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Determination of the crystal system and space group is the first step of crystal

structure analysis. Often this turns out to be a bottleneck in the material

characterization workflow for polycrystalline compounds, thus requiring manual

interventions. This work proposes a new machine-learning (ML)-based web

platform, CrystalMELA (Crystallography MachinE LeArning), for crystal

systems classification. Two different ML models, random forest and convolu-

tional neural network, are available through the platform, as well as the

extremely randomized trees algorithm, available from the literature. The ML

models learned from simulated powder X-ray diffraction patterns of more than

280 000 published crystal structures from organic, inorganic and metal–organic

compounds and minerals which were collected from the POW_COD database.

A crystal system classification accuracy of 70%, which improved to more than

90% when considering the Top-2 classification accuracy, was obtained in tenfold

cross-validation. The validity of the trained models has also been tested against

independent experimental data of published compounds. The classification

options in the CrystalMELA platform are powerful, easy to use and supported

by a user-friendly graphic interface. They can be extended over time with

contributions from the community. The tool is freely available at https://

www.ba.ic.cnr.it/softwareic/crystalmela/ following registration.

1. Introduction

In the study of new materials, structure characterization is one

of the most important tasks because knowledge of the crys-

talline structure facilitates understanding of material proper-

ties (De Graef & McHenry, 2012). Powder X-ray diffraction

(PXRD) is the most appropriate technique to research many

materials; the experimental data collected are submitted to

powerful crystallographic algorithms, able to perform the

necessary steps in the structure solution process, such as

indexing, space group determination, integrated intensity

estimation, structure solution in reciprocal or direct space, and

structure model refinement via the Rietveld method (Riet-

veld, 1969). Data from the 3D molecular structures obtained

are then stored in various databases, containing either specific

classes of materials, like the Inorganic Crystal Structure

Database (ICSD; https://www.fiz-karlsruhe.de/icsd.html) and

the Cambridge Structural Database (CSD; https://www.ccdc.

cam.ac.uk/; Groom et al., 2016), or a collection of organic,

inorganic and metal–organic compounds and minerals, like the

commercial Powder Diffraction File (PDF) (ICDD; https://

www.icdd.com; Faber & Fawcett, 2002; Kabekkodu et al., 2002)

and the freely available Crystallography Open Database

(COD; https://www.crystallography.net/cod; Grǎzulis et al.,

2009, 2012).
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A PXRD pattern can be affected by peak overlaps, diffi-

culty in background estimation, the presence of preferred

orientation effects and limited experimental resolution, which

make structure solution non-trivial. Most importantly, can be

difficult to perform the critical initial steps such as pattern

indexing and space group determination, especially if more

than one chemical phase is present in the compound. If the

unit cell is incorrectly defined, structure solution may not be

possible. These difficulties arise despite the progress, avail-

ability and variety (in terms of strategies and methods

implemented) of automatic indexing software such as

DICVOL (Boultif & Louër, 2004), N-TREOR09 (Altomare et

al., 2009), ITO (Visser, 1969), McMaille (Le Bail, 2004) and

X-CELL (Neumann, 2003).

In the past few years, extraordinary advances in data-driven

models and the availability of large amounts of experimental

data from many different sources have enabled the develop-

ment and application of artificial intelligence in materials

science (Mueller et al., 2016; Agrawal & Choudhary, 2016;

Butler et al., 2018; Schmidt et al., 2019), especially machine-

learning (ML) algorithms for diffraction data analysis. There is

widespread literature clearly demonstrating the ability of ML

models to make predictions based on correlations found in

measured or calculated diffraction data. In terms of crystal

system prediction, it is interesting to consider the work of

Suzuki et al. (2020), who demonstrated the potential of a

simple and fast tree-ensemble-based ML model that manages

the PXRD patterns as deconvoluted and discrete peak posi-

tions. Other notable contributions are found in the literature

(Park et al., 2017; Do Lee et al., 2022; Vecsei et al., 2019; Zaloga

et al., 2020), where deep ML models based on convolutional

neural networks (CNNs) were trained on simulated PXRD

patterns used as a sort of picture rather than as a set of peak

positions and intensities.

Such successful applications have been achieved for a

narrow range of specific materials, namely inorganic

compounds, generally from the ICSD. This is significantly

populated with high-symmetry structures with relatively small

lattice parameters (Chitturi et al., 2021). For thin-film perov-

skite structures, Oviedo et al. (2019) tested multiple supervised

ML approaches coupled with a data augmentation strategy for

dimensionality and space group classification, whereas Chak-

raborty & Sharma (2020) deployed a variation of a CNN for

crystal system classification. Finally, Ziletti et al. (2018) intro-

duced a deep learning neural network model to automatically

classify defective structures by crystal symmetry, starting from

a set of atomic coordinates and lattice parameters. Similar

types of classification analysis also occur in the field of elec-

tron diffraction (Aguiar et al., 2019; Kaufmann et al., 2020). In

addition, ML methods have been applied to tasks such as

phase identification (Lee et al., 2020; Maffettone et al., 2021).

Stimulated by the ever-increasing number of ML applica-

tions for crystallographic data analysis, we propose the ML-

based web graphic platform CrystalMELA (Crystallography

MachinE LeArning). The aim is to overcome the difficulties

posed by the structure solution process from PXRD data, and

to complement traditional indexing approaches. The tool is

currently designed for the classification of the seven crystal

classes (triclinic, monoclinic, orthorhombic, tetragonal,

trigonal, hexagonal and cubic) and is freely available at https://

www.ba.ic.cnr.it/softwareic/crystalmela, following initial

registration. The CrystalMELA platform is not limited to

experts but allows even novices to quickly determine the

crystal system for novel compounds. A key strength and

original aspect of the present approach is that it advances and

supports the process of structure solution, which is essential

for providing insights into the properties and functions of a

sample under study. This purpose is even more plausible with

the planned future extension to many other conventional

theoretical rules-based tasks in materials science (e.g. deter-

mination of cell parameters). The platform can be applied in

the case of failure of conventional methods and/or for

supporting the results obtained by traditional approaches.

CrystalMELA is supported by a user-friendly graphic

interface that makes it very easy to use. In the current version,

the platform can run three different and complementary ML

models: a CNN, an interpretable simple random forest (RF)

and an extremely randomized tree (ExRT). The ExRT code is

an adaptation of that proposed by Suzuki et al. (2020),

accessible in their open GitHub repository.

Unlike specialized models available in the literature, which

are typically trained on specific and limited classes of materials

(almost exclusively inorganic compounds), another key

strength of this study is to make ML models designed to

handle different types of compounds more accessible. The

algorithms were trained on simulated PXRD patterns (i.e. no

counting statistics and background, no preferred orientation

etc.) from more than 280 000 real data of minerals and organic,

inorganic and metal–organic compounds selected from the

POW_COD database (Altomare et al., 2015). In addition to

the complete data set, the models were trained on two subsets

containing only organic (metal–organics are considered

organic) and inorganic compounds.

The crystal system classification accuracy achieved in

tenfold cross-validation (10CV; https://scikit-learn.org/stable/

modules/cross_validation.html) was 70%, which rises to more

than 90% when considering Top-2 prediction accuracy (see

Section 5 for the meaning of these terms). Similar results were

obtained when the performance and efficiency of the trained

models were tested on a large set of experimental data

belonging to 110 previously published crystal structures. The

results are in full agreement with those reported in the

literature.

To the best of our knowledge, only two ML-based platforms

similar to CrystalMELA have been reported in the literature:

(1) CRYSPNet, designed to predict the crystal system, space

group and lattice parameters, based on a combination of

several multi-layer perceptron models using the chemical

composition of more than 100 000 entries from the ICSD

(Liang et al., 2020). The tool has no graphical interface and can

be used from the command line after downloading the project

and models from GitHub. (2) PDFitc, a cloud-based platform

hosting applications for PDF data analysis of crystalline

powders and nanomaterials (Yang et al., 2021).
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Compared with other tools, the main innovative aspect of

CrystalMELA is its ability to use different and complementary

ML models, whose simultaneous deployment in the prediction

of the crystalline system greatly increases the chances of

success. In addition, the platform has the advantage of being

updated by following the progressive increase of information

stored in the POW_COD database, whose growth can improve

the training phase of ML models. CrystalMELA is supported

by a user-friendly graphic interface, which makes the use of

the various available options extremely easy. Finally, it can be

extended over time with the implementation of further ML

models to perform other crystallographic tasks (i.e. space

group and lattice parameter prediction). These are in the

authors’ future work plan.

2. Data preparation

Conventional PXRD patterns (experimental or theoretical)

employed in materials research can be used as effective

descriptors for ML applications. For training the ML models

implemented in the CrystalMELA platform, the PXRD

patterns used were computed theoretically from the crystal

structure solutions stored in POW_COD, an SQLite non-

commercial standalone relational database consisting of a

collection of entries whose main crystallographic information

is generated from the structure information in CIF format of

organic, inorganic and metal–organic compounds and

minerals contained in the COD. The synthetic diffraction

patterns were calculated using the EXPO software (Altomare

et al., 2013) via the option to read the structure data in CIF

format (in particular, cell parameters, space group, atomic

fractional coordinates and displacement parameters). In terms

of pattern simulation parameters, a Pearson VII was used as

the profile function, the classical Lorentz–polarization

correction was adopted and the peak profile was set with fixed

mixing parameters, as well as Caglioti parameters (Caglioti et

al., 1958): U = V = 0 and W = FWHM2 (FWHM is full width at

half-maximum). Preferred orientation was not considered,

and the theoretically computed patterns lack the counting

statistics and background signals present in real experimental

data. The parameters used, which represent the default

choices of the EXPO software, allow the user to generate

plausible PXRD patterns with a good similarity to the real

data, thus helping the trained models generalize better to

experimental conditions. About 490 000 compounds were

extracted, producing the labeled data set {z, lz}, where z is the

input to the model (the PXRD pattern) and lz is the correct

label (the crystal system to which the pattern belongs). Each

compound in the data set is described by the following

information:

(1) Diffraction pattern. A set of points (xi, yi), i = 1, . . . ,

4501, where xi and yi represent the scattering angle 2�i and the

corresponding profile intensity value, respectively. The X-ray

wavelength was set to 1.54056 Å (Cu K�1) and the spanned 2�
range focuses on 0–90� to avoid needing to specify a range

containing a certain number of peaks. If the 2� range of the

submitted input data is outside of the default choice, it will

automatically be cut to 90� if longer or increased to 90� by

adding zero to each missing intensity value if shorter. Tests

were performed to verify that this choice did not negatively

affect the performance of the model. The step size was 0.02�

(2�) and the intensities were normalized such that their largest

value was 1000.

(2) Class label representing the crystal system. As the

removal of ‘harmful data’ from the training data set is essential

to avoid adverse effects on an ML model, we pre-processed

the data, excluding compounds that exhibit one of the

following issues: (i) Atomic coordinates are not available.

(ii) The lattice parameters are large (>40 Å) or small (<2.5 Å);

these structures are particularly complex or have few Bragg

research papers

J. Appl. Cryst. (2023). 56, 409–419 Nicola Corriero et al. � CrystalMELA: a platform for crystal system determination 411

Figure 1
Distribution of samples among the seven crystal systems (x axis) in the POW_COD (blue) and full (orange) data sets.



peaks, respectively. As such, they represent extreme cases and

real occurrences are infrequent. The presence of such outliers

in the training data could therefore compromise the perfor-

mance of the ML models. (iii) The weighted profile R factor

(Rwp) > 10%. A large discrepancy index value implies poor-

quality structural refinement.

Data manipulation was handled by the Pandas (v.1.2.4)

(McKinney, 2010) and NumPy (v.1.29.1) (Harris et al., 2020)

packages. After pre-processing, 283 006 entries (hereafter

referred to as the full data set) remained and were used to

train the models. The distribution of samples among the seven

crystal systems in POW_COD and the full data set is shown in

Fig. 1; a large imbalance between the classes is evident.

The full data set has been partitioned into two subsets

containing organic compounds (herein referred to as the

organic data set, with 261 223 entries; metal–organics are

considered organic) and inorganic compounds (herein

referred to as the inorganic data set, with 21 783 entries),

respectively. The split provides the CrystalMELA user with

the possibility to query a specific data set when the nature of

the sample under investigation is known a priori, thus sparing

computing time. Fig. 2 reports the distribution of crystal

systems in the organic and inorganic data sets. They exhibit

complementary distributions which justify the choice to make

available the three data sets on CrystalMELA. The three

algorithms (CNN, RF and ExRT) were trained on all data sets,

giving rise to nine final independent models.

3. Machine-learning architecture setup

ML constitutes an interesting perspective for tackling the

classification problem considered in this study. Different types

of supervised learning have been tested (RF, decision tree, k-

nearest neighbor, support vector machine, naive Bayes,

multilayer perceptron and extreme gradient boosting, and

CNN) with different impacts in order to derive efficient clas-

sification models for the seven crystal systems using PXRD

data or features directly computed from them.

The selected ML models constituting the core of Crystal-

MELA are a deep ML based on a CNN, chosen primarily for

its ability to automatically extract features from PXRD

patterns without the use of any handcrafted feature engi-

neering; an RF model which demonstrates the best perfor-

mances among the tested classic ML models; and an ExRT

model proposed by Suzuki et al. (2020). Significant differences

between the performances of the three models are not

expected, but rather a synergy derived from their comple-

mentarity.

The tenfold cross-validation (10CV) method on the three

algorithms was run with the full, organic and inorganic data

sets to tune the hyperparameters and evaluate the optimal

configuration for each model. The results show no significant

differences across the three data sets.

The main characteristics of the models implemented in

CrystalMELA are described below.

3.1. Convolutional neural network model

The 1D CNN employed was trained using the entire

diffraction pattern as a 1D input picture. This type of input

takes advantage of conventional indexing approaches because

it gives the same weight to the low- and high-angle regions of

the PXRD pattern. Starting from the Python source code of

the CNN model implemented by Park et al. (2017), we tuned

the hyperparameters to obtain the maximum performance on

the diffraction data sets used. The Adam optimization algo-

rithm (Kingma & Ba, 2015) with a default learning rate of

0.001 was used.

The final architecture of the CNN is depicted in Fig. 3. The

first layer takes 4501 values as input, each representing a

profile intensity value in the 2� range from 0 to 90�, normal-

ized in the [0, 1] interval. The early stopping approach, with

patience = 50 and min delta = 1 � 10�7, was adopted to

minimize network overfitting, i.e. training was stopped at the

point when the performance on a validation data set starts to

degrade, and at the end of the fitting phase the best CNN

weights were restored. The class imbalance affecting each data
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Figure 2
Distribution of crystal systems (class label) in organic and inorganic data sets.



set has been addressed with the use of a random oversampling

of the minority classes.

3.2. Random forest model

An RF can be used for both regression and classification

tasks; it was also preferred for its advantage in providing an

interpretable learning model (Breiman, 2001). The RF model

implemented in CrystalMELA has been trained using the

minimal number and type of features characterizing a PXRD

pattern. According to their relevance, the following features

are extracted: (1) The position of the first ten peaks in the

lower-angle range. We made this choice because, in real

experimental data, the peaks in the low-angle region are less

sensitive to small changes in the cell parameters than the

higher-angle peaks and there is less overlapping. Conse-

quently, a correct determination of the distinct peak positions,

especially for low-symmetry cases, is more likely. (2) The total

number of peaks in the 2� range from 0 to 90�. (3) The 2�
position of the highest intensity peak in the pattern.

For PXRD patterns with fewer than ten peaks in total, the

remaining peak position values were set to zero (this choice

did not negatively affect the performance of the model). To

carry out the peak search on each simulated diffraction

pattern, we used the SciPy signal processing package (version

1.6.2; Virtanen et al., 2020) based on the work of Du et al.

(2006). The peak detection method used corresponds to the

function ‘find peaks’. This takes a 1D array and finds all local

maxima by the simple comparison of neighboring values.

Some experiments were carried out in order to define a better

peak search for the available data. Signal intensities were not

thresholded, and peaks of calculated diffraction patterns were

taken into account regardless of height, so any peak of the

diffraction patterns could possibly serve as an input for ML.
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Figure 3
Architecture of the CNN composed of 22 layers: the features include an extraction section, constituted by three convolutional blocks each formed by a
Conv1D layer followed by activation, dropout and average pooling layers. The number of Conv1D filters is 80 in the first block and increases
incrementally by the same amount in each of the subsequent blocks to become 240 in the last one. The kernel size starts at 200 and is divided by 2 in the
second block and by 4 in the third one. Other parameters include sub-sample length = 2, padding = ‘same’ and activation function = ‘relu’. The dropout
rate is 0.3 in each block, and the average pooling 1D layers use a pool size of 3. The flattened layer is followed by the classification section, constituted by
four densely connected blocks, each formed by a dense layer followed by a batch normalization one. The numbers of neurons used in the dense layer are
2800, 1400, 700 and 70. Each dense layer uses a l2 kernel regularizer and the ‘relu’ activation function, except for the last one which uses ‘tanh’. The last
block is followed by the output layer formed of seven units (one for each crystal class), with the ‘softmax’ activation function, to ensure that the sum of
the seven output neuron values is always equal to 1.



The ‘Gini’ criterion was used to measure the quality of a

split, while the number of trees and their maximum depth

were set to 250 and 30, respectively, and the minimum samples

leaf and the split were set as 1 and 2, respectively.

3.3. Extremely randomized trees model

Recently, Suzuki et al. (2020) proposed an interpretable

ExRT model for crystal system and space group classification.

However, this model uses a different representation of the

input data compared with the proposed RF described in

Section 3.2 [i.e. the first ten peaks and the total number of

peaks extracted from the diffraction pattern; see Suzuki et al.

(2020) for more details]. The code, available at https://github.

com/quantumbeam/xrd-symmetry-prediction, was downloaded

and trained on the organic, inorganic and full data sets, and

implemented on the CrystalMELA platform.

4. CrystalMELA web platform

The CrystalMELA web platform (https://www.ba.ic.cnr.it/

softwareic/crystalmela) has been developed to predict the

seven crystal systems (triclinic, monoclinic, orthorhombic,

tetragonal, trigonal, hexagonal and cubic) when PXRD

patterns are used as input data.

CrystalMELA is designed to be easy to use, as it is

supported by a user-friendly graphic interface and intuitive

options to run the ML models. The current version can run

CNN, RF and ExRT models.

With respect to similar accessible tools, the availability of

several and complementary ML models represents a key

strength and novelty of the platform, making it a versatile tool

that is generally applicable to all experimental and theoretical

PXRD data. It is envisaged that other ML models will be

incorporated over time, and multiple tasks will be addressed,

such as space group and cell parameter prediction. The

CrystalMELA home web page is shown in Fig. 4, and its

workflow is described below.

4.1. Home page

The function of the Home page is to upload diffraction data

and select a number of available options to query the crystal

system prediction. Many different PXRD data ASCII files

such as XY, DAT, GSAS etc. can be imported. The program

automatically recognizes the file format by the file name

extension (see the platform web page for more details). The

options available on the Home page are ‘Machine Learning

Model’, which option allows the selection of one or more ML

models among the three available in the current version for

the crystal system classification, and ‘Dataset to use’, which

allows the user to select the data set for the crystal system

classification that can be performed on the full data set

(default choice) or optionally under the restraining condition

on the organic or inorganic data sets.

4.2. Results page

After the diffraction data have been loaded, the probability

for each of the seven crystal systems is predicted under the

conditions set by the user on the Home page. The results are

presented as a histogram plot. As an example, if all three ML

models are employed at the same time in the Home page, each

will return its own evaluated probability bar for each crystal

system.

Fig. 5 is an example of a Results page, showing the input

diffraction pattern and the histogram of the predicted prob-

abilities returned by the CrystalMELA web platform.

4.3. History page

The History page stores all user sessions. For each, the name

of the input data that have already been analyzed, the ML
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Figure 4
Home web page of the CrystalMELA platform.

Figure 5
Results page. Input diffraction pattern and crystal systems classification
report.



model(s) used, the data set(s) queried, and the obtained Top-1

and Top-2 prediction accuracies (see Section 5 for a definition)

are displayed. Fig. 6 shows an example History page. Users can

also review the loaded input diffraction pattern and the

histogram of the results by clicking on the Detail link.

4.4. Contact

CystalMELA is work in progress. The authors encourage

interested users to provide suggestions and comments via the

Contact page.

4.5. Implementation and availability

CrystalMELA was created using PHP and Laravel for the

backend platform, while PHP, Bootstrap (https://getbootstrap.

com) and HighCharts (https://www.highcharts.com) were used

for the frontend. The template is fully responsive and opti-

mized for mobile devices. A relational database was created

using MySQL (https://www.mysql.com/) to store all runs for

statistical information. The software/library names and

versions used in the current version (June 2022) of Crystal-

MELA are EXPO (version EXPO2014), COD svn (revision

212659), Bootstrap (version 5.50) and Highcharts (version

v10.1.0).

5. Metrics

Predicting the crystal system is a multi-class classification

problem. To evaluate the model performances, the classifica-

tion accuracy, Top-2 accuracy, F1 score and confusion matrix

were used as metrics. The canonical accuracy is defined in

terms of the number of true positive (TP), true negative (TN),

false positive (FP) and false negative (FN) predictions, as

follows:

Accuracy ¼
TPþ TN

TPþ FPþ TNþ FN
:

The F1 score is given by

F1 ¼
2� Precision� Recall

Precisionþ Recall
;

with

Precision ¼
TP

TPþ FP
; Recall ¼

TP

TPþ FN
:

The F1 score is the harmonic mean of precision and recall and

faciliatates a convenient way to provide a high level of

comparison for the classification performance of each model.

The computed F1 score is ‘weighted’; it is calculated by taking

the mean of all per-class F1 scores while considering each class

support. Concerning the top-k accuracy with k � 2, it is often

used for multi-class classification tasks because the canonical

accuracy can be too stringent, especially if the probabilities for

several classes are close, in which case all of them are of

interest. Specifically, Top-2 accuracy measures the proportion

of correct predictions in the two classes with the highest

predicted probability.

6. Results and discussion

The analysis of the results obtained for the theoretical

diffraction data was carried out using the metrics reported in

Table 1 for each ML model when applied to the three data sets

over the tenfold cross-validation. The standard deviations

over CV are reported in parentheses.

The CNN reached the highest classification accuracy of

about 70% with a Top-2 accuracy value of over 90% on all the

data sets. For this reason, CNN has been chosen as default

model in CrystalMELA. The results obtained are comparable

to those reported in the literature. Due to the scarcity of

inorganic data (21 783 entries) with respect to organic data

(261 223 entries), similar accuracy values were obtained on the

full and organic data sets. Despite the fact that the inorganic

data set is the smallest, it is better classified by all the ML

models.
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Figure 6
History page.

Table 1
Classification report on a tenfold CV.

For each ML model the accuracy, Top-2 accuracy and F1 score on the
inorganic, organic and full data sets are reported.

Accuracy Top-2 accuracy F1 score

Inorganic data set
CNN 0.702 (0.015) 0.894 (0.009) 0.702 (0.015)
RF 0.709 (0.010) 0.894 (0.004) 0.704 (0.011)
ExRT 0.713 (0.008) 0.894 (0.005) 0.710 (0.008)

Organic data set
CNN 0.676 (0.002) 0.942 (0.003) 0.668 (0.008)
RF 0.624 (0.003) 0.897 (0.001) 0.593 (0.003)
ExRT 0.622 (0.003) 0.894 (0.001) 0.593 (0.003)

Full data set
CNN 0.666 (0.026) 0.930 (0.026) 0.660 (0.024)
RF 0.619 (0.002) 0.892 (0.001) 0.590 (0.002)
ExRT 0.616 (0.003) 0.888 (0.002) 0.588 (0.003)



The performances in terms of precision, recall

and F1 score achieved by each model on the three

data sets and specified for each crystal system are

reported below.

6.1. CNN Results

Table 2 summarizes the metric values obtained

by CNN. For the inorganic and organic data sets the

performances are uneven between the classes. To

overcome the large imbalance clearly evident

among the classes of organic compounds (see

Fig. 2), a random oversample of the minority classes

was performed. However, the undersampling of the

monoclinic class did not improve the performance

of the CNN model. Finally, as expected, for the full

data set, the addition of the inorganic compounds

does not change the classification performance.

6.2. RF results

Table 3 shows the results obtained by the RF

model on the three data sets. The distribution of F1

score values for each data set reflects the behavior

observed for the CNN model, even though the

performance values are slightly lower (particularly

in orthorhombic and tetragonal classes for the

organic data set).

6.3. ExRT results

Table 4 summarizes the metric results obtained

using the ExRT model. The distribution of F1 score

values for each data set is comparable to that

obtained with the RF model, and lower than that

given by the CNN model.

We point out that the performances of ExTR

differ from those published by Suzuki et al. (2020),

where the model was trained using a different data

set which directly provides the input features the

model requires [downloaded from the reference

page reported by Suzuki et al. (2020)]. Generally,

the behavior of any data-driven model is strongly

dependent on the data set characteristics it is

trained on.

7. Case studies with real experimental data

To assess the validity of our models on the crystal

system classification task, we use real experimental

data; these are significantly different from the data

sets used to train the models (simulated patterns) in

CrystalMELA. Although the three ML models are

not fully trained to overcome all the problems that

real data present (i.e. overlapping peaks, noise/background

etc.), we test their efficiency in classifying real diffraction

patterns. The real data set contains crystalline samples from a

large PXRD database of already published structures that

belong to the private data collections of some of the authors. It

consists of 110 diffraction patterns from organic, inorganic and

metal–organic compounds of different structural complexity

and data quality (using a conventional X-ray diffractometer,

and synchrotron and neutron radiation). The distribution of

the available real data among the seven crystal systems is
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Table 2
Performances of the CNN model on the inorganic, organic and full data sets.

For each crystal system the precision, recall and F1 score values are reported.

Triclinic Monoclinic Orthorhombic Tetragonal Trigonal Hexagonal Cubic

Inorganic data set
Precision 0.66 0.66 0.68 0.72 0.75 0.78 0.95
Recall 0.51 0.76 0.66 0.71 0.70 0.72 0.94
F1 score 0.58 0.71 0.67 0.71 0.72 0.75 0.94

Organic data set
Precision 0.71 0.67 0.63 0.63 0.64 0.83 0.91
Recall 0.54 0.82 0.48 0.53 0.66 0.45 0.91
F1 score 0.61 0.74 0.54 0.58 0.65 0.58 0.91

Full data set
Precision 0.70 0.67 0.61 0.57 0.50 0.72 0.93
Recall 0.54 0.80 0.47 0.52 0.70 0.55 0.96
F1 score 0.60 0.73 0.53 0.54 0.58 0.62 0.94

Table 3
Performances of the RF model on the inorganic, organic and full data sets.

For each crystal system the precision, recall and F1 score values are reported.

Triclinic Monoclinic Orthorhombic Tetragonal Trigonal Hexagonal Cubic

Inorganic data set
Precision 0.659 0.640 0.706 0.790 0.766 0.779 0.878
Recall 0.440 0.819 0.643 0.658 0.704 0.684 0.919
F1 score 0.527 0.719 0.673 0.718 0.734 0.728 0.898

Organic data set
Precision 0.629 0.612 0.666 0.691 0.680 0.843 0.875
Recall 0.435 0.860 0.222 0.354 0.504 0.399 0.789
F1 score 0.514 0.715 0.333 0.468 0.579 0.523 0.830

Full data set
Precision 0.633 0.613 0.703 0.741 0.681 0.856 0.915
Recall 0.433 0.864 0.262 0.427 0.575 0.525 0.892
F1 score 0.514 0.717 0.381 0.542 0.623 0.650 0.903

Table 4
Performances of the ExRT model on the inorganic, organic and full data sets.

For each crystal system the precision, recall and F1 score values are reported.

Triclinic Monoclinic Orthorhombic Tetragonal Trigonal Hexagonal Cubic

Inorganic data set
Precision 0.648 0.640 0.707 0.808 0.761 0.782 0.895
Recall 0.460 0.798 0.652 0.650 0.722 0.723 0.934
F1 score 0.538 0.711 0.679 0.721 0.740 0.752 0.914

Organic data set
Precision 0.625 0.611 0.650 0.665 0.652 0.759 0.850
Recall 0.422 0.858 0.239 0.332 0.501 0.395 0.812
F1 score 0.504 0.714 0.350 0.443 0.566 0.519 0.831

Full data set
Precision 0.625 0.612 0.673 0.738 0.685 0.821 0.924
Recall 0.421 0.856 0.280 0.441 0.571 0.548 0.897
F1 score 0.503 0.714 0.396 0.552 0.623 0.657 0.910



reported in Table 5. The data set is strongly unbalanced: it

does not contain any sample belonging to the cubic system,

while the hexagonal, tetragonal and trigonal classes amount to

5% of samples. Note that this can heavily compromise the

correct classification by the model.

To evaluate the capacity of our models to classify the crystal

systems when an experimental data set is used, the confusion

matrix was evaluated to visualize and summarize the perfor-

mance of the three models (trained on the full data set). They

are reported in Fig. 7. The elements in the confusion matrix

indicate the number of samples correctly (diagonal) and

incorrectly classified and their percentages (values in

parentheses). All the classification models correctly classify

the single sample belonging to the trigonal system, but they

were not able to properly identify the two tetragonal samples.

The models also present very similar results for the classifi-

cation of monoclinic samples. As expected, the ML models in

CrystalMELA are clearly more accurate in classifying the

theoretical data sets (with no noise and background like in the

training data) than the experimental ones (which contain

noise and background not present in the training data). This is

research papers

J. Appl. Cryst. (2023). 56, 409–419 Nicola Corriero et al. � CrystalMELA: a platform for crystal system determination 417

Figure 7
Confusion matrices visualizing and summarizing the performance of the three classification models in CrystalMELA on the experimental data set.

the major obstacle in achieving a higher classification accuracy

on the experimental data.

A dummy classifier model, which makes predictions without

trying to find patterns in the data, has also been added, serving

to establish a simple baseline to compare against other more

complex classifiers and to calculate metrics on the test set of

real data. It can use three different strategies: stratified,

uniform and most frequent, the latter was adopted in the

present study. Table 6 reports the performance metrics on the

real experimental data set. Accuracy, Top-2 accuracy, balanced

accuracy and ‘weighted’ F1 score are reported for all models in

CrystalMELA and for the best dummy classifier. The balanced

accuracy in multi-class classification is defined as the average

recall obtained on each class to avoid inflated performance

estimates on imbalanced data sets. The results obtained are

comparable to those obtained for theoretical data sets,

demonstrating the validity of the proposed ML models for

imperfect data. As mentioned above, one limitation to the

success of the ML models when applied to experimental

diffraction data is the lack of noise and background signals in

the theoretical patterns. A model trained using only such data

may interpret the experimental noise as Bragg peaks and

potentially cause a misclassification.



8. Conclusions

The community ML web platform CrystalMELA is designed

to provide an easy-to-use and versatile tool for predicting the

most likely crystal system of organic, inorganic and metal–

organic compounds and minerals. CrystalMELA is freely

available at https://www.ba.ic.cnr.it/softwareic/crystalmela/. It

is envisaged that the platform will host an increasing number

of web services over time, but the current version can run

CNN, RF and ExRT models, trained on about 280 000

compounds extracted from the POW_COD database. The

user can easily upload PXRD data on the platform, querying

one or more of the available analysis applications to receive

the required crystal system prediction. A good level of

prediction accuracy is reached by all the models both on

theoretical and on real data, strongly supporting the ability of

data-driven algorithms to discover unrecognized character-

istics embedded in the experimental data and hidden from the

human eye.
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Table 5
Distribution of the real samples among the seven crystal systems.

Crystal system Number of samples Percentage of total samples (%)

Monoclinic 67 61
Orthorhombic 29 26
Triclinic 9 8
Hexagonal 2 2
Tetragonal 2 2
Trigonal 1 1
Cubic 0 0

Table 6
Performances of the models on the real experimental data set.

Accuracy Top-2 accuracy Balance accuracy F1 score

CNN 0.682 0.936 0.435 0.666
RF 0.664 0.873 0.472 0.623
ExRT 0.664 0.855 0.382 0.615
Dummy 0.610 0.620 0.170 0.460
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