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For phase transformations within polycrystalline materials, the connection

between the crystal orientations of parent grains and those of child grains is

usually expressed in terms of (theoretical or measured) orientation relation-

ships. This paper introduces a new approach to various problems associated with

orientation relationships: (i) estimation, (ii) whether or not a single orientation

relationship fits the data adequately, (iii) whether or not a set of children comes

from a common parent, and (iv) reconstruction of a parent or of grain

boundaries. The approach is an extension to the crystallographic context of the

well established embedding approach to directional statistics. It is inherently

statistical, producing precise probabilistic statements. Explicit coordinate

systems are not used and arbitrary thresholds are avoided.

1. Introduction

Phase transformations within polycrystalline materials often

induce a transformation of the texture, i.e. of the statistical and

spatial distribution of the crystallographic orientations of the

crystallites. This usually involves the replacement of each

parent crystal by several child crystals, possibly in a different

symmetry group. Several mathematical models for describing

these transformations have been constructed on theoretical

grounds. Such models include the orientation relationships of

Kurdjumow–Sachs (Kurdjumow & Sachs, 1930), Nishiyama–

Wassermann (Wassermann, 1933, 1935; Nishiyama,1934) and

Pitsch (1959, 1967). The presence of two symmetry groups

leads to the problem of multiplicity of variants, i.e. orientations

of (unseen) parent crystals giving rise to orientations of given

child crystals. (A precise mathematical definition is given in

Section 2.3.) Much work has been carried out developing

methods for fitting these models and examining their

adequacy, notably by Humbert and co-authors (e.g. Humbert

et al., 1994, 1995, 2015) and by Cayron and his collaborators

(e.g. Cayron et al., 2006; Cayron, 2019). Even within the topic

of the austenite–martensite transformation there are very

many papers in the materials science literature on problems

involving variants, e.g. Nolze (2004b), Kitahara et al. (2006),

Miyamoto et al. (2009), Abbasi et al. (2012, 2014), Koumatos &

Muehlemann (2017) and Nyyssönen et al. (2016, 2018). These

problems have been addressed by Mainprice et al. (1990) and

Morales et al. (2018), for instance, in a geological context.

As far as we are aware, previous work on fitting orientation

relationships and identifying variants takes the traditional

viewpoint of estimating the relationship and assessing its fit,

either informally or by making use of an arbitrary threshold of
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some measure of goodness of fit. For example, Nolze (2004a,b,

2005) measures the discrepancy between estimated and

theoretical versions of a parameter [A]1, 2 of an orientation

relationship [see equation (1) below] by the (minimal)

misorientation angle between representative rotations. The

discrepancy is considered significant if it is larger than the

accuracy of the experimental apparatus. In this paper we

establish a sound statistical viewpoint on various types of

problem involving orientation relationships and variants. In

the traditional viewpoint, the key idea is that of being

‘numerically close’ and the typical question is ‘how far apart

are the measured and theoretical quantities?’. From the

statistical viewpoint, the key idea is that of being ‘statistically

close’ (in a precise probabilistic sense) and the typical ques-

tion is ‘what is the probability (under some hypothesis) that

the measured and theoretical quantities are (at least) this far

apart?’. If this probability is small then the hypothesis is

rejected. We implement the statistical viewpoint here by using

the embedding approach to crystallographic orientations

introduced by Arnold et al. (2018), which is an application of

the embedding approach to directional statistics [see e.g.

Sections 2.1 and 9.1 of Mardia & Jupp (2000)]. The necessary

measures of distance are constructed using orientation

representations which incorporate the relevant symmetries,

reducing the need to search for optimal representations within

equivalence classes. The use of explicit coordinate systems is

avoided.

The key points of our approach are as follows:

(i) Regarding each object such as a crystallographic orien-

tation as a single object (equivalence class) in a quotient space,

rather than considering a single representative orientation.

(ii) Avoiding arbitrary thresholds.

(iii) Avoiding arbitrarily chosen explicit coordinate systems

(such as are used in asymmetric domains).

The notation used in this article is more mathematical and

general than that traditionally used for discussing variants.

The reasons for this choice are (i) the concepts of orientation

relationship and variant are appropriate in contexts wider

than the crystallographic, and (ii) for the embedding approach

our notation is particularly convenient. We use the word

‘random’ in the statistical sense of ‘not deterministic’, so that

repeating measurement of e.g. rotations will not produce

exactly the same values (rather than implying that these

rotations are uniformly distributed).

Some of the material in this paper has been presented in a

more mathematical form suitable for statisticians by Arnold &

Jupp (2019) and Arnold et al. (2018, 2021).

Section 2 gives a mathematical description of orientation

relationships and variants. The embedding approach to crys-

tallographic orientations is recalled in Section 3 and extended

to the context of variants. Sections 4, 5, 6 and 7 treat methods

for estimation (sometimes referred to as ‘calculation’, ‘deter-

mination’ or ‘evaluation’) of orientation relationships,

assessment of the adequacy of a single orientation relation-

ship, assessment of the common parentage of child crystals

and reconstruction of parents, respectively. In each of these

sections established methods are recalled and then methods

based on the embedding approach are given. Some practical

illustrations of these new methods are given in Section 8.

2. Orientation relationships and variants

2.1. Orientations of symmetrical objects

The orientation of a rigid object in R3 can be described by a

rotation that transforms it into some standard orientation. If

the object is asymmetrical then this rotation is unique, so that

the orientations of the object correspond to elements of the

group SO(3) of rotations of R3. If the object has symmetry

group K then a rotation U has the same effect as the rotation

UH for any H in K. Then the orientations of the object

correspond to elements of the space SO(3)/K, i.e. the set of

equivalence classes of elements of SO(3) under the right

action of K. For U in SO(3) we shall denote the corresponding

left coset of K, i.e. the equivalence class {UH : H 2 K} of U in

SO(3)/K by [U].

2.2. Orientation relationships

In many contexts, e.g. transformations involving a phase

change, interest lies in the relationship between two random

orientations with possibly different symmetry groups. Let [U]1

and [V]2 be random orientations in SO(3)/K1 and SO(3)/K2,

respectively, where K1 and K2 are the symmetry groups.

Particularly simple models relating [U]1 and [V]2 are the

orientation relationships. These have the form

½V�2 ¼ ½RUA�2; ð1Þ

where R and A are in SO(3). {Note that, in general, equation

(1) is not equivalent to [U]1 = [R�1VA�1]1.} The rotation R in

(1) can arise as the result of measurements being made in

different coordinate systems. For example, this situation arises

when the two samples are aligned at different angles to a

common laboratory measurement frame. A further compli-

cation may occur if pairs of measurements ([U1]1,

[V1]2), . . . , ([Un]1, [Vn]2) are made at widely differing loca-

tions, in which case realistic modelling may require the use of

an R that depends on location. Equation (1) determines the

rotation R uniquely but it does not determine A. Indeed,

because [U]1 = [UH]1 and [V]2 = ½VeHH�2 for any H in K1 and

any eHH in K2, HAeHH and A give the same orientation rela-

tionship (1). Thus (1) does not determine A fully but deter-

mines only its image [A]1, 2 in the double coset space

K1\SOð3Þ=K2. The space K1\SOð3Þ=K2 is the set of equivalence

classes of elements W of SO(3) for which W and HWeHH are

equivalent for any H in K1 and any eHH in K2. In crystallography

it is usual to identify K1\SOð3Þ=K2 with an asymmetric domain,

i.e. a connected subset of SO(3) that (apart from a set of

measure zero) contains exactly one rotation in each equiva-

lence class. Construction of asymmetric domains is considered

in Section 6.3 of Morawiec (2004). Because, in any given

context, there is no standard asymmetric domain, we prefer

not to use such domains. An orientation relationship (1) gives

rise to four types of problem:
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(i) The estimation problem of estimating the unknown R

and [A]1, 2 on the basis of observations ([U1]1,

[V1]2), . . . , ([Un]1, [Vn]2).

(ii) The single orientation relationship problem of assessing

whether or not a single orientation relationship can describe

the data adequately.

(iii) The sibling problem of determining whether or not

elements [V1]2, . . . , [Vn]2 of SO(3)/K2 arise from some

unknown common parent [U]1 under a known orientation

relationship (R, [A]1, 2). If [V1]2, . . . , [Vn]2 are distinct then

they arise from some common U if and only if they are part of

a set of variants (see Section 2.3).

(iv) The reconstruction problem of estimating the unknown

[U]1 on the basis of a known (R, [A]1, 2) and observations

[V1]2, . . . , [Vn]2 .

These problems are considered in Sections 4, 5, 6 and 7,

respectively.

2.3. Variants

In general, an orientation relationship (1) does not yield a

unique map from SO(3)/K1 to SO(3)/K2 . Instead, to each [U]1

in SO(3)/K1 it assigns s distinct elements

½RUH1A�2; . . . ; ½RUHsA�2 ð2Þ

of SO(3)/K2, where H1, . . . , Hs 2 K1 and

s ¼ jK1j=jKAj; ð3Þ

KA being the intersection group defined as

KA ¼ K1 \ AK2A�1
� �

: ð4Þ

Distinctness of [RUH1A]2, . . . , [RUHsA]2 in (2) is equivalent

to H�1
j Hi =2 KA for i 6¼ j (see Appendix A). The

[RUH1A]2, . . . , [RUHsA]2 in (2) are known as the

(orientation) variants (or crystallographic variants) of [U]1

given by R and A. There is no distinguished variant among

[RUH1A]2, . . . , [RUHsA]2, but the (arbitrary) choice of any

one of these, [RUH0A]2, say, as a base point determines the

function �H0
from K1 to the set of variants by �H0

ð½H�1Þ =

½RUH0HA�2. Since �H0
ð½Hi�1Þ = �H0

ð½Hj�1Þ if and only if

H�1
j Hi 2 KA, the set (2) of variants can be identified with the

coset space K1/KA.

As pointed out by Nolze (2008), in contrast to the

commonly used theoretical orientation relationships [A]1, 2,

measured orientation relationships ½bAA�1;2 are ‘irrational’ in

that their descriptions in terms of crystallographic planes and

directions do not have low Miller indices. This is because it is

not possible to make measurements with perfect accuracy, and

so the orientations [Ui]1 and [Vi]2 are random. The argument

in Proposition 1 in Appendix A shows that the number of

variants associated with a measured orientation relationship is

|K1|. In real materials the variants are usually present in

unequal quantities, a phenomenon known as variant selection,

and some variants may even be absent. In many contexts it is

of interest to estimate the overall proportions of the variants

that are present. Whereas the orientational variants consid-

ered in this paper are cosets of KA in K1, the types of variant

introduced by Cayron (2016, 2019) in connection with the

physical mechanisms underlying martensitic crystallography

are cosets of other subgroups of K1 that describe the distortion

and stretch of crystal lattices.

As pointed out by Cayron (2006), the important algebraic

structure associated with the set (2) of variants is that of a

groupoid, i.e. a set of arrows endowed with a partially defined

associative composition in which every arrow has an inverse.

Denote the set (2) of variants by V. Each triple (½RUHiA�2,

KAH�1
i HjKA, ½RUHjA�2) in V � ðKA\K1=KAÞ � V can be

regarded as an arrow from [RUHiA]2 to [RUHjA]2 . The

arrows (½RUHiA�2, KAH�1
i HjKA, ½RUHjA�2) and (½RUHkA�2,

KAH�1
k H‘KA, ½RUH‘A�2) can be composed if and only if

[RUHjA]2 = [RUHkA]2, in which case the composition is

(½RUHiA�2, KAH�1
‘ HkKA, ½RUH‘A�2). It is useful to combine

the arrows into equivalence classes called operators. Each

operator can be written as KAH�1
i HjKA for some i, j (but, in

general, i and j are not unique) and can be regarded as being a

theoretical transformation that takes the variant [RUHiA]2 to

[RUHjA]2 . Thus, the set of operators can be identified with

the double coset space KA\K1=KA. The operator KAH�1
i HjKA

can be regarded as the misorientation between [RUHiA]2 and

[RUHjA]2 .

The composition table of the groupoid yields a multi-valued

composition on the set of operators. This provides a way of

attacking the sibling and reconstruction problems described in

points (iii) and (iv) at the end of Section 2.2. Gey & Humbert

(2003) pointed out that, in the case of the Burgers orientation

relationship (K1 = O, K2 = D6), the number of misorientations

between the variants is less than the number of variants.

3. The embedding approach

3.1. Embedding SO(3)/K

Because the coset spaces SO(3)/K are not very easy to work

with, Arnold et al. (2018) (see also Arnold & Jupp, 2019)

developed the embedding approach in which a function

t : SO(3)/K! E is used to send SO(3)/K into (but not onto)

some inner-product space E. The function t is required to be

(i) one-to-one, (ii) equivariant, i.e. ht([VU]), t([VW])i =

ht([U]), t([W])i for U, V, W in SO(3), where h�, �i denotes the

inner product, (iii) such that t([U]) has expectation 0 if [U] is

uniformly distributed on SO(3)/K. For the crystallographic

groups C1, C2, C3, C4, D2, D6, T and O some useful functions t

are given explicitly in Table 1. Together t and h�, �i lead us to

ktð½U�Þ � tð½V�Þk2
¼ htð½U�Þ � tð½V�Þ; tð½U�Þ � tð½V�Þi ð5Þ

as a new measure of squared distance between elements [U]

and [V] of SO(3)/K. By design it incorporates the symmetry

group K and it replaces the need for misorientation angles. A

useful summary of [U1], . . . , [Un] is their sample mean, ½U�,

which is defined as the element of SO(3)/K that minimizesPn
i¼1 ktð½U�Þ � tð½Ui�Þk

2 or, equivalently, maximizes

htð½U�Þ;
Pn

i¼1 tð½Ui�Þi. For K = Cr or Dr explicit approximations

to sample means are given in Section 2.3 of Arnold & Jupp

(2019).

Embeddings are discussed further in Appendix B.
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3.2. Embedding K1\SO(3)/K2

The double coset spaces K1\SOð3Þ=K2 are even more

complicated than the coset spaces SO(3)/K, but the embed-

ding approach can be used for them also.

Any t : SO(3)/K2 ! E, where E is a vector space, can

be averaged over K1 to give a corresponding

t : K1\SOð3Þ=K2 ! E, defined by

tð½U�1;2Þ ¼ jK1j
�1
X
H2K1

tð½HU�2Þ: ð6Þ

We shall exploit such t in order to carry out inference on

orientation relationships. If t has properties (ii) and (iii) of

Section 3.1 then so does t. On the other hand, t having

property (i) (being one-to-one) does not imply that t has this

property also. In a few very special cases (e.g. K1 and K2

isomorphic to C2 and C3 and with a common axis) t is iden-

tically zero. In the context of phase transitions it seems that

such symmetries are not of practical interest.

4. Estimation

4.1. Estimation based on orientations of parents and children:
established methods

Suppose that we are given paired observations ([U1]1,

[V1]2), . . . , ([Un]1, [Vn]2) with [Ui]1 in SO(3)/K1 and [Vi]2 in

SO(3)/K2 for 1 � i � n. It is assumed that the pairs ([U1]1,

[V1]2), . . . , ([Un]1, [Vn]2) are observations of a pair ([U]1, [V]2)

of random orientations that satisfy the orientation relationship

(1). The problem is that of estimating the unknown [A]1, 2 (and

R if it is not known). In the case K1 = K2 = C1 (i.e. no

symmetry, so that variants do not occur), an explicit estimate

of A was given by Mackenzie (1957). In the general case, it

follows from (1) that ½U�1
i R�1Vi�1;2 is close to [A]1, 2 for i =

1, . . . , n. Then ½U�1
i R�1Vi�1;2 can be considered as the ‘local’

estimate of [A]1, 2 given by the observed pair ([Ui]1, [Vi]2).

Here ‘local’ is used in the sense that the estimate uses only

quantities with index i, which in many cases means that they

are measured at the ith location.

Using this approach Nolze found that, for transformation

from face-centred cubic to body-centred cubic lattices, the

standard theoretical models did not provide a good fit to the

experimental data that he was investigating

4.2. Estimation based on orientations of parents and children:
embedding approach

The embedding approach uses a suitable embedding

t2 : SO(3)/K2 ! E. If ([U1]1, [V1]2), . . . , ([Un]1, [Vn]2) are

observations on a pair ([U]1, [V]2) of random orientations

that satisfy the orientation relationship (1) then ½U�1
i R�1Vi�1;2

is close to [A]1, 2 for i = 1, . . . , n. Therefore, it is sensible

to estimate R and [A]1, 2 by bRR and ½bAA�1;2, which are the R

and [A]1, 2 that minimize the squared distancePn
i¼1 kt2ð½U

�1
i R�1Vi�1;2Þ � t2ð½A�1;2Þk

2, or equivalently that

maximize S2ðR; ½A�1;2; fð½Ui�1; ½Vi�2Þg
n
i¼1Þ, defined by

S2 R; ½A�1;2; ð½Ui�1; ½Vi�2Þ
� �n

i¼1

� �
¼
Xn

i¼1

t2ð½A�1;2Þ; t2ð½U
�1
i R�1Vi�1;2Þ

� �
¼ n t2ð½A�2Þ;

1

njK1j

Xn

i¼1

X
H2K1

t2ð½HU�1
i R�1Vi�2Þ

* +
: ð7Þ

Thus, [A]1, 2 can be taken as the sample mean of the images by

t2 [defined by (6)] of f½HU�1
i R�1Vi�2 : H 2 K1; i ¼ 1; . . . ; ng.

An alternative method of estimation uses the R and [A]1, 2 that

maximize S1ðR; ½A�1;2; fð½Ui�1; ½Vi�2Þg
n
i¼1Þ, which is defined by

S1ðR; ½A�1;2; fð½Ui�1; ½Vi�2Þg
n
i¼1Þ

¼
Xn

i¼1

max
H2K1

ht2ð½HA�2Þ; t2ð½U
�1
i R�1Vi�2Þi ð8Þ

[see Section 6.1 of Arnold et al. (2021)].

Not only can a point estimate ½bAA�1;2 of [A]1, 2 be obtained, it

is also possible to get confidence regions for [A]1, 2. Bootstrap

confidence regions for [A]1, 2 can be calculated by resampling

the data as follows. For a suitable B and m, for b = 1, . . . , B,

sample (with replacement) m pairs (m � n) ([Ub1]1,

[Vb1]2), . . . , ([Ubm]1, [Vbm]2) from ([U1]1, [V1]2), . . . , ([Un]1,

[Vn]2). Denote the estimate of [A]1, 2 based on ([Ub1]1,

[Vb1]2), . . . , ([Ubm]1, [Vbm]2) by ½bAAb�1;2. Define the similarity

measure

� ½A�1;2; ½B�1;2
� �

¼ max
H2K1

t2ð½HA�1;2Þ; t2ð½B�1;2Þ
� �

: ð9Þ

For 0 < � < 1, define c� by
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Table 1
Some embeddings tK : SO(3)/K! E.

For Cr with r � 3, u0 = [sin(2�/r)]�1 u1 � u2. For D2, u3 = 	u1 � u2. The
symmetric arrays 
rui and Nr are defined in equations (37) and (38),
respectively.

Group, K tK

C1 tC1
ðu1; u2; u3Þ ¼ ðu1; u2; u3Þ

C2 tC2
ðu0;	u1Þ ¼ ðu0; u1uT

1 �
1
3I3Þ

C3 tC3
ð½u1; u2; u3�Þ ¼ u0;

X3

i¼1



3ui

 !

C4 tC4
ð½u1; . . . ; u4�Þ ¼ u0;

X4

i¼1



4ui �

4
5N4

 !

D2 tD2
ð	u1;	u2Þ ¼ ðu1uT

1 �
1
3I3; u2uT

2 �
1
3I3; u3uT

3 �
1
3I3Þ

D4 tD4
ð½u1; . . . ; u4�Þ ¼

X4

i¼1



4ui �

4
5 N4

D6 tD6
ð½u1; . . . ; u6�Þ ¼

X6

i¼1



6ui �

6
7N6

T tTðfu1; u2; u3; u4gÞ ¼ 

3u1 þ


3u2 þ

3u3 þ


3u4

O tOðf	u1;	u2;	u3gÞ ¼ 

4u1 þ


4u2 þ

4u3 �

3
5N4



c� ¼ 100� ð1� �Þ% largest of �ð½bAAb�1;2; ½bAA�1;2Þn oB

b¼1
: ð10Þ

Then a 100 � (1� �)% bootstrap confidence region for [A]1, 2

is

½A�1;2 : �ð½A�1;2; ½bAA�1;2Þ > c�

n o
: ð11Þ

For the corresponding test of H0 : [A]1, 2 = [A0]1, 2 (where

[A0]1, 2 is a specified theoretical [A]1, 2), the p-value (i.e. the

probability under H0 of another sample producing a value of

½bAA�1;2 at least as extreme as that observed) is

p ¼ B�1 No: of b : �ð½bAAb�1;2; ½bAA�1;2Þ > �ð½A0�1;2; ½bAA�1;2Þn o
:

ð12Þ

The hypothesis H0 is rejected at significance level � if p � �
or, equivalently, if the estimated ½bAA�1;2 lies outside the

100 � (1 � �)% bootstrap confidence region (11) for [A]1, 2 .

A flow chart for implementation of the techniques

described in this subsection is given in Fig. 1.

4.3. Estimation based on orientations of children alone:
established methods

In some settings, no observations on the orientations of

parent grains are available. Nevertheless, in many cases it is

possible to estimate [A]1, 2 from orientations [V1]2, . . . , [Vn]2

of child grains.

The estimation method of Humbert et al. (2015) starts from

observed child crystallographic orientations [V1]2, . . . , [V3]2

that are the visible part of ([U1]1, [V1]2), ([U2]1, [V2]2), ([U3]1,

[V3]2). These pairs are taken to obey (at least approximately) a

form of the orientation relationship (1), so that

½Vr�2 ’ ½RUrAr�2; r ¼ 1; 2; 3 ð13Þ

for some U1, U2, U3 and A1, A2, A3 . It is assumed that U1 ’

U2 ’ U3 ’ U and A1 ’ A2 ’ A3 ’ A for some U and A in

SO(3) (assumptions that are reasonable if the orientations are

measured at points near a triple junction and the local

orientation relationships vary only slowly with position). It

then follows from (13) that for i, j in {1, 2, 3} it is possible to

choose Hi , Hj in K1 and eHHi, eHHj in K2 such that Ui ’ UHi , Uj ’

UHj and

Vi ’ RUHiAeHHi; Vj ’ RUHjAeHHj: ð14Þ

Then

V�1
j Vi ’

eHH�1

j A�1H�1
j HiAeHHi ð15Þ

or, equivalently,

AeHHjV
�1
i Vj ’ HmAeHHi; ð16Þ

where Hm ¼ H�1
j Hi . For given i and j, solutions for A of the

equation obtained from (16) by replacing approximate

equality by exact equality are far from unique. On the other

hand, for general V1, V2, V3 (outside some set of measure 0),

the three corresponding equations as i, j run through distinct

(unordered) pairs in {1, 2, 3} do have a unique solution. In

view of this, Humbert et al. (2015) suggested estimating the

rotation A by any element of SO(3) that minimizesX
ði;jÞ

min
Hm2K1

mineHHi;eHHj2K2

kAeHHjV
�1
j Vi �HmAeHHik

2; ð17Þ

the sum being over (i, j) = (1, 2), (1, 3), (2, 3) and the norm

being the Frobenius norm [= Hilbert–Schmidt norm, defined

by kBk2 = trace(BBT)].

The estimation stage of the iterative reconstruction method

of Nyyssönen et al. (2016, 2018) is also motivated by (16).

Given (i) orientations [Vi]2 and [Vj]2 of distinct variants and

(ii) Hm in K1 and eHHi, eHHj in K2, [A]1, 2 is estimated by ½bAA�1;2,
where bAA is found by iterative solution of

A ¼ HmAeHHiV
�1
i Vj

eHH�1

j : ð18Þ

Since Hm, eHHi and eHHj are not known, Nyyssönen and co-

workers recommend averaging the above bAA as Hm, eHHi, eHHj run

through K1, K2, K2. Note that averaging of rotations is not well

defined.

4.4. Estimation based on orientations of children alone:
embedding approach

Given an embedding t2 : SO(3)/K2 ! E, define
�tt2 : K2\SOð3Þ=K2 ! E by
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Figure 1
A flow chart for (i) estimation of (R, [A1, 2]) based on (U1, V1), . . . , (Un,
Vn), (ii) confidence regions for [A1, 2] and (iii) testing of [A1, 2] = [A01, 2].
An alternative method minimizes S2 in (7) instead of S1 in (8).



�tt2ð½V�2;2Þ ¼ jK2j
�1
X
eHH2K2

t2ð½
eHHV�2Þ; ð19Þ

where [V]2, 2 denotes the image of [V]2 in the double coset

space K2\SOð3Þ=K2.

It follows from (15) that

�tt2ðV
�1
i VjÞ ’ �tt2ðA

�1HmAÞ ð20Þ

for some Hm in K1. It is therefore reasonable to estimate [A]1, 2

as any element of K1\SOð3Þ=K2 that minimizesX
ði;jÞ

min
Hm2K1

k�tt2ðV
�1
i VjÞ � �tt2ðA

�1HmAÞk2; ð21Þ

the sum being over ordered pairs (i, j) of distinct elements of

{1, . . . , n}.

A flow chart for implementation of the technique described

in this subsection is given in Fig. 2.

5. Assessing the adequacy of a single orientation
relationship

Whereas some data sets can be fitted well by the orientation

relationship (1), for others such a single orientation relation-

ship is inadequate and several orientation relationships are

required. For data sets in which a single orientation relation-

ship does not suffice, it is possible to identify clusters of

observations within each of which the data share a single

orientation relationship.

5.1. Established methods

We are unaware of anything in the crystallographic litera-

ture that considers exactly this problem.

5.2. Embedding approach

One way of exploring the adequacy of (1) is to use cluster

analysis to divide the n pairs of observations ([U1]1,

[V1]2), . . . , ([Un]1, [Vn]2) into subsets, each of which consists of

pairs that give similar estimates of [A]1, 2 . Cluster analysis is

described in detail by Everitt et al. (2011), who give several

algorithms. We find it convenient to use the following simple

divisive algorithm. For an estimate ½bAA�1;2 found using the

method of Section 4.2 and for i = 1, . . . , n, define di by

di ¼ �ð½U
�1
i Vi�1;2; ½bAA�1;2Þ; ð22Þ

where � is defined in (9). The maximum possible value of di is

�2 ¼ t2ð½U�2Þ; t2ð½U�2Þ
� �

ð23Þ

[which does not depend on U in SO(3)]. A value of di near �2

indicates that the ‘local estimate’ ½U�1
i Vi�1;2 of [A]1, 2 is close to

the ‘global estimate’ ½bAA�1;2. The values of �2 corresponding to

various symmetry groups are given in Table 2. If the single

orientation relationship ½bAA�1;2 gives a good fit to the data

([U1]1, [V1]2), . . . , ([Un]1, [Vn]2) then d1, . . . , dn are all large.

Placing all observations with di close to �2 into a cluster, re-

estimate ½bAA�1;2 for that cluster. Repeat this process on the

remaining observations, thus grouping them sequentially into

clusters having similar local orientation relationships. If only

one cluster is found then the single orientation relationship

½bAA�1;2 will describe the data well. Whereas the clustering of

locations used by Johnstone et al. (2020) and Ostapovich &

Trusov (2021) in the construction of crystal orientation maps

takes place on SO(3)/K and is based on misorientation angles,

the clustering used here takes place on K1\SOð3Þ=K2 and is

based on the di of (22). The clustering of locations used by

Gomes de Araujo et al. (2021) in the reconstruction of parent

microstructure is based on misorientation angles between

adjacent grains.

A flow chart for implementation of the technique described

in this subsection is given in Fig. 3.

6. Common parentage

In some contexts, such as locating the boundaries of parent

grains, it is useful to be able to assess whether or not a set of

child crystals are from the same parent. Observed elements

[V1]2, . . . , [Vn]2 of SO(3)/K2 can be considered as arising from

some common parent if and only if they are close to variants

corresponding to some element of SO(3)/K1.

6.1. Established methods

The method of Gey & Humbert (2003) and Karthikeyan et

al. (2006) assesses [V1]2, . . . , [Vn]2 to be from the same parent

if the observed misorientation angles between [Vi]2 and [Vj]2

for 1 � i, j � n are within some given threshold of the theo-
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Table 2
Values of the squared radius �2.

�2 is defined in equation (23).

Group, K �2

C1 3
C2 5/3
Cr (r � 3)

r odd 1 + 21�rr2

r even 1þ r221�rf1þ 2�1 r
r=2

� 	
g � r2=ðrþ 1Þ

D2 2
Dr (r � 3)

r odd 21�rr2

r even r221�rf1þ 2�1 r
r=2

� 	
g � r2=ðrþ 1Þ

T 32/9
O 6/5

Figure 2
A flow chart for estimation of [A1, 2] based on V1, . . . Vn.



retical misorientation angles. These observed misorientation

angles are

arccos ½fmax trðeVV�1

i
eVVjÞ � 1g=2�; ð24Þ

where the maximum is over eVVi in SO(3) with ½eVVi�1;2 = ½Vi�1;2
for i = 1, . . . , n.

Cayron et al. (2006) considered the problem of finding

maximal sets [V1]2, . . . , [Vn]2 of children from a common

parent. Their method is based on considering triples [Vi]2,

[Vj]2 and [Vk]2 to be from the same parent if they are coherent,

i.e. there are operators Oij, Oik, Ojk taking [Vi]2 to [Vj]2 , [Vi]2

to [Vk]2 , [Vj]2 to [Vk]2 , respectively, (at least approximately)

and with Oik as some value of the composition of Ojk with Oij.

Such a ‘nucleus’ triple is ‘grown’ by adding progressively

further grains, to obtain a set of grains in which each triple is

coherent. This is continued until a maximal such set is

obtained.

6.2. Embedding approach

The embedding approach uses a suitable embedding

t2 : SO(3)/K2! E. Divisive cluster analysis is then applied to

t2([V1]2), . . . , t2([Vn]2) using

2 �2
� ht2ð½Vi�2Þ; t2ð½Vc�2Þi

� �
ð25Þ

as a measure of squared distance [see (5)] between [Vi]2 and

the putative centre [Vc]2 of a cluster. The [Vc]2 for a cluster is

chosen to minimize the sum of squared distances from that

centre to the members of the cluster (i.e. it is set to be the

sample mean defined in Section 3.1). If only one cluster is

found then it is considered that [V1]2, . . . , [Vn]2 arise from the

same parent.

A flow chart for implementation of the technique described

in this subsection is given in Fig. 4.

7. Reconstruction

In some contexts the orientations [V1]2, . . . , [Vn]2 of child

crystals are observed but the parent crystals are not visible.

The reconstruction problem is that of estimating the orienta-

tion [U]1 of the parent crystal, assuming a given orientational

relationship of the form (1) with R and [A]1, 2 known. Thus, the

problem is to estimate [U]1 such that [Vi]2 is close to [RWiA]2

(i = 1, . . . , n) for some W1, . . . , Wn with [W1]1 = � � � = [Wn]1 =

[U]1.

7.1. Established methods

The reconstruction method introduced by Humbert et al.

(1994) is based on the fact that, if the pairs ([U]1, [Vi]2) and

([U]1, [Vj]2) each satisfy the orientation relationship (1) (at

least approximately) then (14) holds. It follows that

½U�1 ’ ½R
�1Vi

eHH�1

i A�1
�1 ’ ½R

�1Vj
eHH�1

j A�1
�1: ð26Þ

If R and A are known then applying this method to the three

pairs (i, j) obtained from three variants yields a unique value

for [U]1. If observations on n variants are available then

Humbert & Gey (2002) and Gey & Humbert (2003) recom-

mend that the values of [U]1 given by the n
3

� �
triples of variants

be averaged. Note that averaging of rotations is not well

defined.

7.2. Embedding approach

One reconstruction method using the embedding approach

starts with a suitable embedding t2 of SO(3)/K2 and known (or

estimated) values of R and [A]2. It then calculates W1, . . . , Wn

by the bWW1; . . . ; bWWn that maximize
Pn

i¼1ht2ð½RWiA�2Þ; t2ð½Vi�2Þi,

i.e. that maximize
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Figure 3
A flow chart for assessing the adequacy of a single orientation
relationship (OR).

Figure 4
A flow chart for assessing common parentage.



Xn

i¼1

t2ð½W
�1
i R�1Vi�2Þ; t2ð½A�2Þ

� �
ð27Þ

over W1, . . . , Wn satisfying [W1]1 = � � � = [Wn]1, and then

estimates [U]1 by ½bWW1�1. In other words, the estimate of [U]1 is

the element of SO(3)/K1 corresponding to the U in SO(3) that

maximizes

Xn

i¼1

max
Hi2K1

t2ð½H
�1
i U�1R�1Vi�2Þ; t2ð½A�2Þ

� �
; ð28Þ

where A is any representative in SO(3) of [A]1, 2. In (28) it can

be assumed without loss of generality that H1 = I3, the identity.

Locating the maximum of (28) involves maximization over

SOð3Þ � Kn
1 , so it may be useful to consider an alternative

estimator which is easier to compute. The left-hand approx-

imate equality in (14) gives

R�1Vi
eHH�1

i A�1
’ UHi; ð29Þ

and so

t1ð½R
�1Vi

eHH�1

i A�1
�1Þ ’ t1ð½U�1Þ ð30Þ

for any embedding t1 of SO(3)/K1. Define A
�1

by

A
�1
¼ jK2j

�1
X
~HH2K2

~HHA�1: ð31Þ

Then (30) gives

t1ð½U�1Þ ’ t1ð½R
�1ViA

�1
�1Þ: ð32Þ

Thus it is reasonable to estimate [U]1 by the sample mean

(based on t1) of ½R�1V1A
�1
�1; . . . ; ½R�1VnA

�1
�1, i.e. the [U]1

that maximizes

t1ð½U�1Þ;
Xn

i¼1

t1ð½R
�1ViA

�1
�1Þ

* +
: ð33Þ

A flow chart for implementation of the technique described

in this subsection is given in Fig. 5.
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Figure 5
A flow chart for reconstruction of a parent.

Figure 6
Locations of sites coloured by cluster.

Figure 7
(a) A stereonet diagram showing the n = 9707 orientations [Ui]1, i =
1, . . . , n, in the austenite phase from Wendler et al. (2017). (b) The
corresponding martensite orientations [Vi]2, i = 1, . . . , n.



8. Practical applications

8.1. Spatially varying orientation relationship: austenite–
martensite transformation

The data set considered by Wendler et al. (2017) consists of

9707 pairs of orientations ([Ui]1, [Vi]2), i = 1, . . . , 9707, of

austenite and martensite, respectively. For each pair the

orientations are measured at sites that are close but separated

by a boundary between grains. The locations of the pairs on

the surface of a steel sample are shown in Fig. 6. Fig. 7 displays

these orientations on two stereonets (stereographic projec-

tions), one for the (face-centred cubic) austenite phase and the

other for the (body-centred cubic) martensite phase. The

symmetry groups K1 and K2 are both equal to the octahedral

group O. In Fig. 7, each disc represents the upper half of the

unit sphere, and each orientation [Ui]1 or [Vi]2 is represented

by the three points at which the three (unordered) orthogonal

axes determined by [Ui]1 or [Vi]2 intersect the upper half of

the unit sphere. In each diagram there is considerable varia-

tion, which is due partly to the differing crystal orientations

[Ui]1 of the austenite phase prior to the transformation.

However, there is a degree of clustering present, which can be

explained by differing orientation relationships [A]1, 2 among

the pairs of observations.

A cluster analysis, as outlined in Section 5, using S1 from

(8) [rather than S2 from (7)] was carried out. It reveals six

clusters in O\SOð3Þ=O of values ½bAA1�1;2; . . . ; ½bAA6�1;2 of ½bAA�1;2.
Most observations belong to cluster 1 (n1 = 7214) or cluster 2

(n2 = 1844). Note that this is not a spatial clustering but rather

a clustering of common orientation relationships. The loca-

tions of the clusters are shown by the colouring of the symbols

in Fig. 6, and all six clusters occur at locations spread all over

the surface of the steel sample.

Fig. 8(a) shows the estimated orientations ½bAAc�1;2 for each of

the six clusters, c = 1, . . . , 6. These same orientations are

shown together with the ½UT
i Vi�1;2 in Fig. 8(b). In drawing

diagrams of this type we have had to make the choice to

display each ½bAAc�1;2 2 O\SOð3Þ=O as an element ½bAAc�2 of
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Figure 8
(a) Orientation relationships ½bAAc�1;2 in the six fitted clusters c = 1, . . . , 6.
The orientations are plotted as members of SO(3)/K2 by (arbitrarily)
selecting the element of SO(3)/O for which ½bAAc�2 is closest to the first
observation in each cluster: ½UT

c1Vc1�2. (b) Under the same convention as
in panel (a), the data ½UT

i Vi�1;2 are shown, coloured by cluster. The fitted
orientations ½bAA�1;2 are shown as red filled circles.

Figure 9
(a) A histogram of bootstrap f�ð½bAAb�1;2; ½bAA�1;2ÞgBb¼1 values. The limit c� of
the 95% confidence region is indicated by the red dashed line. The
estimated � value for the hypothesized value is the vertical solid blue line
on the left-hand side. (b) Locations of bootstrap estimates on an enlarged
stereonet. The estimate ½bAA�1;2 is shown as the large open circle, the
hypothesized value [I3]1,2 as a filled circle at the origin, and the bootstrap
estimates as small open circles. The large cross in (b) is the same size as
the crosses at the centres of the stereonets in Figs. 7 and 8.



SO(3)/O, (arbitrarily) selecting the representation closest to

the first observation ½UT
c1Vc1�2 in each cluster.

Fig. 7(b) appears to be a left–right reflection of the centre

plot [labelled ‘{100}’) in Fig. 5(d) of Wendler et al. (2017)].

(That the figures are not identical may be due to a difference

in convention regarding Euler angles.) The colour codings in

the two figures are completely different; that in Fig. 7(b) is

derived from having taken full account of all ambiguities in

rotation.

8.2. Testing whether [A]1,2 has a given value

In the analysis in Section 8.1 the estimated orientation

relationship ½bAA�1;2 for cluster 2 is very close to the identity I3.

We can test the hypothesis H0 : [A]1, 2 = [I3]1, 2 by forming a

bootstrap confidence region for ½bAA�1;2 using the methods of

Section 4. For demonstration purposes, we took a random

subset of 50 observations from cluster 2. We then generated

B = 100 bootstrap samples from this subset, and re-

estimated [A]1, 2 in each case. The distribution of values of

f�ð½bAAb�1;2; ½bAA�1;2ÞgBb¼1 is shown in Fig. 9(a), and the similarity

measure �0 for the hypothesized value falls well outside the

distribution, a convincing rejection of H0. Fig. 9(b) displays the

original estimate ½bAA�1;2 and the 100 replicate estimates, all

lying well away from the hypothesized value [I3]1, 2.

9. Software

The analyses in Section 8 were performed using the freely

available statistical software R (https://www.R-project.org/). A

general and flexible MATLAB tool kit for the analysis of

crystallographic data is provided by the open-source crystal-

lographic toolbox MTEX (Bachmann et al., 2010).

10. Conclusions

The intrinsic symmetries of crystal structures provide a chal-

lenge to statistical analysis due to the ambiguities of their

representations. The challenge becomes greater in a setting

where the orientations of crystals with different symmetries

are to be compared.

In this paper we have applied the embedding approach

from directional statistics to the representation of crystal-

lographic orientation data. This approach enables us to

reformulate standard problems of estimation and inference in

the crystallographic setting, eliminating the ambiguities which

arise from the crystallographic symmetries, while retaining the

genuine multiplicity of crystallographic variants.

Although the embedded objects we work with may be

unfamiliar, they are straightforward to implement in software,

and should provide a practical tool for researchers seeking to

characterize crystallographic structures and their transforma-

tions.

APPENDIX A
The number of variants

In the context of Section 2.3, elements [UHi]1 and [UHj]1 of

SO(3)/K1 give rise to the same element of SO(3)/K2 under

orientation relationship (1) if and only if [RUHiA]2 =

[RUHjA]2 . Since

½RUHiA�2 ¼ ½RUHjA�2 , ðRUHiAÞ
�1
ðRUHjAÞ 2 K2

, A�1H�1
i HjA 2 K2 , H�1

i Hj 2 K1 \ ðAK2A�1
Þ ¼ KA;

ð34Þ

the number of variants is s = |K1|/|KA|.

Proposition 1. There is a subset B of SO(3) that has measure

0 and such that if A is outside B then s = |K1|.

Proof. For given Hi in K1 and ~HHj in K2, define the set Bij by

Bij ¼ fW 2 SOð3Þ : HiW ¼W ~HHjg: ð35Þ

Then either (i) Bij ¼ SOð3Þ or (ii) Bij is contained in some

proper subspace of the vector space of 3 � 3 matrices. In case

(i), HiW = W ~HHj for all W in SO(3), so that Hi = ~HHj and

therefore HiW = WHi for all W (including W = I3), implying

that Hi = I3. In case (ii), there is some C in SO(3) such that

tr(CW) = 0 for all W in Bij. Thus Bij has measure 0. Now let Hi

and ~HHj run through in K1 and K2, respectively and define B as

B ¼ [Bij 6¼SOð3ÞBij: ð36Þ

Since this is a finite union, B has measure 0. If H 2KA then H =

Hi and H = A ~HHjA
�1 for some Hi in K1 and ~HHj in K2 , so that

A 2 Bij. Thus, if A =2B then H = I3, so that |KA| = 1, and

therefore s = |K1|. &

It follows from Proposition 1 that if A is chosen randomly

from some continuous distribution then, with probability 1,

s = |K1|.

APPENDIX B
Some embeddings of SO(3)/K

The embedding approach is based on embeddings, i.e. well

defined equivariant one-to-one functions tK : SO(3)/K ! E,

where E is an inner-product space on which SO(3) acts, such

that tK([U]) has expectation 0 if [U] is uniformly distributed

on SO(3)/K. Here, we focus on a simple choice of embedding

tK of SO(3)/K into an appropriate space of symmetric arrays,

where K is one of the crystallographic groups C1, C2, C3, C4,

D2, D6 and O or the tetrahedral group T (in Schoenflies

notation). Appropriate embeddings tK for general point

groups K of the first kind are considered by Arnold & Jupp

(2019) and Arnold et al. (2018, 2021).

It is convenient to describe the orientation of a crystal by a

frame, meaning a set of vectors or axes that are fixed in the

crystal. The presence of symmetry under group K means that

such a frame is equivalent to one obtained from it by a rota-

tion in K. The equivalence classes are known as K-frames. For

K = C1 the frame is taken to be (u1, u2, u3) with u1, u2, u3

orthogonal unit vectors; for K = C2 the frame is (u0, 	u1) with

u0 a unit vector and	u1 an axis orthogonal to u0; for K = D2 it

is a pair of orthogonal axes (	u1, 	u2); for K = Cr with r � 3

or K = D6 with r � 3, the vectors (u1, . . . , ur) are unit normals
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to the sides of a regular r-gon or hexagon; for O and T, the

axes (	u1, 	u2, 	u3) and (	u1, 	u2, 	u3, 	u4) are unit

normals to the sides of the cubic crystal and tetrahedral

crystal, respectively. The K-frames will be denoted by square

brackets, e.g. for K = Cr [u1, . . . , ur] denotes the K-frame

arising from (u1, . . . , ur). The frames used are listed in Table 3.

Note that the frames are specified entirely by vectors and axes;

they do not depend on any coordinate system. For notational

simplicity, we shall sometimes denote a K-frame by [U].

The embeddings tK are given explicitly in Table 1. They are

based on symmetric r-way arrays, 
rui , which can be thought

of as rth powers of vectors. In mathematical terms, they are

coordinate representations of r-fold tensor products. For

vectors u1, . . . , ur with ui = (ui, 1, ui, 2, ui, 3)T for i = 1, . . . , r, the

r-way array 
rui has (j1, . . . , jr)th entry

ð
ruiÞj1;...;jr ¼
Yr

k¼1

ui;jk
; 1 � j1; . . . ; jr � 3; ð37Þ

e.g.
2ui ¼ uiu
T
i . Some of the tK also involve the arrays Nr for r

even. These symmetric r tensors are defined by

hNr;

rvi ¼ kvkr v 2 R3; ð38Þ

where kvk denotes the length of v. In coordinate terms they

have entries

ðNrÞj1;...;jr ¼
1

r!

X
�2�r

Yr=2

i¼1

��ðj2i�1Þ�ðj2iÞ
; ð39Þ

where �r is the group of permutations of {1, . . . , r} and �ij = 1

for i = j, �ij = 0 otherwise. Thus, e.g. ðN4Þj1;j2;j3;j4 = (�j1j2
�j3j4

+

�j1j3
�j2j4

+ �j1j4
�j2j3

) /3. Some of the embeddings involve

subtraction of constant terms to ensure that E{tK([U])} = 0

under uniformity. In the case of Cr, the embeddings contain

oriented vectors u0 to specify the orientation of the directed

axis of symmetry.

For our purposes it is not necessary to construct the

representations tK([U]) explicitly; it is sufficient to compute

inner products htK([U]), tK([V])i as required, where h�, �i is the

standard inner product on the relevant space of symmetric

arrays. The inner products are listed in Table 4.

Some much more general classes of embeddings than the tK

given in Table 1 are considered by Hielscher & Lippert (2021)

and Arnold et al. (2021).

In general, it is simpler and computationally faster to use

inner products than to use misorientation angles. This is illu-

strated neatly in the cubic case. Consider [U] and [V] in

SO(3)/O with u1, u2, u3 and v1, v2, v3 as the columns of U and

V, respectively. Then

htOð½U�Þ; tOð½V�Þi ¼
X3

i¼1

X3

j¼1

ðuT
i vjÞ

4
� 9=5; ð40Þ

whereas the misorientation angle is

min arccosfð�1uT
1 vj þ �2uT

2 vk þ �3uT
3 v‘ � 1Þ=2g; ð41Þ

the minimum being over all �1, �2, �3 = 	1 and all permuta-

tions j, k, ‘ of 1, 2, 3. Evaluating (41) involves about six times

as many operations as evaluating (40).
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Table 3
Symmetry groups and frames.

The ui are unit vectors. |K| is the number of elements in K.

Group, K Name |K| Frame Notes

C1 Trivial 1 (u1, u2, u3) u1, u2, u3 orthonormal, u3 = u1 � u2

C2 Cyclic 2 (u0, 	 u1) u0, u1 orthonormal
Cr (r � 3) Cyclic r (u1, . . . , ur) u1, . . . , ur coplanar, known up to cyclic order, uT

i ui�1 = cos(2�/r) for i = 2, . . . , r
D2 Dihedral 4 (	u1, 	 u2) Orthogonal axes
D6 Dihedral 12 (u1, . . . , u6) u1, . . . , u6 coplanar, known up to cyclic order and reversal, uT

i ui�1 = cos(�/3) for i = 2, . . . , 6
T Tetrahedral 12 {u1, . . . , u4} uT

i uj = �1/3 for i 6¼ j
O Octahedral = cubic 24 {	u1, 	 u2, 	 u3} Orthogonal axes

Table 4
Inner products of transforms of symmetric frames.

For Cr with r � 3, u0 = {sin(2�/r)}�1 u1 � u2. For D2, u3 = 	u1 � u2.

Group, K Inner product

C1 htC1
ðu1; u2; u3Þ; tC1

ðv1; v2; v3Þi ¼ uT
1 v1 þ uT

2 v2 þ uT
3 v3

C2 htC2
ðu0;	u1Þ; tC2

ðv0;	v1Þi ¼ uT
0 v0 þ ðu

T
1 v1Þ

2
� 1=3

C3 htC3
ð½u1; . . . ; u3�Þ; tC3

ð½v1; . . . ; v3�Þi ¼ uT
0 v0 þ

X3

i¼1

X3

j¼1

ðuT
i vjÞ

3

C4 htC4
ð½u1; . . . ; u4�Þ; tC4

ð½v1; . . . ; v4�Þi ¼ uT
0 v0 þ

X4

i¼1

X4

j¼1

ðuT
i vjÞ

4
� 16=5

D2 htD2
ð	u1;	u2Þ; tD2

ð	v1;	v2Þi ¼ ðu
T
1 v1Þ

2
þ ðuT

2 v2Þ
2
þ ðuT

3 v3Þ
2
� 1

D4 htD4
ð½u1; . . . ; u4�Þ; tD4

ð½v1; . . . ; v4�Þi ¼
X4

i¼1

X4

j¼1

ðuT
i vjÞ

4
� 16=5

D6 htD6
ð½u1; . . . ; u6�Þ; tD6

ð½v1; . . . ; v6�Þi ¼
X6

i¼1

X6

j¼1

ðuT
i vjÞ

6
� 36=7

T htTðfu1; u2; u3; u4gÞ; tTðfv1; v2; v3; v4gÞi ¼
X4

i¼1

X4

j¼1

ðuT
i vjÞ

3

O htOðf	u1;	u2;	u3gÞ; tOðf	v1;	v2;	v3gÞi ¼
X3

i¼1

X3

j¼1

ðuT
i vjÞ

4
� 9=5
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