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As a result of the availability of modern software and hardware, Bayesian

analysis is becoming more popular in neutron and X-ray reflectometry analysis.

The understandability and replicability of these analyses may be harmed by

inconsistencies in how the probability distributions central to Bayesian methods

are represented in the literature. Herein advice is provided on how to report the

results of Bayesian analysis as applied to neutron and X-ray reflectometry. This

includes the clear reporting of initial starting conditions, the prior probabilities,

the results of any analysis and the posterior probabilities that are the Bayesian

equivalent of the error bar, to enable replicability and improve understanding. It

is believed that this advice, grounded in the authors’ experience working in the

field, will enable greater analytical reproducibility in the work of the

reflectometry community, and improve the quality and usability of results.

1. Introduction

Neutron and X-ray reflectometry are powerful tools to probe

the interfacial structure of materials (Lovell & Richardson,

1999). However, as a result of the ‘phase problem’ the analysis

of these techniques is ill-posed in nature, as there are multiple

possible solutions (Majkrzak & Berk, 1995). This has led to

the use of Bayesian analysis, where some prior understanding

of the system is used to aid our understanding of a reflectivity

profile (Sivia et al., 1991; Geoghegan et al., 1996; Sivia &

Webster, 1998). Recently, developments in the availability of

computer software for reflectometry analysis that includes

Bayesian functionality, such as Refl1D (Kienzle et al., 2021b),

refnx (Nelson & Prescott, 2019), anaklasis (Koutsioubas, 2021)

and RasCAL (Hughes, 2021), which implement sampling

methods from bumps (Kienzle et al., 2021a), emcee (Foreman-

Mackey et al., 2019) and dynesty (Speagle, 2020), have led to

an increase in the utilization of Bayesian methods by the

reflectometry community (McCluskey et al., 2019, 2020).

This article will focus on the best practice for reporting the

results from Bayesian and sampling-based analysis of neutron

and X-ray reflectivity data. This work will not introduce

Bayesian or sampling methods for neutron and X-ray reflec-

tometry analysis. For those unfamiliar with these techniques,

we suggest the work of Sivia and co-workers (Sivia & Webster,

1998; Sivia & Skelling, 2006) and more recent work focusing

on reflectometry analysis (Hughes et al., 2019; McCluskey et
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al., 2020; Nelson & Prescott, 2019; Aboljadayel et al., 2021).

We hope that this paper will inform best practices in data

sharing from reflectometry analysis and inspire software

developers to enable these to be accessed easily by the user.

Reflectometry analysis can be described, in the most

simplistic terms, as a comparison and refinement of a model

based on some parameters x to reproduce a reflectivity data

set D. This refinement process involves comparing the model

and the data and calculating some goodness-of-fit value or

likelihood p(D |x), and modifying the model to optimize the

goodness of fit or maximize the likelihood. A commonly used

goodness-of-fit parameter is the �2 parameter which is found

as (Nelson & Prescott, 2019)

�2
¼
Xqmax

q¼qmin

RðqÞ � RðqÞm
�RðqÞ

� �2

; ð1Þ

where R(q) and R(q)m are, respectively, the measured and

modelled reflectivity at a given q, while �R(q) is the uncer-

tainty associated with the measured reflectivity at each q.

Here, q = (4�/�)sin� is the measured momentum transfer,

where � is half the scattering angle and � is the wavelength of

the incident radiation. Under an assumption of normally

distributed residuals RðqÞ � RðqÞm ’ N ½0; �RðqÞ�, the like-

lihood is related to the �2 variable in the following way:

ln½pðD j xÞ� ¼ �
1

2
�2 þ

Xqmax

q¼qmin

ln 2��RðqÞ
2

� �( )
: ð2Þ

The input for this refinement process is the model and some

initial parameter values, each of which may be an absolute

value or a parameter range, depending on the refinement

algorithm. The output is a set of values for x, potentially with

associated error bars – when these are present they typically

describe a standard deviation from the mean of a Gaussian

probability distribution. For Bayesian sampling processes, the

input is a probability distribution for each parameter, known

as the prior. The sampling process gives a probability distri-

bution, the posterior, that defines the relative likelihood of

different values of each parameter, and from this we can

report statistical measures, e.g. mode/mean/median. This

process implicitly assumes that the data are completely

reduced, all experimental parameters are accounted for,

uncertainties are accurately described and the model can

accurately describe the data.

The input required depends on a minimization algorithm

being used, with some algorithms requiring a single starting

guess (such as traditional Newtonian methods) and others

taking a range of potential values (more common in stochastic

approaches like differential evolution). The nature of these

inputs defines the results of the analysis, and therefore it is of

the utmost importance that these are communicated as part of

a publication describing the work. Furthermore, the mini-

mization is often performed with bounds in place, defining that

the parameter values will lie within a given range. This range

can be thought of as having a prior probability distribution

p(x), where values of x outside of this range have a probability

of 0. Even when a non-Bayesian approach is used in the

analysis (i.e. Bayes’ theorem is not utilized), the result where

bounds are set would be analogous to a Bayesian analysis with

a uniform prior probability.

The optimized parameters from the minimization algo-

rithm, which depend on the particular algorithm used, often

include some statistical uncertainty. This uncertainty comes

from an assumption of normally distributed parameters

(Bevington & Robinson, 2002), but Bayesian sampling

approaches make no assumption of an underlying statistical

distribution. How these statistical uncertainties are found is

beyond the scope of this work, but it is important to

acknowledge that this uncertainty typically assumes that the

probability distribution of the parameter is Gaussian in

nature. This probability distribution is either the partial like-

lihood or posterior, the latter when some prior is included and

Bayes’ theorem is applied. The posterior describes our

understanding of the parameter values given the data that

were measured. When Bayesian modelling is used and the

prior is included, the posterior probability is found as

pðx jDÞ / pðD j xÞ pðxÞ: ð3Þ

Therefore, when Bayesian modelling is performed, the priors

and likelihood are of fundamental importance to the results

that are obtained (the posterior) and any scientific conclusions

that are drawn. We note that equation (3) omits the normal-

ization term, the Bayesian evidence [p(D)], which is discussed

in detail elsewhere (Sivia & Webster, 1998; McCluskey et al.,

2020) and can be omitted when model comparison is not being

performed.

The use of Bayesian inference can be valuable in the

interpretation of reflectivity data, but inconsistency in the

description of the process will result in an analysis that cannot

be reproduced or easily understood. This can range from not

reporting the priors applied to each parameter (e.g. the lower/

upper limits for a uniform distribution that applies box

bounds) to failing to describe the complete sampling chain of a

Markov chain Monte Carlo sampling, or details of any auto-

correlation analysis (the last of which the authors of this work

admit to being guilty of; McCluskey et al., 2019). In this article,

we outline the best practice for reporting the results of

Bayesian analysis for neutron and X-ray reflectometry, and we

hope that this work will engage others to consider carefully

how they report this information. Furthermore, uptake of the

approaches discussed herein will lead to greater clarity about

the models and assumptions used in, and the reproducibility

of, our analyses.

2. Prior

The most common probability distributions that are used for a

prior are uniform between a lower and upper bound or over a

half-closed interval, where only a lower or upper bound is

defined. The use of a bounded parameter along with some

traditional �2 minimization method and a parameter with a

uniform prior and a Bayesian maximum a posteriori approach

will lead to the same result. For priors that are uniform it is

important that the upper and lower bounds are reported, and
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this can be achieved with a simple table (see Table 1 for an

example) to be included in the article or supplementary

information. Note that this table also gives information on

‘constrained’ values, where in some analyses the parameters

are not allowed to vary; these constrained values can have a

significant impact on the result of any analysis and therefore

must also be given.

Currently, the use of non-uniform informative priors is less

common in reflectometry analysis. However, the increasing

popularity of Bayesian methods and interest in using

complementary methods for analysis means that these are

likely to become more popular in the coming years. Here we

will define two potential types of informative prior prob-

abilities, those that can be described with a mathematical

function and those that cannot, for example arising from the

application of a sampling-based analysis of a complementary

technique.

When a prior probability can be described with a mathe-

matical function, this should be done by providing this func-

tion in the clearest possible language. For example, if the prior

is taken from a single complementary measurement that is

defined as a value with some uncertainty, which represents a

normal distribution with a mean and standard deviation, this

information should be provided. This is shown in Fig. 1 for the

density of silicon nitride (Si3N4) produced by atomic layer

deposition (Knoops et al., 2015) which is used to inform the

value of the scattering length density for some layer of the

material. Such a prior probability distribution could be

described in several ways: graphically (Fig. 1), in prose as

being ‘normally distributed with a mean of 2.9 g cm�3 and a

standard deviation of 0.1 g cm�3’, mathematically as

pð�mÞ ¼
1

�ð2�Þ1=2
exp �

1

2

�m � �

�

� �2
� �

; ð4Þ

where � = 2.9 g cm�3 and � = 0.1 g cm�3, or more concisely as

p(�m) ’ N (� = 2.9 g cm�3, � = 0.1 g cm�3). The same

descriptive approach could be taken for any common statis-

tical distribution, including log-normal or truncated normal

distributions.

It is possible that the prior distribution cannot be described

with a simple mathematical function, multi-modal priors being

an example; if it is a multimodal model result from some other

sampling method, then the chain from the prior sampling

should be given. The chain is all of the samples investigated in

the sampling and should be reported, although in the case that

this chain is very large a subsampled object may be reported,

in which case the autocorrelation analysis performed should

be described (see Section 4 for a more complete discussion of

this). To use such a prior probability in Bayesian analysis,

some functional description of the prior must be generated,

and most commonly this will be some kernel density estima-

tion; when this is used it is also necessary to state the structure

of the kernel being used. An example of this is shown in Fig. 2,

where the prior probability for the volume of a phospholipid

tail could be found from molecular dynamics simulation; there

are three common conformers that the lipid is likely to have.

3. Likelihood

Bayes’ theorem [given in equation (3)] consists of the product

of the prior and the likelihood. The former describes our

current understanding of the parameters before we conduct

any experiments, while the latter describes how well the data

are described by the model parameters. Although equation (2)

is a common approach to quantify how well the data are

described, it assumes a normally distributed uncertainty for

the measured reflectivity value. While a normally distributed

uncertainty is the most common, it may not be accurate in all

circumstances. For example when low numbers of counts are

present, a Poisson uncertainty may offer a more accurate

description, in which case the likelihood function could be

changed to one which reflects a multi-dimensional Poisson

distribution (Lass et al., 2021). Additionally, the likelihood
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Table 1
An example of the presentation of uniform priors in a tabular format.

Reproduced from McCluskey et al. (2020), where each parameter was either
constrained to a given value or sampled within the prior range.

Parameter Constrained value Prior range

dh (Å) 10.0 [8.0, 16.0)
Vh (Å3) 339.5 [300.0, 380.0)
dt (Å) 21.0 [10.0, 26.0)
	t 1.0 [0.5, 1.0]
Vt (Å3) 850.4 [800.0, 1000.0)
� (Å) 2.9 [2.9,1)

Figure 1
A prior probability distribution for Si3N4 with a density of �m =
2.9 � 0.1 g cm�3.

Figure 2
A hypothetical prior probability distribution for a dipalmitoyl phospha-
tidylcholine lipid that could arise from a molecular dynamics simulation
(orange histogram) and a Gaussian kernel density estimation for the
probability distribution using a bandwidth factor of 0.05 (blue line).



function may be modified by weighting the data at high q, such

as by replacing R(q) in equation (1) with log ½RðqÞ� or R(q)q4.

These aspects make it very important to state explicitly how

the likelihood for a given model and data is calculated (giving

the analysis package used and version number, and if not the

default the likelihood option).

4. Posterior

Bayesian analysis methods typically involve using some

sampling process, such as Markov chain Monte Carlo, to

estimate the posterior probability distributions for each of the

parameters. Assuming there are m parameters under investi-

gation, the posterior will be an m-dimensional probability

distribution. The result of a Bayesian sampling process is a

‘chain’ consisting of n samples for each parameter. Therefore,

the full chain has a shape (m, n). Typically these are

histogrammed to show the probability of different values of

the parameters. However, to identify independent (non-

correlated) samples in the chain, autocorrelation analysis

(Sokal, 1997) may be performed and the chain ‘thinned’. We

will not cover autocorrelation analysis in detail, other than to

say that it helps to identify the length of separation required

for samples to be independent, and thinning means that we

have only included samples separated by this length in the

final chain. Additionally, it is valuable to report the use of

convergence diagnostics, such as the Gelman–Rubin statistic

(Gelman & Rubin, 1992), which can assist in determining if a

chain appropriately describes a posterior.

Either the full posterior chain or the thinned chain should

be reported, along with details of any autocorrelation analysis

to accompany any Bayesian or sampling analysis. This will

allow the best replication and verification of any results

obtained from the data. Furthermore, large output files such as

these chains can be easily shared using some versioned data

repository, such as Zenodo (European Organization for

Nuclear Research & OpenAIRE, 2013) or those available at

specific institutions. Additionally, to allow the reader to

interpret the sampled posterior quickly, a graphical descrip-

tion (such as that in Fig. 3) should be included, at a minimum,

in the supplementary information of the work. The impor-

tance of presenting the full posterior graphically lies in the

ease with which it enables interpretation of the correlations

between parameters through this medium. For example, in

Fig. 3 the ellipsoidal probability distribution (for the d/�
parameters) indicates correlation.

To report values for parameters and some form of statistical

uncertainty, two approaches can be taken from the posterior

chain. The first is to use some known statistical distribution

that describes the samples well. This is best defined for a

normal distribution, for which there are statistical tests to

check normality, such as the D’Agostino and Pearson test

(D’Agstino, 1971; D’Agostino & Pearson, 1973) (which is

available in the SciPy library as scipy.stats.normaltest;

Virtanen et al., 2020). As with all statistical tests, this requires

some threshold value to be defined to reject the null

hypothesis, and for this value we recommend 0.001 but accept

that this is at the discretion of the user. If the parameter

distribution passes a statistical test for a given distribution

type, this can be quoted in the report, with information about

the distribution type and threshold value used, and the

distribution can be described on the basis of fitted parameters

of the distribution as discussed above for the Gaussian

distribution. For example, the three parameters in Fig. 3 pass

this statistical test, with p values greater than 0.01 when 1000

random samples are used, and therefore we can quote the

parameters as normal distributions: �mag = (1.366 � 0.001) �

10�6 Å�2, �m = (8.390 � 0.001) kg m�3 and d = (982.668 �

0.121) Å.

If it is not possible to describe the m-dimensional distri-

bution using some statistical test and a common distribution

type, then confidence intervals can be given. Where these are

used the percentage of the confidence interval must be defined

alongside each. In addition to these confidence intervals, it is

typically most accurate to give the maximum probability value

for the parameter, rather than the numerical mean which may

sit in a region of low probability. When reporting these

quantiles of interest, we should assess how much precision we

ascribe to them, which is typically achieved by defining some

Monte Carlo standard error (MCSE) (Vehtari et al., 2021).

This is the variability that would be observed should the

sampling process be repeated. There are a range of approa-

ches to computing the MCSE, including the mcse method

from the ArviZ package (Kumar et al., 2019). It is important to

check that the MCSE is small enough to report the level of

precision desired for a given parameter.
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Figure 3
An example of a graphical depiction of the unthinned posterior as a
corner plot (produced using the corner.py package; Foreman-Mackey,
2016), representing a three-dimensional probability distribution showing
the posterior distribution for the parameters of nickel magnetic scattering
length density, nickel mass density and nickel layer thickness, from the
analysis of a nickel layer on a silicon block (Caruana & Kinane, 2022).



Regardless of how the chain is communicated, as compo-

nents of a fully reproducible analysis the author should also

give details of the software packages, scripts and data used to

produce the analysis, and any random number seeds that were

defined. This means that if the chain is not available, the

reader can rerun the sampling and replicate the results.

Included in this is information regarding specific version

numbers for different software packages, as these can create

irreplicable results between version numbers. We emphasize

the value of openly reporting the posteriors of some Bayesian

sampling approaches. All posteriors may be utilized as prior

probabilities in subsequent analyses; therefore, by sharing

posteriors we enable improved analysis in future.

5. Conclusions

The use of Bayesian analysis in neutron and X-ray reflecto-

metry is increasing and, alongside this, there is a need for

analytical clarity and reproducibility. We have outlined the

best practice, based on experience, for reporting information

from Bayesian analysis. Specifically, we have outlined how the

prior probabilities used to inform our analyses should be

stated, as either uniform or more informed probability

distributions that may or may not be described mathemati-

cally. We have mentioned the importance of including the

specific likelihood function used in an analysis. Additionally,

we have described how best to present the results from a

Bayesian analysis in a clear and precise fashion, including the

importance of reporting statistical tests and confidence inter-

vals.

We hope that this advice will be taken on by the reflecto-

metry community, and that in future there will be greater

consistency and clarity in the reporting of results from Baye-

sian methods. Furthermore, we hope that developers of

analysis software will take this work as a call to arms to include

these best practices as easy-to-access methods in their soft-

ware. Finally, if the results of neutron and X-ray Bayesian

analysis are reported as outlined in this work, then the analysis

will be both reproducible and comprehensible.

6. Data availability

Supporting information is available as follows. All analysis or

plotting scripts and data files for this work, allowing for a fully

reproducible and automated analysis workflow using

showyourwork! (Luger, 2022; Luger et al., 2021), are available

at https://github.com/arm61/reporting_sampling (https://doi.

org/10.5281/zenodo.6874559) under an MIT licence, while the

paper is shared under a CC BY-SA 4.0 licence (McCluskey et

al., 2022). The data shown in Fig. 3 are also available under a

CC BY-SA 4.0 licence (Caruana & Kinane, 2022).
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