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Edited by A. Borbély, Ecole National Supérieure

des Mines, Saint-Etienne, France

Keywords: Bragg angles; Kikuchi bands; Kikuchi

patterns; first derivative; lattice parameters;

lattice parameter determination; Bravais lattice

type; electron backscatter diffraction; Radon

transform.

Use of electron backscatter diffraction patterns to
determine the crystal lattice. Part 1. Where is the
Bragg angle?

Gert Nolze,a,b* Tomasz Tokarskic and Łukasz Rychłowskic

aFederal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany, bInstitut für

Mineralogie, TU Bergakademie Freiberg, Brennhausgasse 14, 09596 Freiberg, Germany, and cAcademic Centre for

Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland.

*Correspondence e-mail: gert.nolze@bam.de

The derivation of a crystal structure and its phase-specific parameters from a

single wide-angle backscattered Kikuchi diffraction pattern requires reliable

extraction of the Bragg angles. By means of the first derivative of the lattice

profile, an attempt is made to determine fully automatically and reproducibly

the band widths in simulated Kikuchi patterns. Even under such ideal conditions

(projection centre, wavelength and lattice plane traces are perfectly known), this

leads to a lattice parameter distribution whose mean shows a linear offset that

correlates with the mean atomic number Z of the pattern-forming phase. The

consideration of as many Kikuchi bands as possible reduces the errors that

typically occur if only a single band is analysed. On the other hand, the width of

the resulting distribution is such that higher image resolution of diffraction

patterns, employing longer wavelengths to produce wider bands or the use of

higher interference orders is less advantageous than commonly assumed.

1. Introduction

Software programs like EBSDL (Li & Han, 2015), CALM

(Nolze et al., 2021) or EBSDConograph (Oishi-Tomiyasu et al.,

2021) suggest that the Bravais lattice type and lattice para-

meters can be derived from a single wide-angle backscattered

Kikuchi diffraction (BKD) pattern with correctness better

than 10% (Dingley & Wright, 2009). The analysis of experi-

mental BKD patterns by Nolze et al. (2021) showed that the

achievable precision is in fact significantly better. Only the

applied method for Bragg angle determination is imperfect,

since the derived lattice parameter a has an offset between

�4% and 4% which seems to scale with the backscatter

coefficient � or the mean atomic number Z. For lighter phases

a, b and c are underestimated, while for heavier phases they

are overestimated. For the phases in between the agreement is

deceptively good. However, the lattice parameter ratios and �,

�, � are not affected at all.

Unfortunately, a systematic analysis of factors influencing

the offset is very difficult. The limited access to patterns from a

number of phases, inexactly known lattice parameters and the

unknown quality of the projection centre position, together

with troublesome experimental effects like excess deficiency,

image distortions from imperfect optics or electrostatic/

magnetic fields, or the uncertainty in electron landing energy

affecting the effective wavelength �, convinced us to test

Bragg angle determination on simulated BKD patterns and

uncover simple correlations. Performing detailed Bragg angle

analysis, it is crucial to define certain information such as trace

positions, projection centre (PC) and band widths.
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1.1. Trace positions

The applied approach of trace definition represents a purely

projective geometry (Nolze & Winkelmann, 2017). Since for

simulated BKD patterns all trace positions can be calculated

from the lattice parameters, the band positions are defined

accurately. If the derived bands are misinterpreted, and trace

positions are not correctly identified but are instead assigned

to band widths of other bands, erroneous lattice descriptions

may occur.

1.2. Projection centre

The influence of the PC is a well discussed problem in all

high-precision electron backscatter diffraction (EBSD) tech-

niques and it is therefore a recurring topic in the literature [see

e.g. Britton et al. (2010), Maurice et al. (2011), Basinger et al.

(2011), Alkorta (2013), Nolze & Winkelmann (2017), Pang et

al. (2019), Winkelmann et al. (2020, 2021), Zhong et al. (2021)

and Shi et al. (2021)]. The PC is only exactly known for a

projection of simulated BKD patterns, so this error is just as

irrelevant as that for trace positions.

1.3. Band widths

These are by far the most uncertain values, although a band

width Whkl is considered equivalent to the double Bragg angle

2�hkl . Any manual definition of band edges is a highly indi-

vidual and therefore subjective and non-reproducible decision

(Li & Han, 2015; Oishi-Tomiyasu et al., 2021). Peng et al.

(2020) used the band edges themselves to optimize the trace

positions of the diffracting lattice planes required for pattern

indexing. In the present work we use the first derivative,

successfully introduced already by Alam et al. (1954), Shorter

& Dobson (1981) and Saowadee et al. (2017), for an approx-

imation of �hkl to determine the mean lattice parameter a from

them.

2. Simulated BKD patterns

2.1. The master pattern

Physics-based BKD pattern simulation was first introduced

by Winkelmann et al. (2007) and later reproduced, adapted or

further developed by other authors (Maurice et al., 2011;

Callahan & De Graef, 2013; Liu et al., 2016). The simulation

software applied here, DynamicS (Bruker AXS Inc., Madison,

Wisconsin, USA), uses a diffraction ray tracing based on a

square grid on a cube surface. Correctly assembled, the

projection cube satisfies the requirements of the highest

(m3m) but also the lowest point-group symmetry (Nolze,

2013) (Fig. 1). (Hexagonal crystals are treated like trigonal

ones, i.e. in the simulation the content of the fundamental

sector is generated twice with different distortions.)

The complete BKD simulation results in a master pattern

for a given phase and wavelength, taking into account values

for phase- and electron-energy-specific physical quantities

autonomously estimated in DynamicS. The alignment of any

diffracting (hkl) with respect to the master pattern is exactly

given by the applied coordinate systems and lattice para-

meters. As a spherical projection, (hkl) is represented by a

great circle (� = 0), whereas the band profile I(�) is the

intensity sum along small circles parallel to (hkl) [see the blue

band in Fig. 1 or, for example, Day (2008) and Nolze et al.

(2021)].

After the crystal orientation, the pattern resolution, the

form factor of the desired image and the screen position with

respect to the PC have been specified, the master pattern

provides any BKD pattern as a gnomonic projection. A

derived wide-angle BKD pattern only reflects a comparatively

small part of the master pattern, often less than 15% (see also

Table 5). For the orientation presented by the magenta pattern

in Fig. 1, the PC direction and h111i zone axes (white line)

coincide. The ‘pattern centre’ is 15% below the top edge of the

image and therefore has the description (PCx , PCy) = (0.5,

0.15). Note that there are other PC definitions in use which

employ a different frame of reference.

The general advantage of simulated BKD patterns is the

absence of background signal, noise, radial signal decay and

excess deficiency effects. The good agreement observed so far

between simulated and experimental BKD patterns for

different phases and applications (Nolze et al., 2017) indicates

in our opinion the suitability of master patterns. Nevertheless,

we are aware that the applied complex, but in many respects

nevertheless simplified, simulation cannot perfectly substitute

an experimental signal.

2.2. PC description and initial trace positioning

For an accurate determination of the band width Whkl the

true alignment of (hkl) needs to be defined. This is done by the

error-free description of the PC and the lattice plane traces.
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Figure 1
Simulated interaction of 20 keV electrons with �-Fe projected on a cube-
shaped surface. The distribution of intersecting traces formed by {046}
with the cube projection surfaces is indicated by their bands coloured in
either red or green. The master pattern enables the generation of BKD
patterns (magenta) for any crystal orientation and PC in real time. It also
allows the extraction of band profiles, here sketched for the Kossel cone
of (002) as a blue projection sphere strip with an angular range of
�6 � � � 6�.



If one of the cube planes in Fig. 1 is taken as a hypothetical

BKD pattern, the PC is given by ½PCx;PCy;PCz� ¼ ½
1
2 ;

1
2 ;

1
2�.

For a non-rotated standard projection the first four required

traces of non-tautozonal (hkl) can be easily calculated.

CALM defines the trace position as a parametric equation

of the line, where [x, y]i and [a, b]i are a point on the line and a

vector parallel to the line, respectively. For any primitive cubic

phase, xi and yi in Table 1 describe the coordinates of the first

reference point of two {200} and two {022}, whereas ai and bi

denote the respective offset (see also Fig. 2). Of course, the

most highly recommended as the initial four traces are low-

indexed (hkl), which form clearly visible bands.

All further lattice plane traces can be derived from the

initial four (hkl) by connecting intersections defining lattice

directions [uvw] (Nolze & Winkelmann, 2017). The new traces

in turn deliver new intersections, enabling the derivation of

further (hkl) and so on. Mathematically, this is described by

the cross products

½uvw�p � ½uvw�q ¼ ðhklÞ; ð1Þ

ðhklÞi � ðhklÞj ¼ ½uvw�; ð2Þ

which are generally valid for all crystal systems.

3. Results and discussion

3.1. Band profile

3.1.1. Interpolations in the master and BKD pattern. Since

the PC and derived trace positions are error free in the

simulations, the unexpected deviations in band profile and

band position discussed below must have other causes. As

shown in Fig. 1, the intensity I characteristic of a given � in a

band profile is given by the sum of all simulated intensities Is

along !,

Ið�Þ ¼
P

!

Isð�; !Þ: ð3Þ

Discrepancies in profile shape and position may therefore be

due to the fact that the intensity simulation is performed on a

square grid on the projection cube (i.e. along lines describing

great circles), while the intensity summation of Is is performed

along small circles that are, strictly speaking, hyperbolas. It

may also be the result of too coarse a grid being used to

simulate the BKD signal.

The angular resolution of the derived band profile of 12�/

1024 is about one order of magnitude higher than the reso-

lution of the pattern simulation (90�/513 or 90�/1025, see also

the profiles displayed in Fig. 3). The Is used for the profile

reconstruction in equation (3) are calculated using bilinear

interpolation between projection cube points.

3.1.2. Profile shape. At least for inversion-symmetric

crystal structures, band profiles derived from simulated

patterns are expected to be mirror symmetric. This is true only

if the complete signal of {hkl} and fhklg from the master

pattern is taken into account, i.e. the entire blue stripe shown

in Fig. 1. If only a single plane of the projection cube, e.g. the
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Table 1
Generic description of four traces (light green) in CALM’s gpd file for a
non-rotated cubic lattice; see also Fig. 2.

i xi yi ai bi

0 0.5 0 0 b†
1 1 0 0 b†
2 0 0.5 a† 0
3 0 1 a† 0

† These parameters are 6¼ 0.

Figure 2
A BKD pattern to accompany Table 1. The displayed BKD signal is from
Ag, and the respective traces i = 0, 1 indicate two {200} and i = 2, 3 two
{022}.

Figure 3
(a) A comparison of the �-Fe band profile of {046} (blue) derived from
the master pattern with band profiles of (640) (red) and (604) (green)
averaging the intensity from a single cube projection plane only. The
light- and dark-coloured profiles are derived from simulations with
resolutions of 1025 � 1025 and 513 � 513 pixels per cube projection
plane, respectively. (b) The first derivatives I 0 (smoothing level 10 in
CALM) of the intensity profiles shown in panel (a). (c) Enlargements
showing that both the maxima (left) and the minima (right) slightly
underestimate the true Bragg angle �{hkl} indicated by vertical dotted
lines. There is no significant difference between the high- and low-
resolution profiles (light and dark green). However, small � shifts occur
compared with the blue (ideal) profile.



front, is used as a hypothetical BKD pattern, the mirror

symmetry of the band profile is lost. Kikuchi band-forming

Kossel cones are, at maximum, inversion symmetric but not

mirror symmetric. The only exceptions are the few Kossel

cones where the diffracting (hkl) is parallel to a crystal-

lographic mirror plane. A necessary condition for mirror-

symmetric profiles is that in any case both band edges in the

BKD pattern really do have the same angular length.

As an example, profiles of lattice plane {046}1 for inversion-

symmetric �-Fe are compared in Fig. 3(a). If the complete

master pattern were analysed, all 24 symmetry-equivalent

lattice planes {046} would have the ideal mirror-symmetric

band profile shown as a blue line. The green and red lines in

Fig. 3(a) represent the intensity profiles of the similarly

coloured Kikuchi bands on the front of the cube in Fig. 1.

Although symmetry equivalent, their band profiles differ

significantly from each other, and considerably from the ideal

blue profile too. The red profile is mirror symmetric only

because of the very exclusive exception that the centre of the

examined band segment coincides exactly with the fourfold

rotation axis and the band edges have the same angular

lengths.

Fig. 3(a) shows convincingly that the profile shape of a band

depends not only on {hkl} but also on the crystal orientation,

i.e. on the part of the Kikuchi band segment covered by the

detector screen and on its angular length. As can be deduced

from Fig. 1, the ideal blue profile is the sum of two red and

green curves, whereby one of the red and green curves,

respectively, must be mirrored.

3.1.3. Pattern resolution. In order to evaluate the influence

of the simulation resolution on the derived Kikuchi band

profiles, the master pattern was computed for 513 � 513 and

1025 � 1025 pixels per cube projection plane. The derived

band profiles are shown in Fig. 3 as dark and light lines,

respectively. The dark-blue line (513 � 513) obscures the

light-blue line (1025 � 1025), i.e. the two resolutions result in

practically identical profiles.

As the angular length of the band segment decreases, the

minimum deviations become visible as a noise-like signal due

to the scaling of the summed intensity, more so for the green

highlighted shorter band segment (79.5�), less so for the red

highlighted longer band segment (100.5�). However,

compared with the profile signal the noise-like part is so small

that we consider it to be negligible. Therefore, the master

patterns of all phases discussed below were simulated with a

resolution of 513 � 513 pixels.

3.1.4. Band edge positions. Compared with the large

differences between the band profiles of symmetry-equivalent

{hkl}, the band edge positions in Fig. 3(a) obviously vary much

less. At first glance, they also agree with the true Bragg angle

position marked by the vertical dotted line.

The graphs in Fig. 3(b) show that (smoothed) first deriva-

tives allow a comparatively simple automatic and reproducible

determination of the band edge positions, although the

extreme positions indicate angles for the inflection points

smaller than the true Bragg angle. The magnified graphs in

Fig. 3(c) indicate that the missing information in BKD

patterns compared with the master pattern also often results in

slightly asymmetric extreme positions. The asymmetry is

described by

�asym ¼
1
2 �min þ �maxð Þ; ð4Þ

where �min and �max are the positions of the left and right

derivative extrema, respectively.

To get a visual impression of all �asym simultaneously, they

are graphically displayed in CALM in the Sobol operator

edge-filtered Funk transformation2 as black bars pointing

either towards or away from the stereographic projection

centre. The two images in Fig. 4 represent a quadrant of the

Funk transformation and allow direct comparison between (a)

the signal from the entire master pattern and (b) the signal

from a single cube projection plane.

If 0 < |�asym| � 0.2�, a black bar is drawn starting from the

(hkl) pole in Fig. 4(b). The length of the bar is proportional to

the size of �asym , whereas the direction depends on its sign.

The black arrow in Fig. 4(b) indicates one of the larger |�asym|.

However, they are so small that they cannot be detected in the

BKD pattern by eye. If |�asym| > 0.2�, this band is ignored for all

further analyses because of the conspicuous asymmetry and is

marked with a red bar of constant length [see the red arrow in

Fig. 4(b)].

Nevertheless, �asym = 0 does not automatically mean that the

band width defined by

Whkl ¼ �min � �max ð5Þ
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Figure 4
(a) One-quarter of a Sobol operator edge-filtered Funk transformation
derived from the master pattern and (b) only one-sixth. The BKD pattern
is shown in Fig. 2. For each (hkl) (blue dots) beside �asym (radial black
bars), Whkl � 2�hkl (single red or green bars ? �asym) are also drawn. In
panel (a) all profiles are proved to be symmetric since the complete
diffraction signal is used. The short black bars for some (hkl) in panel (b)
indicate that this is not the case any more for (incomplete) BKD patterns.
The superposition of bands is also the reason why some band widths
determined via the first derivative do not correspond to the geometrically
exact Bragg angles.

1 Indexing in non-primitive lattices is not trivial (Nespolo, 2015). In an F
lattice, {023} is incorrect since {046} is a lattice plane closer to the origin.

2 For a detailed explanation of the transformation used, see Nolze et al. (2021).
Note that the Sobol-filtered Funk transformation is only used for purely visual
band detection, but is completely irrelevant for any further band profile
analysis.



delivers the same lattice parameter a for different (hkl).

Therefore, the deviation of Whkl from a reference value, e.g.

the expected double Bragg angle 2�hkl derived from the mean

lattice parameter discussed below, is also shown by bars

perpendicular to �asym. A red bar indicates that Whkl > 2�hkl

[red arrow in Fig. 4(a)], whereas a green bar means

Whkl < 2�hkl. These deviations are also invisible to the eye in

the BKD pattern.

The Funk transformation of the master pattern in Fig. 4(a)

delivers perfectly symmetric band edge positions. For all bands

�asym = 0, i.e. there are no black bars. However, there are

clearly visible red and green bars indicating bands with

Whkl 6¼ 2�hkl . They prove that even for master patterns, the

first derivative leads to band widths that all result in slightly

different a.

If only the BKD signal of a single projection cube plane is

processed, the numerous black bars in Fig. 4(b) indicate that

nearly all band edge positions become slightly asymmetric.

Additionally, the incomplete signal also causes a general

increase in ðWhkl � 2�hklÞ deviations. To minimize misinter-

pretations as far as possible in CALM, bands with

jWhkl � 2�hklj> 0:2� are also automatically excluded from all

further analyses.

3.2. Band edges versus Bragg angle

Kikuchi band profiles as shown in Fig. 3 illustrate that even

in physically based simulations a band edge is not really sharp.

Its profile resembles only to a very first approximation the

idealized curve given for the two-beam diffraction case by

Reimer (1998), where the Bragg angle is equal to the inflection

point. However, many-beam diffraction simulations taking

multiple inelastic scattering into account (Joy et al., 1982) lead

to conclusions similar to those drawn from Fig. 3. Compared

with the inflection point the true Bragg angle is assumed to be

shifted to higher �, i.e. Whkl < 2�hkl . Since this offset was not

the target of those investigations, it was not discussed further

there either.

3.2.1. Mean atomic number Z. Nolze et al. (2021) assumed

that the mean atomic number Z or the backscatter coefficient

� could be used to correct the deviation between Whkl and

2�hkl and thus the lattice parameter offset.

For illustration, for six face-centred cubic phases (f.c.c., Cu

or A1 structure type) with Z = 13–79, band profiles of {002}

derived from the master patterns are compared in Fig. 5(a).

Since the lattice parameters are different for each phase, the

band intensity I is plotted as a function of �/�{hkl}, causing the

Bragg angle positions to coincide. This means, for {002}, 1 and

�1 indicate the true Bragg angle positions of the first inter-

ference order, which is proportional to the inverse distance to

reciprocal-lattice point 002. �/�{hkl} = 2 and �2 display the true

Bragg angle positions of the second interference order 004,

and so on.

Fig. 5(a) illustrates that a manual band edge definition will

become increasingly erroneous as Z increases, even though

the net intensity increases simultaneously cf. the background

level for each element. In contrast, the band edge determi-

nation via the first derivative shown in Fig. 5(b) is distinct and

works surprisingly well. As in Fig. 3, the extreme positions

systematically underestimate �hkl (vertical dotted lines), which

is also true for higher interference orders that are usually

considered more reliable. Fig. 5(b) shows that, in contrast to

profile simulations e.g. by Spencer et al. (1972) and Joy et al.

(1982), higher-order interferences in simulated BKD patterns

are effectively not more readily detectable. Neither the slope

[peak height in Fig. 5(b)] nor the edge profile width [peak

width as FWHM in Fig. 5(b)] appears better for higher-order

interferences. The experimental profiles shown by Spencer et

al. (1972) and Joy et al. (1982) also confirm this.

Fig. 5 suggests that the detectability of the band edges

decreases with increasing Z as the band edge profiles become

wider. For {002}-Au, the first-order Bragg angle is not mean-

ingfully described at all, so that the band of {002}-Au is one of

the above-mentioned outlier bands which are not used during

the analysis.

3.2.2. Acceleration voltage. The use of lower-energy elec-

trons synonymously means an increase in wavelength, which

ultimately leads to higher Bragg angles. Assuming Bragg’s law

for EBSD as

d ’
�

W
/

1

ð
ffiffiffiffi
E
p

0ÞW
; ð6Þ
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Figure 5
(a) Ideal band profiles and (b) first derivatives of {002} for different
metals with an f.c.c. structure. The change from blue to red is supposed to
indicate increasing atomic number Z (Al 13, Fe 26, Y 39, Ag 47, Ce 58, Au
79). The vertical auxiliary lines represent the true Bragg angle positions
n�{002} for different interference orders n. (b) A demonstration of how
well the maxima (left) and minima (right) of the first derivative match
n�{002}.



the Bragg angles take the values �20kV: �15kV: �10kV: �5kV ’

1: 2
3

ffiffiffi
3
p

:
ffiffiffi
2
p

: 2, i.e. the band widths double when the electron

energy is divided by four.

Experience with other diffraction techniques such as X-ray

diffraction suggests the use of a higher Bragg angle auto-

matically improves the accuracy in determining the lattice

parameters. This follows by the first derivative of Bragg’s law

in (6),

d 0 ¼
dd

dW
¼ �

�

W2
: ð7Þ

This indicates that for a certain |�W| a |�d| results which

increases proportionally with � but decreases inversely

proportional to W2. In purely mathematical terms, this means

that a small inaccuracy in � produces a large error in d, which

explains the general scepticism towards lattice parameter

determination from low-index (hkl) using electron diffraction.

Unfortunately, analysis of the {002}-�-Fe bands in Fig. 6 and

Table 2 demonstrates that even for simulated BKD patterns

(no noise and no radial signal decay) the band edge detection

does not improve with increasing wavelength as expected. A

larger � causes a simultaneous broadening of both the bands

and the band edge profiles.

This is clearly visible when the band profiles are plotted

again as a function of �/�{002}. It is difficult to see in Fig. 6(a)

due to the significantly lower intensity with decreasing elec-

tron energy. However, the first derivatives of the profiles in

Fig. 6(b) illustrate that there is effectively no improvement in

band edge detection with decreasing electron energy and

increasing band width.

Apart from the clearly decreasing intensity, a reduced

electron energy also has a statistically negative impact on the

lattice description. In Table 2, with increasing band width not

only does the deviation �a = a � a0 from the true lattice

parameter grow, but the standard deviation �{hkl} also dete-

riorates progressively. This is also caused by the dis-

proportionately decreased number of found and used bands.

Broader bands effectively disappear since they overlap more

and more, forming a ‘background of diffracted intensity’.

3.2.3. Interplanar distance. Another way to take advantage

of larger Bragg angles is to use lattice planes with a shorter

interplanar distance, i.e. bands of higher-indexed {hkl}.

Unfortunately, the intensities of such bands often drop

sharply, which limits this option significantly.

To demonstrate the influence of d{hkl} on band edge detec-

tion, the previously used �-Fe was again selected as an

example. The Bragg angles for the lowest-indexed {hkl} and

20 keV electrons are listed in Table 3.

In Fig. 7 the intensity distributions of the first-order inter-

ferences (top) and their first derivatives I 0 (bottom) are shown

for all {hkl} listed in Table 3. Using � � �{hkl} as the abscissa,

the Bragg angle positions are displayed at 0� and all band edge

profiles can be directly compared with the same angular

resolution.

The upper diagram in Fig. 7 indicates that the band edge

contrast (slope) at � � �{hkl} = 0� appears to be comparable for

all {hkl}. Only for the red profiles are the band edge widths so

large that they are unsuitable for further processing, cf. their

first derivatives in the diagram below. The FWHMs of the first

derivatives in Fig. 7 (bottom) prove that the angular width of

the band edges decreases slightly for higher-indexed {hkl}.

However, even with constant band edge width, the relative

error ��/� decreases for wider bands with �hkl, which explains

their preferential use. Unfortunately, to a first approximation,

the visibility of a band also decreases with increasing �.
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Table 2
The number of detectable bands with symmetrical band edges and the
resulting lattice parameter for simulated BKD patterns of �-Fe (a0 =
3.656 Å) as a function of electron energy.

�{hkl} is the standard deviation resulting from the consideration of as many
band widths as possible, i.e. not only of {002}.

Electron energy 20 keV 15 keV 10 keV 5 keV

Bands found (used) 150 (88) 127 (54) 68 (30) 22 (12)
a (Å) 3.751 3.763 3.791 3.871
�a 0.095 0.107 0.135 0.215
�{hkl} 0.014 0.016 0.029 0.125

Table 3
Bragg angles �{hkl} (�) for first-order interferences of �-Fe (a0 = 3.565 Å)
after interaction with 20 keV electrons.

d{hkl} = a0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh2 þ k2 þ l2

p
.

{111} {200} {220} {113} {133} {024} {224} {115} {244}

1.166 1.346 1.903 2.232 2.933 3.010 3.279 3.497 4.038

Figure 6
The influence of electron energy on (a) the band profile intensity I
derived from pattern simulations and (b) Bragg angle detection by means
of the first derivative, using the example of �-Fe-{002}.



Also in Fig. 7 the maxima of I 0 are all below �{hkl}. The

angular shift tends to become larger the higher the indexing,

i.e. the smaller d{hkl}. However, Fig. 7 is only suitable for an

evaluation of the angular resolution of the band edges and

band detectability. For their influence on the lattice parameter

determination, the band edge profiles have to be considered in

terms of their change relative to the respective Bragg angle.

This is shown in Fig. 8, where the graphs from Fig. 7 (bottom)

are plotted again, but now as a function of �/�{hkl}.

In Fig. 8, for higher-indexed {hkl} the relative FWHM of the

first derivative decreases, which indicates the higher precise

band width detection for wider bands discussed above.

However, Fig. 8 also proves that the apparent trend of an

increased shift of �max for higher-indexed {hkl} in Fig. 7 is

actually the opposite. This also follows from equation (7) after

inserting (6). The resulting relationship,

�d

d
’ �

��

�
; ð8Þ

indicates that, despite an increasing |��| = |�max � �{hkl}|, the

relative deviation �d/d = �a/a can become smaller if �{hkl}

increases faster than ��. From this it follows that the use of

higher-indexed {hkl} definitely delivers more precise lattice

parameters as long as the bands are clearly visible.

3.2.4. Offset scatter. The {hkl}-dependent deviation

between band edge position and Bragg angle –

ð12 Whkl � �hklÞ=�hkl – is already qualitatively visible in Fig. 8.

Although these deviations look very small, they have the

effect of noticeably scattering the lattice parameter a. In

addition, a trend may also occur, resulting in a decreasing

offset �� for increasing �{hkl}. Both effects are displayed as

examples in Fig. 9 for yttrium (black circles) and aluminium

(grey triangles). Instead of ��/� the relative lattice parameter

offset,

�a

a
¼

aðhklÞ � a0

a0

; ð9Þ

is plotted as a function of �. a(hkl) is the derived lattice para-

meter from the band width of (hkl) in CALM, whereas a0

represents the true lattice parameter used during master

pattern simulation. Simulated BKD patterns of more than 350

phases consistently showed an exclusively positive offset �a/a.

3.2.5. Confidence interval. Figs. 7 and 8 show that the first

derivatives for narrow bands may look significantly different

from those of wide bands. Since this very often leads to

significant �a/a deviations (Fig. 9), it is recommended to

exclude those bands with � ¼ 1
2 Whkl < 2� from the lattice

parameter analysis.

On the other hand, the intensity of the broader bands

decreases considerably and their profiles are increasingly

affected by intersecting stronger bands. For some phases, this

results in an increased uncertainty in �a/a for wide bands, so

that as a compromise a maximum band width of 1
2 Whkl < 4:5� is

also recommended, up to which consideration seems reason-

able.
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Figure 7
The influence of {hkl} (top) on the band profiles and (bottom) on their
first derivatives for �-Fe (master pattern). Plotted as a function of � �
�{hkl}, all curves are described in degrees but with their first interference
order shifted onto the origin. �max of the first derivative systematically
underestimates the Bragg angle. Additionally, the higher the indexed
{hkl} the lower the band intensity and band slope. Except for very low
indexed {hkl} the band edge widths do not vary.

Figure 8
The first derivatives of Fig. 7 plotted as a function of �/�{hkl}. Division by
�{hkl} proves that, effectively, the difference between �max and �{hkl}

becomes smaller, i.e. with higher-indexed {hkl} the match between the
extreme positions of the first derivatives and the true Bragg angle
improves.

Figure 9
�a/a = f(�) derived from the master pattern of the elements Y (circles)
and Al (triangles) (20 keV). Hollow symbols represent bands that lie
outside the considered confidence interval (bold horizontal lines) which is
used to determine the mean lattice parameter aCALM. a0 is given in
parentheses behind the element.



Using yttrium as an example, Fig. 9 shows that the resulting

interval is not exploited at all because the lattice parameters

are too high. For such phases all bands with �hkl > 4� already

disappear into the background. For aluminium, on the other

hand, the bands are narrower as well as wider than the

proposed confidence interval, i.e. a considerable percentage of

the described bands are excluded when determining the lattice

parameter.

3.2.6. Mean lattice parameter and spread. Since the first

derivative of a single band obviously does not reliably provide

the lattice parameter, the mean aCALM and the standard

deviation �hkl of the distribution of ahkl are used instead. As

just discussed, only bands that lie within the confidence

interval are taken into account. aCALM is plotted as a bold line

and 2�hkl as dashed lines in Fig. 9. For yttrium, 2�hkl =�0.04 Å

represents �0.7% variation compared with the discovered

lattice parameter of aCALM = 6.02 Å. For aluminium, both the

�a/a offset and 2�hkl are only about half as large.

Fig. 9 only shows the lattice parameter scatter from band

profiles derived from master patterns. However, the asym-

metric band edge positions resulting from the use of a partial

signal lead to an increased spread of ahkl (Fig. 10). For the �-Fe

master pattern only nine {hkl} out of 16 (red filled circles) fit

the confidence interval, but they represent all symmetry-

equivalent bands. In the BKD pattern (25% smaller than a

single cube projection plane; aspect ratio 4 :3 = 1:0.75), of 142

individually discovered (hkl) only 76 match the confidence

interval. This result underlines the observation that the

reduced signal only marginally affects aCALM but very likely

increases �hkl.

The slightly oblique stacked white circles in Fig. 10

describing equivalent {hkl} are not vertically aligned with each

other, since according to Bragg’s law an increase in �a/a

follows from a decrease in �.

3.3. Projection influences

3.3.1. Projection centre position. For simplicity, up to now

the pattern centre [PCx , PCy] has always been at the centre of

the processed diffraction image. Since this practically never

happens for EBSD or off-axis transmission Kikuchi diffraction

(TKD) (Niessen et al., 2018), we now vary PCy from 0.75 to

�0.25 in steps of 0.05. The goal is to determine whether the

location of the projection centre has a noticeable effect on the

lattice parameter determination. The four initial traces

(Table 1 and Fig. 2) shift by the same amount so that they are

still perfectly aligned. The impact of the systematic change of

PCy on the derived lattice parameter for �-Fe is demonstrated

in Fig. 11.

To illustrate the difference between the application of a

single (024) band, and using the maximum number of bands

that can be considered, both a(024) and aCALM are shown in the

same diagram in Fig. 11 as grey and black filled circles,

respectively. The vertical (discrete) increment between grey

filled circles represents the maximum achievable precision of

�a(024) = 0.008 Å. In addition to the low precision, the increase

in a(024) with decreasing PCy demonstrates the imperfect

combination of increasing gnomonic distortions and band

edge detection by the first derivative.

In Fig. 11, the precision and accuracy look much better for

the black filled circles representing aCALM . There is still an

increase in aCALM with increasing PCy , but compared with the

grey error bars indicating the standard deviation �hkl it is

negligible.

Thus, adjusting PCy to optimize the signal-to-noise ratio

only improves the lattice parameter determination. Even the

selection of a pattern centre far from the image centre (typical

for light materials or off-axis TKD mode) has no negative

effect on the determination of the lattice parameters, as long

as the PC is correctly described.

3.3.2. Errors in the PC. A very sensitive parameter in the

correct determination of the crystal structure is the projection

centre PC. A virtual displacement �PC should demonstrate

how sensitive the lattice parameters are to an incorrect PC

position.

As the true position, PC ¼ ½12 ;
1
3 ;

2
3� was defined. �-Fe serves

again as the example phase. The analysed BKD patterns had

an aspect ratio of 4 :3. To increase the difficulty further, an
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Figure 10
�a/a spread for all {hkl} (white filled circles) derived by the first
derivative from a simulated �-Fe pattern of 640 � 480 pixel resolution.
Traces and PC positions are known. The red filled circles display �a/a
derived from the master pattern.

Figure 11
The change in lattice parameter for a simulated BKD pattern of �-Fe (a0 =
3.656 Å) with varying PC = ½12 ; PCy;

1
2�. The grey filled circles display a(024)

if a single band is used. The black filled circles represent the mean value
aCALM when all bands are considered. The error bars show �{hkl}. The
average of aCALM results in a = 3.747 Å (bold line) with the double
standard deviation 2�a drawn as red dashed lines.



arbitrary orientation (’1, �, ’2) = (14�, 30�, 20�) was assumed

for which the four initial trace positions were calculated. All

deviations are therefore due to the slight shift of PC simulated

by varying �PCx , �PCy and �PCz in steps of 0.5%.

The results are shown in Figs. 12–14, displaying the varia-

tion in a = aCALM, b, c, their ratios a/b and c/b, the angles �, �
and �, and the number of bands automatically detected and

analysed in CALM. In the upper left-hand diagram of each

figure the error bars for a, b and c display �hkl.

The comparatively significant but systematic variation in

the lattice parameters underlines how reliably CALM regis-

ters even small changes. On the other hand, they show how

important the correct PC position is. Unfortunately, �PCx ,

�PCy and �PCz influence and compensate each other. Since

all components can be affected in the case of a slightly shifted

PC, even a qualitative evaluation of the misalignment appears

difficult.

Most promising seems to be the number of bands (bottom

left-hand diagrams in Figs. 12–14). The band edge asymmetry

caused by the applied PC misalignment is obviously negligible

so that the number of ‘found’ bands is practically constant.

However, if (Whkl� 2�hkl) is taken into account, the number of

matching bands shown as ‘used’ decreases continuously. Only

for �PCz does this not apply (Fig. 14).

From this it can be deduced that if, for some clearly visible

Kikuchi bands, their widths do not match the geometrically

predicted ones, the probability is quite high that the pattern

centre [PCx , PCy] is incorrect. This is displayed by groups of

red or blue bars in the Funk transformation, indicating a

general over- or underestimation of the expected band widths.

3.3.3. Grain orientation. Although in Figs. 12–14 a random

orientation has been investigated, and for the true PC (�PC =

[0, 0, 0]) a cubic lattice is derived, the question remains as to

whether the orientation of a crystal may affect the determi-

nation of the lattice parameters.

Computed traces. If for simulated BKD patterns the first

four traces are calculated and the PC is exactly known [and

pseudosymmetric solutions are excluded (Nolze et al., 2023)],

CALM correctly derives a/b and c/b as well as �, � and � for

any set of (’1, �, ’2). Questions remain as to how much the
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Figure 12
The deviation of the mean lattice parameters a, b, c, the ratios a/b, c/b and
the angles �, �, � for small displacements of PCx . The number of bands
automatically found in CALM is only partially used for increasing |�PCx|.
The largest deviation results for a of 3.2%, whereas b and c are
comparable. The error bars indicate �{hkl}.

Figure 13
The deviation of the mean lattice parameters, ratios and angles for small
displacements of PCy . The number of bands found automatically cannot
be used for small |�PCy|. The largest deviation results for b of 3.6%. The
error bars indicate �{hkl}.

Figure 14
The deviation of the mean lattice parameters, ratios and angles for small
displacements of PCz. The traces of the lattice planes are computed. The
number of bands found automatically cannot be used for small |�PCz|.
The largest deviation results for b of 3.7%. The error bars indicate �{hkl}.



lattice parameter aCALM varies with different crystal orienta-

tions, what the effect is of different detector screen formats,

and whether there is a noticeable difference between calcu-

lated or software-optimized trace positions.

Therefore, for �-Fe 15 random crystal orientations were

analysed, displayed as patterns on squared, rectangular and

circular shaped images (Table 4). The initial four trace posi-

tions were either calculated or drawn by hand and then

optimized by least-squares refinement.

In the first line of Table 4, the perfect profiles derived from

the master pattern are shown for reference. In addition, based

on the kinematic theory of electron diffraction, BKD patterns

were generated by overlaying bands with box-shaped profiles.

The structural amplitude (Ihkl = |Fhkl|) served as the intensity,

while the band width was derived from Bragg’s equation.

These simplified patterns were analysed using the same algo-

rithms as in CALM (last line in Table 4).

Despite the computed lattice plane traces, each BKD

pattern with a different crystal orientation, aspect ratio or

simulation model results in a slightly different aCALM. They are

not explicitly listed in Table 4 but described by their average a

and the standard deviation �a. The listed 2�a in Table 4 indi-

cate that the variation in aCALM found for each of the n = 15

patterns is, at <0:2%, very small compared with a. The clearly

bigger 2�fhklg as the average of all 2�{hkl} also demonstrates

that there is a much higher uncertainty in the determination of

each single aCALM compared with the impact of orientation.

When analysing the corresponding kinematically simulated

patterns, an average lattice parameter a results which

describes a0 almost perfectly. This indicates a reliable algo-

rithm for band edge detection. On the other hand, despite the

applied box shape for the band profiles and their widths from

Bragg’s equation, an unexpectedly high standard deviation

�fhklg results (last line in Table 4). Thus, a small amount of the

band edge uncertainty in simulated patterns obviously results

from the pattern and band profile processing (intensity inter-

polation and averaging).

Manual trace definition. Since in practice neither the phase

and crystal orientation nor the PC are known exactly, the case

of calculated trace positions just discussed is only of theore-

tical relevance. It actually serves primarily only to verify the

correct working of the applied analytical tools implemented in

CALM.

If the lattice plane traces are manually defined and opti-

mized by a least-squares approach, the remaining tiny differ-

ences are responsible for small deviations in lattice parameter

ratios and angles. Unfortunately, such small deviations are the

reason for speculation concerning true and pseudosymmetry.

On the other hand, the manual trace definition obviously

does not influence the mean lattice parameter very much, cf.

the third line compared with the second in Table 4 for aspect

ratio 1, or lines four and five for aspect ratio 4 :3. Only �a

indicates a slightly higher variation.

From Table 4 we conclude that, despite a manual trace

definition, the precision of aCALM is also far better than

suggested by the �a/a spread of ahkl. The practically constant

2�{hkl} for computed and manually defined and refined trace

positions is an indication that the latter is a very successful

working approach.

3.3.4. Size and shape of the pattern. In order to exclude the

possibility that the aspect ratio and/or the shape of the

detection screen, i.e. square, rectangular or circular, have an

influence on the achievable results, they are compared in

Table 4 as well. It turns out that the shape of a BKD pattern

has no noticeable impact on the lattice parameters, as long as

the covered amount of information is comparable.

To find out how large the covered sector should be for a

successful determination of the lattice parameters, PCz as the

distance between the signal source and the screen was

systematically increased and the corresponding BKD patterns

were analysed. The results for some PCz are listed in Table 5.

The correctness of the lattice parameter ratios and the angles

decreases with decreasing sector size, since the optimization of

the trace positions becomes more and more difficult due to

increasingly shorter band edges. However, the near right

angles show that up to PCz < 2 the optimization still works

very well. A larger PCz would only benefit from the increased

angular resolution of a pixel if the sharpness of the BKD signal

also effectively increased, but it does not. The band edge

profiles are so blurred that they are simply described by even

more pixels when the image resolution is increased.

research papers

358 Gert Nolze et al. � Use of EBSD patterns to determine the crystal lattice. 1 J. Appl. Cryst. (2023). 56, 349–360

Table 4
Averaged lattice parameters a together with 2�fhklg values derived from
15 different orientations for various simulation models, aspect ratios and
trace definitions.

2�a describes the spread of 15 aCALM values. In the first line, the lattice
parameters are derived from the complete bands (master pattern or MP). The
true lattice parameter for �-Fe was a0 = 3.656 Å. The PC depends on the aspect
ratio F and was either ½12 ;

1
2 ;

1
2� (MP), ½12 ;

1
4 ;

1
2� (F = 1) or ½12 ;

1
3 ;

2
3� (F = 4:3).

Diffraction
theory

Aspect
ratio

Trace
positions a (Å) 2�fhklg 2�a

Dynamical MP Computed 3.748 0.023 –
1 Computed 3.748 0.035 0.004
1 Manual 3.748 0.035 0.005
4/3 Computed 3.748 0.034 0.003
4/3 Manual 3.747 0.037 0.004
Circular Manual 3.747 0.035 0.006

Kinematic 1 Computed 3.652 0.014 0.002

Table 5
Influence of the sector size varied by PCz on the number of detectable
bands (No.) and the lattice parameters derived from a randomly oriented
simulated �-Fe pattern (a0 = 3.656 Å) of aspect ratio 4 : 3.

The trace positions were manually drawn and refined. Only the PC was fixed,
at ½12 ;

1
4 ;PCz�. a describes the mean lattice parameter and � = �{hkl} is the

standard deviation. The ‘%’ column gives the percentage of the sector covered
by the pattern relative to the surface area of the projection sphere, following
from PCz.

PCz % No. a/b c/b � � � a � (�)

0.5 17.4 151 0.998 0.999 90.0 90.0 90.0 3.749 (16)
0.75 11.2 93 0.998 0.998 90.0 90.0 90.0 3.752 (17)
1.0 7.5 67 1.000 0.998 89.8 90.0 89.9 3.757 (23)
1.5 4.0 40 1.002 1.000 89.9 90.0 90.0 3.753 (22)
2.0 2.4 29 0.995 0.997 89.5 89.9 89.8 3.739 (20)
2.5 1.6 18 0.991 0.987 89.2 90.3 89.3 3.744 (27)



Fig. 15 is intended to demonstrate that both the trace and

the band width definition become increasingly unreliable for

higher PCz . The band centres can no longer be defined as

precisely due to the short bands, and the band edges do not

become sharper due to the effectively higher magnification.

Also, the correlation between visible bands according to

equations (1) and (2) is limited due to their much smaller

number in the image. For the simulated �-Fe BKD pattern in

Fig. 15, the derived reciprocal-lattice points (right-hand side)

still provide the correct unit cell, but only because of the

extremely high crystal symmetry and the very simple crystal

structure of �-Fe, which leads to a strong correlation of

exclusively low-index bands. For more complicated crystal

structures or lower-symmetry phases, it is also expected that

the lattice parameters can no longer be determined from BKD

patterns of comparable sector size using CALM. The visible

bands can no longer be derived from four traces.

3.4. Lattice parameters

The lattice parameter a = aCALM from BKD simulations of

358 phases was investigated. Elemental structures (types A1–

A4, Ax), binary compounds (structure types B1–B4) and

comparatively complex phases with up to five elements (other)

were considered. For this purpose, a single cube plane of the

master pattern (20 keV electrons, PC = ½12 ;
1
2 ;

1
2�) was used. The

relative deviations (a� a0)/a0 are plotted in Fig. 16 as function

of the mean atomic number Z.

As has been indicated in the previous figures, CALM

generally overestimates the lattice parameters for all the

patterns studied. However, with �a/a = 0–8%, the analysis

shows a comparable increase in offset to the experimental

BKD patterns with �a/a = �4% to 4% (Nolze et al., 2021).

The offset shows a correlation with Z (straight line drawn in

Fig. 16), which suggests a simple offset correction of aCALM

improving the accuracy to 	�1%. This is similar to or below

the precision described by �hkl. The spread of �a/a increases

with Z as well. Higher deviations only occur for Z > 70, which

indicates only the phases of heavy elements.

4. Summary and conclusions

The influence of different factors on the accuracy and preci-

sion of the determination of the Bravais lattice type and its

lattice parameters from a single wide-angle BKD pattern have

been investigated. It is proposed to use physics-based simu-

lations instead of experimental BKD patterns to eliminate

experimental errors and uncertainties in the pattern-forming

phase and projection as much as possible. This makes it

possible to better isolate and understand the remaining indi-

vidual relationships.

In a simulated BKD pattern derived from a master pattern,

the lattice plane traces required for the study can be calculated

without error since the metric, orientation and projection

conditions are exactly known. Only the Bragg angle is neither

theoretically predictable nor experimentally measurable so

far. The inflection point is relatively close to the Bragg angle,

and the first derivative used to determine it provides a fast,

reproducible and automated procedure.

The band width Whkl derived from the two inflection points

of a Kikuchi band profile slightly underestimates the double

Bragg angle in simulated patterns, so that the lattice para-

meters derived from it exhibit an offset. Moreover, for each

band a slightly different lattice parameter ahkl results, so that

for each phase the mean aCALM and the standard deviation

�hkl are used to describe the distribution of ahkl. While the

master pattern provides perfectly mirror-symmetric band

profiles, at least for centrosymmetric phases, the examination

of only a partial signal as in BKD patterns leads to significant

changes in band profiles. Fortunately, it only has a compara-

tively minor but measurable effect on the inflection points.

This inequality further increases the observed ahkl scatter, but

mainly affects �hkl and only slightly aCALM.

For some phases, narrow bands have their width under-

estimated by the first derivative more significantly than usual.

Therefore, a confidence interval of 2 � 1
2 Whkl � 4:5� is

proposed, which excludes misleading variations of very

narrow or very wide bands.

Despite the odds, aCALM is quite stable. It does not vary

significantly with the selected absolute position of the PC.
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Figure 15
(Left) A portion (1.6%) of a simulated �-Fe signal with derived band
edges and (right) the corresponding reciprocal-lattice description
projected along the discovered [001]. As the last line in Table 5 shows,
even for such a small fraction of the diffraction signal a lattice parameter
determination might be possible. (’1, 	, ’2) = (14 Å, 30 Å, 20Å), PC =
½12 ;

1
4 ;

5
2�.

Figure 16
The resulting lattice parameter deviation for elements (structure type A),
binary compounds (B) and multiple (other) compounds as a function of
the mean atomic number Z.



Deviations from the correct PC, however, have a clear nega-

tive impact and influence the lattice parameter ratios and

angles as well as aCALM.

Image sizes of more than 400 pixels offer only theoretical

advantages even for simulated BKD patterns, since the scatter

of ahkl alone represents a significantly larger error. The size

and shape of the BKD pattern and the displayed part of the

master pattern also have little effect on the precision and

accuracy, as long as the visible bands are assigned to the

correct (hkl). The uncertainty of the band width determina-

tion, as the only current alternative to the Bragg angle

description, clearly exceeds all these influencing variables.

The manual definition of the initial four trace positions

leads to deviations of the true lattice parameter ratios and

angles despite continuous optimization. Although the devia-

tions turn out to be very small, they are therefore a cause for

doubt as to whether the deviations indicate a lower-symmetric

phase or whether a pseudosymmetry exists.

The selection of the optimum electron energy (wavelength)

also does not follow a simple rule. It depends practically

exclusively on the phase under investigation. The majority of

Kikuchi bands should be as wide as possible, while also

overlapping as little as possible, so that the maximum possible

number of bands fit into the confidence interval. The more

bands can be described reliably, the higher the statistical

significance of the derived Bravais lattice type and parameters.

The remaining lattice parameters b and c are calculated

from aCALM using the invariable lattice parameter ratios.

As for the experimental BKD patterns in the report by

Nolze et al. (2021), the simulated BKD patterns of the 358

phases analysed here yield a lattice parameter offset that

grows with the mean atomic number Z, to a first approxima-

tion. Unfortunately, �hkl also increases with Z. A simple linear

approach could correct the lattice parameters, resulting in an

accuracy of jaj; jbj; jcj< � 2%. However, for phases which do

not contain heavy elements, the lattice parameter a after

correction is more reliable.
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