015; Öztürk & Noyan, 2017).

Similarly, it has been known for over a decade that lattice

parameters obtained from diffraction analysis of nanoparticles

with sizes below 10 nm can deviate significantly from their true

values (Bocquet et al., 2003; Kaszkur et al., 2005; Kaskur, 2006;

Palosz et al., 2010), leading to speculation that Bragg’s law was,

somehow, not applicable for such sizes; ‘The other important

phenomenon observed for nanocrystals is that the diffraction

peak positions no longer obey the Bragg law precisely’
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(Kaszkur et al., 2005). Later, Xiong et al. (2018, 2019) showed

that this shift in the Bragg peak positions was due to the

increasing influence of the refraction correction with

decreasing crystallite size; the shift was more pronounced for

smaller Bragg angles and could be substantial for particle

dimensions smaller than 5 nm. Since refraction effects are just

one of the factors which are size dependent, we undertook the

current, broader, study. Here we follow up on the general issue

of diffraction from nanocrystals and focus more specifically on

the effect of crystallite size on the commonly utilized scattered

amplitude formulations at the nanoscale. In this treatment we

limit the discussion to an ideally perfect single-crystal thin-film

slab diffracting at the kinematic limit, where radial scans

through reciprocal points are recorded.

2. Theoretical analysis

2.1. Description of the problem

Fig. 1 depicts the symmetric Bragg diffraction geometry for

a single-crystal Si thin-film slab1 illuminated with a plane wave

of monochromatic X-rays. The largest interplanar distance

along the normal to the slab is d and any other can be

expressed as d/m, where m is an integer. For a stack of N

planes the total slab thickness is Nd. The scattering vector q =

kdiff � kin is defined as the difference between the incident

wavevector and the scattered wavevector. The angle between

kdiff and the transmitted beam vector ktr is the diffraction

angle 2�. Thus

q ¼ 4�
sin �

�
: ð1Þ

In the case of very thin crystals the total slab thickness will

always be much smaller than the extinction length (Authier,

2001) and thus the kinematic formalism can be used to

describe the scattering process. In this framework the scat-

tered amplitude is represented as the Fourier transform of the

(triply periodic) electron density within the slab (Patterson,

1939; Warren, 1990; Cowley, 1990),

AðqÞ ¼
R
�ðrÞ exp ðiq � rÞ dr; ð2Þ

where �(r) is the electron density distribution function. In the

case of an undistorted crystal of finite size, of shape (envelope)

function s(r), the scattered amplitude becomes

AðqÞ ¼FT sðrÞ
P
m

�cðrÞ � �ðr� RmÞ

� �

¼ SðqÞ � FðqÞ
P
m

exp ðiq � RmÞ; ð3Þ

where Rm is a Bravais lattice vector, �c(r) is the electron

density in the unit cell, F(q) is its Fourier transform called the

structure factor, S(q) is the Fourier transform of s(r), � is the

Dirac delta distribution and the asterisk (�) represents the

convolution product.

In the case of our simple crystal slab diffracting in the radial

direction this becomes

AðqÞ ¼FðqÞ
Xn¼N�1

n¼0

exp ðiqndÞ

¼N FðqÞ
Xp¼1

p¼�1

sinc N q� p
2�

d

� �� �
: ð4Þ

Here the sinc [cardinal sine, sinc(x) = sin(x)/x] arises from the

Fourier transform of the slit function. The first sum in (4) is the

well known kinematic sum (von Laue, 1948), which gives rise

to a series of Bragg peaks centred at qp = p2�/d [Fig. 2(a)].

When N decreases the angular acceptance aperture of the

crystal broadens, with a concomitant increase in the widths of

the series of Bragg peaks. At very large peak breadths most

simplifying approximations made in the canonical scattering

formulations (Cowley, 1990) break down. For example, it has

already been shown that the refraction correction becomes

important for small N (Xiong et al., 2018). Similar considera-

tions might apply for all additional q-dependent corrections

(Lorentz factor, polarization factor, structure factor etc.).

Variation of these terms with q can modify the shape and, in

some cases (depending on the symmetry of the considered

function of q), the position of the Bragg peaks. Some of these

issues are now examined.

If we neglect the q dependence of the structure factor, the

scattered intensity in the radial direction (q perpendicular to

the slab, Fig. 1) from the kinematic sum [equation (4)] can be

written as

I1ðqÞ ¼
sinðNqd=2Þ

sinðqd=2Þ

� �2

: ð5Þ

I1(q) is a periodic function whose maxima (Bragg peaks) are at

positions

qp ¼ p
2�

d
¼ pG: ð6Þ

In the following we will focus on the first (p = 1) Bragg peak

and write

q ¼ Gþ �q ¼ Gð1þ xÞ: ð7Þ
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Figure 1
The symmetric diffraction geometry for a thin film of thickness t = Nd,
where d is the atomic plane spacing perpendicular to the film surface. The
incident, diffracted and transmitted beam vectors kin , kdiff and ktr are
coplanar. The diffraction vector q bisects the incident and transmitted
beam vectors.

1 We use Si as an example owing to its technological importance and the
availability of very thin silicon on insulator films.



With the reduced dimensionless variable x = �q/G, I1(q)

becomes the Laue function,

LðxÞ ¼
sinðN�xÞ

sinð�xÞ

� �2

: ð8Þ

Going back to the general expression of scattered ampli-

tude [equation (4)], one can use the concept of a shape

function as developed by Patterson (1939) and consider – in a

completely equivalent way – the scattered amplitude as a sum

of sinc functions centred at qp = p2�/d. The common

approximation, valid for large N values, is to consider that a

single Bragg peak can be described by a single sinc function.

This is not true any more for small values of N; here the

additional contributions of neighbouring Bragg peaks should

also be considered [Fig. 2(b)].

Within the approximation of a single Bragg peak being

described by a sinc function, the scattered intensity is

proportional to

SðxÞ ¼
sinðN�xÞ

ð�xÞ

� �2

¼ N2½sincðN�xÞ�2: ð9Þ

It is common to use expressions (8) and (9) interchangeably

in diffraction theory, and they are indeed undistinguishable for

large values of N, but differences arise for small N values (see

Fig. 2).

An important 1/sin� factor in the scattering amplitude has

been discussed by Xiong et al. (2018). The physical origin of

this term is derived by Zolotoyabko (2014) from the summa-

tion of scattered waves from a single atomic plane. The

equivalence between this scattering description and a

refracting description is derived by de Bergevin (1999) and

Als-Nielsen & McMorrow (2011). Hence in the following this

correction factor will be named ‘refraction correction’. The

scattered intensities described by equation (8) or (9) do not

consider the refraction correction, which introduces a 1/q

factor in the scattered amplitude (Zolotoyabko, 2014; Als-

Nielsen & McMorrow, 2011). This results in a 1/q2 dependence

for the scattered intensity, which can generally be neglected

but has important consequences for nanocrystals (Xiong et al.,

2018). The modified Laue function, which includes this

refraction correction, becomes

LmðxÞ ¼
1

ð1þ xÞ2
sinðN�xÞ

sinð�xÞ

� �2

: ð10Þ

The modified S(x) function has a similar form:

SmðxÞ ¼
1

ð1þ xÞ2
N2½sincðN�xÞ�2: ð11Þ

The four intensity distribution functions L, S, Lm and Sm are

expressed as functions of the reduced variable x = (q � G)/G

in reciprocal space. They can be converted to intensity

distributions in angular space using the Bragg angle �B, which

is defined as

sin �B ¼
�

2d
¼
�

4�
G; ð12Þ

where � is the wavelength of the incoming radiation.

When this substitution is made, we get x = B��, where B =

1/tan�B and �� = � � �B is the deviation from the Bragg angle.

To summarize, at this point one has four different expres-

sions, equations (8), (9), (10) and (11), for computing or

analyzing the radially diffracted intensity (symmetric

geometry) from a single-crystal thin-film slab containing N

planes. Equation (10) is the most accurate form since it

considers the refraction correction and is derived directly from

the kinematic sum. All the others have implicit assumptions of

varying importance. In the following we will compare these

four diffracted intensity functions as a function of the number

of diffracting planes N using numerical simulations, paying

special attention to their behaviour for small N.

2.2. Simulations and analysis

We used Mathematica 12.0 (Wolfram Research, Champaign,

Illinois, USA) to generate intensities with these four functions

L(x), S(x), Lm(x) and Sm(x) and fitted them in the range

[�4/N, 4/N]. Following Scherrer (1918) we used a Gaussian

function to fit the primary peaks (Fig. 2) of these profiles,
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Figure 2
Bragg peak intensities (N = 5). (a) Laue function L(x) (black solid line)
plotted versus cardinal sine S(x) (blue dashed line). (b) Laue function
L(x) (black solid line) plotted versus the sum of three S(x) functions
centred at x = �1, 0 and 1 (red dashed line).



GðxÞ ¼ Imax exp �4 ln 2
x� x0

w

� �2
� �

: ð13Þ

Here Imax, x0 and w are fitting parameters. This function has its

maximum value, Imax , at x = x0 , with FWHM = w, integrated

intensity A ¼ 1
2 ð�= ln 2Þ1=2

Imaxw and integral breadth

IB ¼ A=Imax .

We note that, for the normalized sinc function S(x), Imax =

N 2, w = 0.88589 /N, A = N and IB = 1/N. Consequently, all

values of Imax , w, A and IB in the following discussion have

been normalized by, respectively, N 2, 1/N, N and 1/N.

2.3. Analysis of peak positions

As expected, the traditional functions L(x) and S(x) are

centred at x0 = 0. On the other hand, the 1/(1 + x)2 refraction

correction slightly skews the functions Lm(x) and Sm(x) and

introduces a finite Bragg shift; x0 is different from zero for

these formulations. This Bragg shift is plotted in Fig. 3 as a

function of N.

The Bragg shifts derived for the Lm(x) and Sm(x) functions

are very close to one another. They both show a strong size

dependence proportional to 1/N2, in agreement with previous

work (Xiong et al., 2018). The position of the maximum of the

function Lm(x) can be derived analytically,

x0 ¼ �
3

�2ðN2 � 1Þ � 9
; ð14Þ

and shows a 1/N 2 dependency. This is plotted in Fig. 3 and is in

good agreement with the result obtained from a Gaussian fit.

The corresponding shifts in angular space, ��, are easily

deduced using x = B��.

To compare the deviations of different Bragg reflections

one needs to re-express the slab thickness using the appro-

priate plane spacing dhkl ; t = Nd = Nhkl dhkl . Then x0 / �1/N2

becomes x0 / �d 2/t 2. This yields the x0 / �1= sin2 �B beha-

viour that has been reported previously (Xiong et al., 2018).

2.4. Analysis of peak intensity and breadth

Figs. 4 and 5 show that, except for the function S(x), all

other parameters (Imax /N 2, A/N, w � N and IB � N) obtained

from the other three equations exhibit a size dependence, with

an increasing departure from the constant value given by the

Gaussian fit when N decreases. For Imax (Fig. 4) the most

important offset from the value predicted from N 2 occurs

because of the refraction correction. It varies as 1/N 2, in

agreement with the analytical expectation for the maximum

of Lm(x),

Imax

N2
¼ 1þ

3

�2ðN2 � 1Þ � 9
: ð15Þ

Fig. 4 also shows that the refraction correction modifies the

maximum intensity in the same way for Sm(x). The maximum

intensity Imax for the Laue function L(x) also deviates from the

N 2 prediction at very small N values. This deviation is,

however, much smaller than the one caused by the refraction

correction and might not be important.
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Figure 3
A plot of the Bragg shift x0 as a function of N, the number of planes in the
slab. These values are derived from a Gaussian fit to functions Lm(x)
(black empty circles) and Sm(x) (blue empty squares). The solid line is
derived from the analytical expression of the position of the maximum of
function Lm(x) [equation (14)].

Figure 5
A plot of the integrated intensity scaled by N as a function of N, the
number of planes in the slab. These values are derived from a Gaussian fit
to functions L(x) (black filled circles), S(x) (blue filled squares), Lm(x)
(black empty circles) and Sm(x) (blue empty squares).

Figure 4
A plot of the maximum intensity scaled by N 2 as a function of N, the
number of planes in the slab. These values are derived from a Gaussian fit
to functions L(x) (black filled circles), S(x) (blue filled squares), Lm(x)
(black empty circles) and Sm(x) (blue empty squares).



The variation of the integrated intensity A with N is very

different (Fig. 5). Here A, computed from S(x), is constant for

all N, while the integrated intensity values obtained from

Sm(x), L(x) and Lm(x) deviate from the S(x) values for N < 20.

The disagreement between the Laue (kinematic sum) and

Patterson formulations is even more pronounced when one

considers the FWHM and integral breadth behaviours (Figs. 6

and 7). To understand this interesting result, we performed a

more detailed comparison of the two solutions S(x) and L(x).

2.5. Comparison of Laue L(x) and Patterson S(x) functions

As already mentioned, the parameters of the Patterson

function S(x) are related to the number of planes N normal to

the diffraction vector q with Imax = N 2, w = 0.88589/N, A = N

and IB = 1/N. This function is not periodic. On the other hand,

the Laue function L(x) is periodic (with a period of 1; Fig. 2)

and for each maximum Imax = N 2, as for S(x). L(x) is related to

the Fejér kernel (Davis, 1989) and possesses the interesting

normalization property

R1=2

�1=2

LðxÞ dx ¼ N: ð16Þ

The corresponding equation for S(x) is

R1
�1

SðxÞ dx ¼ N: ð17Þ

For L(x), x = 1/2 corresponds to the mid-distance between two

consecutive Bragg peaks (�q = G/2; see Fig. 2). It is fairly

straightforward to compare the integration of S(x) between

�1/2 and 1/2 with that of L(x), and there is an analytical

solution for this comparison:

1

N

Z1=2

�1=2

SðxÞ dx ¼
2

�
SiðN�Þ � Nsinc2 N�

2

� �
: ð18Þ

Here Si is the integral cardinal sine (sinc) function. Fig. 8

shows a comparison of a numerical integration performed

between x = �1/2 and x = 1/2 on L(x) /N and S(x) /N. The

analytical result is shown as a solid line. The infinite-N limit is

unity, showing that a single sinc function is suitable for

approximating the Bragg peak for large N values. However, a

clear deviation between the S and L functions is observed for

small N. This indicates that the Bragg peak shape can no

longer be described correctly by a single sinc function. To

retrieve the correct Laue function, one needs to sum several

sinc functions arising from neighbouring Bragg peaks (see

Fig. 2). In other words, the crystal shape function (Patterson,

1939; Croset, 2017) can no longer be retrieved from a single

Bragg peak, indicating that these solutions are only valid for

N � 10. For single-crystal silicon films, this corresponds to

approximately 5 nm thickness.

In practice one integrates a diffraction peak on a much

smaller range, typically some integer number times the

FWHM, usually four if possible. Fig. 9 shows the result of the

integration of S(x) and L(x) between �r /2N and r /2N with
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Figure 6
A plot of FWHM scaled by 1/N as a function of N, the number of planes
in the slab. These values are derived from a Gaussian fit to functions L(x)
(black filled circles), S(x) (blue filled squares), Lm(x) (black empty
circles) and Sm(x) (blue empty squares).

Figure 7
A plot of the integral breadth (IB) scaled by 1/N as a function of N, the
number of planes in the slab. These values are derived from a Gaussian fit
to functions L(x) (black filled circles), S(x) (blue filled squares), Lm(x)
(black empty circles) and Sm(x) (blue empty squares).

Figure 8
A plot of integrated intensity over the range [�0.5, 0.5] scaled by N as a
function of N, the number of planes in the slab, showing fits to L(x) (black
filled circles) and S(x) (blue filled squares). The solid blue line
corresponds to the analytical prediction [equation (18)]. The analytical
prediction for L(x) is 1 [see equation (16)].



the integer range parameter r = 4. The following can be

observed:

(i) The integration of S(x)/N in this range yields a constant

range-dependent value �(r). This agrees with the analytical

prediction,

�ðrÞ ¼
1

N

Zr=2N

�r=2N

SðxÞ dx ¼
2

�
Siðr�Þ �

sin2
ðr�=2Þ

r�=2

� �
; ð19Þ

which is independent of N.

(ii) In the case of L(x) the integration range is limited to a

single period with x = 	 1
2, which in turn limits the integration

factor: r /N 
 1. This mathematical limitation would be

important in the analysis of synthetic data from ultra-thin films

where the magnitudes of r and N would be comparable

(Fig. 10).

(iii) Finally, we observe that the L(x) and S(x) integrated

values diverge when N < 20. The same behaviour occurs for

the integral breadth, since IB is simply the integrated intensity

divided by N 2. Since L(x) is the exact expression, this has

important consequences for the information that can be

extracted from the Bragg peak. Because of the necessarily

reduced integration range, the integral breadth obtained from

S(x) is no longer proportional to the inverse of the number of

diffracting planes (Patterson, 1939).

To investigate this issue further let us define

fNðrÞ ¼
1

N

Zr=2N

�r=2N

LðxÞ dx with r 
 N; ð20Þ

where fN(r) has the following properties: fN(N) = 1, f1(r) = r

and f1(r) = �(r).

In Fig. 10 fN(r) is plotted for r = 4 to 8. In the absence of a

known closed-form expression for fN(r) we propose the

following simple numerical expression, obtained via least-

squares fitting:

fNðrÞ ’
0:211 r� 0:01

N2
�

0:05 rþ 1:04

N
� 10�2 þ �ðrÞ: ð21Þ

Although a better fit can be obtained using a table of

r-dependent coefficients, this form gives a reasonable agree-

ment (Fig. 10).

The discussion so far has neglected the effect of the

refraction condition on the integrated intensity. Since this

correction becomes important for small N, we also performed

numerical integration of Lm(x). Let us define

f m
N ðrÞ ¼

1

N

Zr=2N

�r=2N

LmðxÞ dx with r 
 N: ð22Þ

f m
N ðrÞ is plotted in Fig. 11 for r = 4 to 8. The following numerical

ansatz, also plotted in Fig. 11, reproduces the behaviour of the

integrated intensity reasonably well:
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Figure 9
A plot of the integrated intensity over the range [�r/2N, r/2N] (with r = 4)
scaled by N (or integral breadth scaled by 1/N) as a function of N, the
number of planes in the slab, showing fits to L(x) (black filled circles) and
S(x) (blue filled squares). The solid blue line corresponds to the analytical
prediction [equation (19)].

Figure 10
A plot of the integrated intensity for L(x) over the range [�r/2N, r/2N]
(with r = 4 to 8) scaled by N as a function of N, the number of planes in the
slab. r = 4 is shown by filled circles, r = 5 by open squares, r = 6 by filled
squares, r = 7 by open circles and r = 8 by stars. The vertical red solid lines
correspond to N = r. The solid black lines correspond to the numerical
ansatz [equation (21)].

Figure 11
A plot of the integrated intensity for Lm(x) over the range [�r/2N, r/2N]
(with r = 4 to 8) scaled by N as a function of N, the number of planes in the
slab. r = 4 is shown by filled circles, r = 5 by open squares, r = 6 by filled
squares, r = 7 by open circles and r = 8 by stars. The solid black lines
correspond to the numerical ansatz [equation (23)].



f m
N ðrÞ ’

0:326 rþ 0:684

N2
þ

0:623 r� 7:667

N
� 10�2

þ �ðrÞ:

ð23Þ

In practice, this expression may be used for linking the inte-

grated intensity or the integral breadth from a nano-film in the

range [�r /2N, r /2N] to the number of diffracting planes N.

3. Discussion and conclusions

In this study we have compared the evolution of diffraction

peak profiles expected from an ideal single-crystal thin-film

sample scattering in the symmetric geometry as a function of

film thickness (N planes) using four different formulations: (i)

kinematic sum [Laue function, equation (8)]; (ii) cardinal sine

[shape function of the slab; Patterson function, equation (9)];

(iii) refraction-modified Laue function [equation (10)]; (iv)

refraction-modified sinc function [equation (11)]. The

following observations are made.

(i) The refraction correction shifts the Bragg peak position

towards lower angles, and the amount of this shift varies as

1/N2 for both Laue and Patterson formulations. For a given

film thickness N, the shift is smaller for larger Bragg angles,

and varies with 1= sin2 �B for both approaches. These findings

agree with previous reports (Xiong et al., 2018, 2019). For our

specific sample and diffraction geometry we propose the use of

equation (14) to recover the true lattice parameter from

experimental or simulated peak profiles.

(ii) The Laue and Patterson formulations yield different

peak and integrated intensities and integral breadths for

N < 20. These differences become larger for decreasing N.

(iii) For N < 20, the integration of a Bragg peak over a

limited angular range (as is the case for experimental data)

yields an integrated breadth that is no longer proportional to

1/N. We provide a simple ansatz [equation (23)] for correction

of this issue. [We note that the corrections described by

equations (14) and (23) are strictly valid only for thin films.

Similar corrections can be derived for other shapes. However,

application of these corrections to nanocrystalline powder

diffraction data is non-trivial and requires significant future

work, especially if size and shape distributions are present

(Xiong et al., 2018).]

These results show that, when the number of diffracting

planes is sufficiently small to cause inordinate increases in the

breadths of Bragg peaks, the usual assumption that all

q-dependent factors (structure factors etc.) are sampled at the

Bragg peak positions becomes invalid. At this limit these

factors can modify the shape of the Bragg peaks, and hence

the link between the crystal size and the diffraction peak

breadth. For example, it is usual to approximate the Laue

function that arises from the scattering of a parallel-faced

crystal slab by a single sinc squared function. While this

approximation works very well for large enough crystals, it

fails at small dimensions (N < 20). In this limit the usual

Patterson approach (Patterson, 1939) that assumes that the

square modulus of the Fourier transform of the crystal shape

function is translated by convolution on each Bragg peak does

not work anymore. This has been hinted at by Cowley (1990,

p. 95) and may have important consequences for Bragg

coherent diffraction imaging (BCDI) of small crystals. BCDI

from Pt crystals as small as 20 nm (this amounts to 88 planes

along the h111i direction) has recently been reported (Richard

et al., 2022). With the continuing increase in coherent flux even

smaller crystals will be imaged in the future.

In summary, our work indicates a need for a complete

revisiting of the basic concepts of kinematic scattering

formulations for nanocrystals, since traditional formulations

which connect the position and breadth of Bragg diffraction

peaks to the lattice parameters and crystal size of the

diffracting crystallites can yield erroneous results.
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