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Modern diffraction experiments (e.g. in situ parametric studies) present

scientists with many diffraction patterns to analyze. Interactive analyses via

graphical user interfaces tend to slow down obtaining quantitative results such

as lattice parameters and phase fractions. Furthermore, Rietveld refinement

strategies (i.e. the parameter turn-on-off sequences) tend to be instrument

specific or even specific to a given dataset, such that selection of strategies can

become a bottleneck for efficient data analysis. Managing multi-histogram

datasets such as from multi-bank neutron diffractometers or caked 2D

synchrotron data presents additional challenges due to the large number of

histogram-specific parameters. To overcome these challenges in the Rietveld

software Material Analysis Using Diffraction (MAUD), the MAUD Interface

Language Kit (MILK) is developed along with an updated text batch interface

for MAUD. The open-source software MILK is computer-platform independent

and is packaged as a Python library that interfaces with MAUD. Using MILK,

model selection (e.g. various texture or peak-broadening models), Rietveld

parameter manipulation and distributed parallel batch computing can be

performed through a high-level Python interface. A high-level interface enables

analysis workflows to be easily programmed, shared and applied to large

datasets, and external tools to be integrated with MAUD. Through modification

to the MAUD batch interface, plot and data exports have been improved. The

resulting hierarchical folders from Rietveld refinements with MILK are

compatible with Cinema: Debye–Scherrer, a tool for visualizing and inspecting

the results of multi-parameter analyses of large quantities of diffraction data. In

this manuscript, the combined Python scripting and visualization capability of

MILK is demonstrated with a quantitative texture and phase analysis of data

collected at the HIPPO neutron diffractometer.

1. Introduction

Large datasets from diffraction experiments are routinely

collected at synchrotron, X-ray free-electron laser, neutron

and other sources to develop a better understanding of

materials. The sizes of the datasets collected are expected to

continue to grow with detector technology, beamline

advancements and science-driven needs to observe sub-

second phenomena such as solidification of melt pools during

additive manufacturing (Ioannidou et al., 2022) or self-

propagating high-temperature synthesis of MAX phases

(Riley et al., 2002). Diffraction pattern collection rates greater

than 1 kHz are currently possible. Even for relatively long

count times from neutron diffraction instruments such as the

High Pressure/Preferred Orientation (HIPPO) neutron time-

of-flight (TOF) diffractometer at LANSCE (Wenk et al., 2003;
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Vogel et al., 2004), a single beam cycle of six months results in

tens of thousands of diffraction patterns. Rietveld analysis of

HIPPO data is typically one to two orders of magnitude more

computationally expensive than analysis of fully integrated

synchrotron diffraction data due to the 45 diffraction vectors,

multiple sample rotations and large d-spacing range (0.3–

20 Å) which are fitted (Wenk et al., 2010). Relatively low

quantities of data can thus result in a large analysis burden due

to the analysis cost. Therefore, it is desirable to leverage high-

performance computing to enable near real time analysis

capable of informing or controlling experiments at beamlines.

The processing of large datasets and the subsequent

inspection of results does not lend itself to one-off GUI

analyses, and has been the motivation for development of

several recent diffraction analysis software packages which

deal with these common analysis barriers (Clausen, 2003; Barr

et al., 2009; Baumes et al., 2009; Vogel, 2011; Barty et al., 2014;

Ashiotis et al., 2015; Prescher & Prakapenka, 2015;

Hernández-Rivera et al., 2017; Vogel et al., 2018; Orban et al.,

2020; Aimi & Fujimoto, 2020). None of these software tools

are truly universal, and they generally address a single

component of the diffraction analysis workflow such as data

reduction or data visualization. However, there has been a

trend towards development in Python – the current most

popular programming language (Carbonnelle, 2022) – which

facilitates the integration of multiple software packages. For

example, azimuthal integration is performed using pyFAI

(Ashiotis et al., 2015), Rietveld analysis is carried out using the

Python interface to GSAS-II (Toby & Von Dreele, 2013) and

results are formatted with pandas (McKinney, 2011) for

visualization in Cinema: Debye–Scherrer (Vogel et al., 2018).

The advantages of scripting complex analysis workflows

become apparent from the nuances of calibrations and

analyses. Consider the calibration of multi-histogram neutron

texture instruments, for example, HIPPO, GEM or

iMATERIA with 45, 328 (Kockelmann et al., 2006) and 36

(Onuki et al., 2016) detector panels, respectively. Each histo-

gram requires its own set of calibration parameters for e.g.

sample position or incident intensity. These beamlines utilize

several sample environments (cryostats, furnaces, sample

changers etc.) that also require their own calibration of sample

position and incident intensity. Scripting interfaces greatly

simplify the calibration of each detector panel. Commu-

nicating the appropriate initialization of a Rietveld refine-

ment, which models to employ and the sequence of parameter

fits that are reasonable results in a steep learning curve that

can be reduced through scripting. Scripting also creates the

possibility of beginning-to-end solutions to data analysis

coming from beamlines. Minimal input to scripting frame-

works, such as expected phases and runs defining a dataset,

can enable automation of calibration, data preprocessing, data

analysis, and creating a database for easy exploration and

visualization of key quantities.

Quantitative analysis through full pattern fitting using the

Rietveld methodology (Rietveld, 1969) has been widely used

in the diffraction community with more than 233 000 publi-

cations mentioning or utilizing the Rietveld methodology

since 1990 (https://www.dimensions.ai). Rietveld analyses can

be performed with open-source software such as GSAS-II

(Toby & Von Dreele, 2013), FullProf (Rodrı́guez-Carvajal,

2001) and MAUD (Lutterotti et al., 1999), or with commercial

software such as JADE (Jennings, 2021) and TOPAS (Coelho,

2018). Automation of Rietveld analysis for most software

packages either comes with the software, like the scripting

language of TOPAS (Coelho, 2018), or requires additional

packages such as gsaslanguage for GSAS (Vogel, 2011), the

Python interface for GSAS-II (Toby & Von Dreele, 2013;

O’Donnell et al., 2018), srRietveld for GSAS (Tian et al., 2013)

or autoFP for FullProf (Cui et al., 2015). We note that

sequential refinements, wherein the same set of parameters is

varied after simply changing the data that are fitted, is

different from script refinements which allow parameter turn-

off-on sequences, changing parameter values or models, and

conditional refinements. Among the Rietveld programs

mentioned, MAUD is known for both advanced crystal-

lographic and microstructure models, allowing combined

crystal structure, texture, size, strain and stress analyses

(Lutterotti, 2010). In addition, MAUD has sample models for

part-specific absorption corrections (Xie et al., 2004; Volz et al.,

2006) and detector models that allow geometrical parameters

to be refined with the diffraction data for many neutron and

X-ray instruments (Wenk et al., 2010; Lutterotti et al., 2014).

MAUD (Lutterotti, 2023) is written in Java, and has a variety

of detector, X-ray and neutron diffraction analysis capabilities.

To date, the means of interacting with the program outside of

the GUI has been through the MAUD batch mode (Lutterotti,

2005) – a text-file-based protocol for serialized batch refine-

ments with limited functionality. A simple text-based interface

has been identified as a bottleneck in previous work (Raue,

2014); however, a general scripting interface to MAUD has

not been developed.

To address the problems identified above, the Python

software MAUD Interface Language Kit (MILK) was devel-

oped to enable high-throughput, flexible, scripted MAUD

analyses. The architecture and philosophy of MILK are

presented here. To demonstrate the utility of MILK, an

example is given for a combined quantitative phase and

texture analysis of duplex steels from neutron diffraction. The

remainder of the paper is structured as follows: in Section 2

the relevant MAUD interfaces utilized by MILK are

described; in Section 3 a description of MILK is given; in

Section 4 the utility of MILK is shown with an example

workflow and visualization using Cinema: Debye–Scherrer; in

Section 5 we discuss on-going work, scalability and fully

automating Rietveld analysis at beamlines on the basis of the

present stage of MILK’s development; and we conclude in

Section 6.

2. The MAUD interface

MAUD is designed primarily for GUI refinements, where one

can save and load analyses. An analysis is stored on disk as a

human readable parameter file (extension .par) following

computer programs
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the CIF standard (Hall et al., 1991) which contains details of

the minimization scheme, detector parameters, data and phase

objects (among others). The parameter file, in combination

with the MAUD preference file, is sufficient to store the state

of a Rietveld refinement and resume an analysis. Objects in

the parameter file are used to compartmentalize parameters

and models. Thus, a phase object will not only have properties

such as lattice parameters and symmetry, but will also contain

sub-objects (e.g. models for texture, strain and broadening)

which contain their own parameters. MILK manipulates the

parameter file and calls MAUD through the batch interface to

execute a refinement and create an updated parameter file.

With MILK, MAUD models can be removed or added; data

can be replaced; and parameters can be freed, fixed,

constrained through equations, changed or queried. This is

accomplished with MILK by parsing the MAUD parameter

file, appropriately editing it and writing it back to disk. A

direct and more complicated application programming inter-

face (API) between Python and Java is therefore not needed

to script MAUD analyses. The parameter names required to

interact with the parameter file using MILK are available

through the MAUD parameter tree stored in these MAUD

parameter files and are available in the MAUD GUI para-

meter list. Names and values of non-refinable parameters, such

as the weighting scheme, can be found by viewing the para-

meter file directly using a text editor. Although some knowl-

edge of the parameter file is needed for the interface to be

usable, many of the details are abstracted through a well

designed and documented programming interface. Additional

information can be found in tutorials and documentation

available on the MILK website (Savage et al., 2023).

A batch mode is available through the MAUD GUI task bar

under ‘Special > Refine in batch . . . ’ in which a user selects a

text file that specifies refinement options and input/output

parameter files. The current batch interface is similar to that

described by Lutterotti (2005); command options for plotting,

texture, and data import and export have been recently

extended but are mostly not documented. In addition, batch

refinements can be initialized from a command line using the

MaudText Java routine and specifying a text file with the batch

analysis arguments. Rather than supporting operations in

MILK such as importing data and reading phase CIFs by

manipulating parameter files, these operations are handled

through the MAUD text batch mode. Furthermore, there is

some MAUD functionality, such as exporting raw fit profiles or

plotting texture pole figures, which is not accessible without

dedicated MAUD routines that are available through the

text batch mode. A benefit of off-loading these operations

from MILK into MAUD is a reduction in code maintenance

for MILK in the event of MAUD future releases. Additionally,

the MAUD analysis wizards are available in the GUI

or through the batch interface, and provide several non-

extensible, boiler plate analysis templates. The source code for

the MAUD batch mode interface can be found in the

batchProcess.java routine in the source code of MAUD

(Lutterotti, 2023), and a detailed description of the interface is

provided on the MILK GitHub wiki (Savage et al., 2023).

3. The MILK framework

MILK and its dependencies are configured for installation

with minimal user interaction via an Anaconda (Anaconda

Software Distribution, https://docs.anaconda.com) environ-

ment script (see MILK wiki), which handles platform-

dependent libraries. MAUD is under active development and

is available at http://maud.radiographema.eu compiled for

Windows, Linux, MacOS/Intel and MacOS/ARM platforms.

For full functionality, the latest version of MAUD is recom-

mended (current version at the time of writing is 2.998). MILK

interfaces with Cinema and MAUD using environment vari-

ables that specify their respective installation paths. The

MILK module can then be imported in a Python session, and

all the MAUD functionality (pair distribution function, X-ray

and neutron diffraction, X-ray reflectometry, and X-ray

fluorescence) is available through standard object-oriented

programming in which classes are initialized and interfaces

prompted for the necessary input when using an integrated

development environment (IDE) such as Visual Studio Code

or Spyder. There are two classes which perform the core

functions of MILK, the editor class, providing an interface to

MAUD parameter files, and the maudText class, encapsulating

access to the MAUD text interface. Using the config method

of each class, editor and maudText parameters are initialized

with values from a project-specific milk.json file (e.g. paths

to the MAUD executable, filenames for intermediate files

etc.), but parameters can be overwritten in a MILK Python

script as needed.

The high-level editor class operates on a MAUD parameter

file. Currently, the editor class has the core methods listed in

Table 1. In addition, the class has support for changing the

texture model and size–strain model as well as their para-

meters. Other MAUD models that are not supported by

computer programs
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Table 1
List of editor class methods and descriptions of the change in the
parameter file.

Method Description

free Set parameter to refined
fix Set parameter to not refined
fix_all Set all parameters to not refined
set_val Set value of parameter
get_val Obtain value of parameter
get_err Obtain uncertainty of parameter
get_phases Obtain list of phase names
ref Constrain one parameter to another parameter

through an equation
unref Remove constraint between parameters
add_datafile_bk_par Add a background parameter to individual

spectra
add_loop_par Add parameter to loop variable (see text)
rem_loop_par Remove parameter from loop variable
reset_odf Reset the ODF to a uniform distribution
remove_obj Remove an object in the parameter file such as a

phase or detector
track Output parameter value to result text file
untrack Stop output of parameter value to result text file
untrack_all Stop all output of parameters to the result text

file
summary Print parameter file statics (e.g. the number of

free variables and which variables are freed)



MILK [e.g. strain models (Wenk et al., 2014)] can be added to

a MILK analysis by including the models in a template file

used to initialize an analysis. It is the intention of the MAUD

and MILK developers that all models will eventually be

available through the MAUD text interface, since this ensures

complete compatibility and proper integration. The methods

of the editor class are documented in the MILK wiki (Savage

et al., 2023) and have method documentation in the Python

environment. Collectively, these methods allow parameters to

be fixed, refined, queried and tracked in output files, and

constrained together; background models in MAUD to be

manipulated (e.g. changing the number of polynomial coeffi-

cients overall or per histogram); the state of the parameter file

to be summarized (e.g. how many parameters are varied); and

texture models to be manipulated (see Table 1 for an overview

of the methods).

MILK utilizes a simple interface to control the scope of

changes to a parameter file. To target a specific parameter, a

string of text, for example, cell_length_a is assigned to

the key argument. The parameter file is searched for that key.

Several matches may occur (e.g. if there are two phases then

there will be two sets of lattice parameters with the same key

cell_length_a, or if the search is for cell_length then

cell_length_a, cell_length_b and cell_length_c

will be found), and to further limit the scope a list of sobj

(subordinate objects to include, e.g. the name of a phase) or

nsobj (subordinate objects to exclude) can be specified. The

ability to filter subordinate objects is sufficient to control the

scope of an editor method given the object structure in the

MAUD parameter file. If the targeted key is a loop variable,

such as a list of atoms or background parameters, a loopid can

be specified to further limit the scope of the method to a single

variable in the loop.

To work efficiently over many Rietveld analyses and store

results, MILK utilizes a directory structure wherein each

analysis is contained in its own folder and each refinement

step is archived in a subfolder. MILK operates over a list of

paths and provides means to generate a subfolder structure to

organize analysis of large datasets. With this folder structure,

modifications to many parameter files can be performed from

a single editor method call. MILK can also operate on a subset

of the list of paths, thereby limiting the scope of changes or

refinements across analysis folders (e.g. to test an analysis on a

subset of runs before analyzing the entire project). See the

MILK documentation for more details (Savage et al., 2023).

Complementing the editor class is the maudText class, which

is a high-level interface for encapsulating writing MAUD

textmode input files, calling MAUD from the command line to

process the input files and storing outputs. The refinement

method of maudText performs a refinement based on the

arguments of the method, such as the number of iterations,

and from the milk.json initialization, such as pole figures to

be produced as PNG files. There are runtime Boolean options

when calling refinement that control plotting, phase import,

data import etc. MILK replaces CIF-format-specific knowl-

edge needed to utilize the MAUD text interface with a more

intuitive Python interface and preconfigured options for

plotting and data output. Each time the refinement method is

called a new step is created which is associated with that

refinement, allowing a sequence of refinements to be saved by

step number. Because of the MILK folder structure, the

Python multiprocess is utilized to run refinements in parallel

without interference. The MAUD console and error messa-

ging are streamed to .log and .err extension files, respec-

tively, in each analysis folder, allowing inspection and

debugging of the MAUD runtime output. Full details of the

options are provided in the MILK documentation (Savage et

al., 2023).

The outputs of the Rietveld analysis, MAUD parameter

files, graphics and text files with tracked parameters are saved

in each analysis folder and archived according to the step

number to a subfolder. The outputs allow different levels and

types of inspection to be performed, ranging from text file

parameter inspection, to inspecting texture and 2D histogram

fits, to opening a parameter file in the MAUD GUI. The folder

convention, including the archived steps, is compatible with

the Cinema database convention, enabling seamless integra-

tion of Cinema: Debye–Scherrer (Vogel et al., 2018) for

inspection and visualization. Cinema can be used not only for

inspection, filtering and exploration of the final results but also

to efficiently identify problems in multistep Rietveld analyses

of large datasets.

In parametric studies, the starting values for a lattice

parameter (e.g. as a function of temperature) or phase fraction

(e.g. due to phase transformations) often need to be modified

to ensure convergence of Rietveld refinements. To facilitate

efficient analysis of large datasets, MILK generates a

dataset.csv file that can be manually edited using

spreadsheet software to include metadata (e.g. sample

temperature) and handle dissimilar diffraction data by

adjusting parameter starting values (e.g. lattice parameters or

phase fractions). The metadata can easily be incorporated into

the Cinema visualization to plot, for example, lattice para-

meter versus temperature. Use of dataset.csv for this

purpose is illustrated below, and a more complex example is

provided on the MILK wiki (Savage et al., 2023).

4. Example workflow: HIPPO quantitative phase and
texture analysis

To illustrate the analysis automation and result inspection

enabled by MILK and Cinema, a typical application case of

texture and phase fraction analysis with setup and data initi-

alization for the HIPPO diffractometer is presented in this

section. Though specifics of the neutron TOF data analysis are

discussed, the workflow for other diffraction data analyses is

similar. The scripted procedure has been robust in processing

several hundred HIPPO diffraction datasets. In addition,

MILK has been applied extensively on synchrotron X-ray and

X-ray free-electron laser datasets (Savage et al., 2023), and

example scripts for these analysis types are provided on the

MILK GitHub wiki. The code and data for the example

discussed in this section are included with MILK and can be

copied to a working directory by importing MILK into a

computer programs
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Python environment and subsequently calling MILK.

examples.hippo_texture(). As unique MILK applica-

tions grow and datasets are released by collaborators, example

scripts will be added to the MILK GitHub site and docu-

mented.

4.1. Setup and inputs

This example is included with MILK as a template for

quantitative phase and texture analysis with the HIPPO TOF

neutron diffractometer. Phase and texture analysis for other

beamlines will require a different setup script, but the subse-

quent refinement procedures should work with only minor

adjustment once the detector and data are configured for a

texture analysis. The detector configuration for HIPPO has

been the same since 2012 and consists of 45 panels arranged

on 5 detector rings at 2� = 144, 120, 90, 60 and 40�, respectively

(Takajo & Vogel, 2018). See Fig. 1(a) for the HIPPO detector

layout. Since the 2012 upgrade, three sample rotations are

typically used for texture analysis on HIPPO. The analysis

therefore includes simultaneous fits to 135 histograms, similar

to analysis of caked azimuthal integration and sample rota-

tions in synchrotron texture measurements (Lutterotti et al.,

2014). The number of histograms makes it non-trivial to set

up and manage (vary, fix, change value etc.) hundreds of

histogram-specific parameters (e.g. scale factors, backgrounds,

peak profile parameters and TOF to d-spacing conversion

factors). Setup and analysis were hitherto carried out in

MAUD using the predefined HIPPO import and general

analysis wizards. MILK offers the same functionality, but with

increased flexibility for data import, analysis and automation.

As discussed above, the editor class modifies existing

parameter files; therefore, a template MAUD parameter file

(.par) is modified to configure a new analysis. Best practice is

to make a template analysis file for a given instrument

configuration with the user’s version of the MAUD GUI,

where detector objects (e.g. from multiple rotations) and

functions (e.g. peak profile functions and absorption models)

are specified, since data layouts occasionally change. In

general, MAUD is backwards compatible with previous

releases, but there may be preference options that need to be

changed for complete compatibility. For completeness of the

MILK examples, a template parameter file from the current

MAUD release (version 2.998) is provided.

Three input files are used to modify the MAUD template

parameter file for HIPPO datasets: (i) milk.json is used for

every MILK analysis and is a file used to initialize the editor

and maudText instances (e.g. path to MAUD installation,

directory names and phases to import); (ii) dataset.json is

used to specify MILK information such as the relative path to

the data, the data grouping (e.g. three GSAS-format gda files

representing three rotations belonging to one analysis) and

the filename of the aforementioned template parameter file

for the analysis; (iii) lastly, hippo.json [see Fig. 1(b)] is used

to specify HIPPO-specific metadata, allowing general analysis

pipelines to be defined (e.g. excluded detector panels and

arbitrary rotation angles). The use of these JavaScript Object

Notation (JSON) files provides a defined interface for users of

the MILK analysis script and removes much of the otherwise

required modification of these analysis scripts.

For complicated neutron TOF instrument configurations,

MAUD utilizes a GSAS-format instrument parameter file

(iparm) to define the detector geometry, peak profile para-

meters etc. In Fig. 1(a) we show a schematic of the HIPPO

detector layout, and in Fig. 1(b) the corresponding parameters

needed to configure a MILK analysis with HIPPO are defined.

The number of each panel overlaid on Fig. 1(a) corresponds to

the banks and banks_remove parameters in the

hippo.json. The six-axis HIPPO robotic sample changer

(Losko et al., 2014) was used to create the example dataset

with omega rotations at 0.0, 67.5 and 90.0� and chi and phi of

0.0 for each measurement orientation. For this reason a list of

three lengths for the omega_meas, chi_meas, phi_meas

and rot_names variables is used. Note that the template has

rotation names such omega 67.5 which are specific to when

the template was made with the HIPPO texture wizard, and

these strings are stored in the template; however, using the

search and replace functionality of the MILK editor class, the

omega_meas, chi_meas and phi_meas values can be set

computer programs

J. Appl. Cryst. (2023). 56, 1277–1286 Daniel Savage et al. � MILK: an interface to MAUD for automating Rietveld analysis 1281

Figure 1
(a) Schematic of the HIPPO diffractometer at LANSCE. (b) Input hippo.json used to define the set of measurement rotations and sample rotations
and for the definition of the detector panels, banks per ring, banks to exclude and d-spacing range for each of the detector panels. This input parameter
file is parsed in the setup.py script, allowing a simple interface to configure HIPPO and experiment-specific parameters.



to the actual values used during a measurement. In the

example experiment, the robot omega rotation angles �45.0,

22.5 and 45.0� were used, instead of the 0.0, 67.5 and 90�

rotation angles of the template file. rot_names specifies the

string to append to the Bank### detector name and creates

the string to filter subordinate objects in the parameter file. In

addition to the definition of the sample rotations during the

measurement, three rotations omega_samp, chi_samp and

phi_samp can be specified that rotate the sample frame in

MAUD in which sample-specific models, such as texture, are

defined. The �90.0� rotation chi_samp brings the omega

rotation axis into the center of MAUD pole figures for HIPPO

datasets (Wenk et al., 2010). The bank panels to exclude (e.g.

because the panel is shielded by the sample environment) and

the d-spacing range for each detector ring can also be modi-

fied. While the detectors definition should not be modified

for texture wizard template files unless the instrument para-

meter file is modified, it is provided in hippo.json to define

the sequence of dspacing ranges to be the same as the

sequence of detectors. This set of strings is also used to

manipulate bank-specific parameters such as histogram scale

factors and diffractometer constants such as DIFC in MAUD

multi-bank detector definition. The concept of the input JSON

files can be adapted to any beamline- or data-analysis-specific

needs to create highly flexible MILK analysis workflows that

require limited modification of the MILK scripts.

4.2. The analysis pipeline

The MILK analysis pipeline from folder creation to final

refinement is outlined in Fig. 2. The analysis is separated into

computer programs
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Figure 2
Analysis workflow for the three Python files performing key tasks during an example MILK refinement. 1_build_folders.py groups diffraction
data into folders, 2_setup.py initializes the Rietveld to a good starting point and 3_analysis.py performs a sequence of refinement steps that
result in a high-quality fit. At the end of the last two Python files, the Cinema data.csv file is created to visualize the results with Cinema: Debye–
Scherrer.



three MILK scripts that, once validated, do not need to

be repeated (1_build_folders.py, 2_setup.py and

3_analysis.py to be executed in this sequence). HIPPO

diffraction data are grouped and copied into folders in

1_build_folders.py such that each measurement on a

sample is in its own folder (i.e. the three datafiles from the

three omega rotations). HIPPO data are imported into a

MAUD parameter file by swapping the dataset names in the

file and removing any stored diffraction data in the file. When

the parameter file is next loaded into MAUD, the referenced

diffraction data will automatically be imported. dataset.

csv, introduced earlier in Section 3, is created by

1_build_folders.py to facilitate setting of starting

values, excluding runs, providing metadata etc. Initialization of

key Rietveld parameters and experimental parameters from

hippo.json is performed in 2_setup.py. Visualization

using Cinema of the diffractograms at the end

of this Python script allows verification of a

reasonable starting parameter set (correct

phases, appropriate lattice parameters etc.) and

provides the ability to exclude bad datasets.

User corrections of starting values and exclusion

of bad runs can be accomplished by editing

dataset.csv using a spreadsheet program,

followed by rerunning 2_setup.py. Building

on the example functions in 2_setup.py,

users can add columns in dataset.csv to

enable, for example, prescribing temperature-

dependent atomic displacement parameters for

a heating study to obtain more reliable phase

fractions from the Rietveld analysis. The Riet-

veld refinements leading to the final result are

performed in 3_analysis.py. The refine-

ment strategy in this example consists of two

components: (i) using an arbitrary texture

model (a Le Bail fit) to fit lattice parameters and

peak broadening, which provides a very good fit

of background and peak profiles; and (ii)

refining a texture model while sequentially

freeing parameters as the refinement progresses.

The sequential Rietveld analysis strategy in

3_analysis.py has proven robust unless

there are low volume fraction phases, many

phases or significant peak overlap of phases.

There are likely to be many scenarios in which

modifying the 3_analysis.py script will be

required. Fig. 3 shows a code example, demon-

strating the sequence of refinements outlined in

Fig. 2. Rearranging the sequence of parameter

turn-on-off in 3_analysis.py allows dif-

ferent, more complicated Rietveld analysis

strategies to be implemented using the high-

level MILK interface to MAUD. The HIPPO

analysis pipeline for quantitative phase and

texture analysis described here is available with

the MILK installation and can be used as

starting scripts for other applications.

In Fig. 3 there are functions (e.g. free_scale_

parameters) that are defined to encapsulate several MILK

commands or instrument-specific parameter handling, thereby

keeping a sequence of refinements modular and high level. An

example of the free_scale_parameters function from

3_analysis.py is given in Fig. 4 to illustrate how HIPPO

scale factors are freed using MILK. Included in the scale

parameters is the phase atomic fractions which are stored in

the MAUD parameter file as a loop. The sum of the phase

fractions is continuously normalized to 1 during Rietveld

refinements. To avoid correlations in scale factors in the case

of a multi-detector array instrument such as HIPPO, one

phase should have its fraction fixed and, if only one phase is

present, the phase fraction should not be refined (see lines 11

and 12 in Fig. 4). The free_panel_parameters function is

a general function that loops through the layout of HIPPO

computer programs
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Figure 3
Python code from 3_analysis.py used to run the sequence of refinements described in
Fig. 2, build a Cinema database, configure the Cinema inputs and launch a Cinema instance
in the default web browser.



panels as specified in hippo.json and frees the loop para-

meters associated with a specified key (for example, the

_inst_

inc_spectrum_scale_factor script in Fig. 4).

4.3. Visualization

The visual inspection of Rietveld refinements is of para-

mount importance for the data analysis process, more impor-

tant than simple inspection of scalar goodness-of-fit

parameters such as Rwp (Toby, 2006). Efficient inspection of

multistep Rietveld analysis of large datasets requires special

tools, as the MAUD GUI is only capable of visualizing one

parameter file at a time. The HTML-based Cinema: Debye–

Scherrer was developed to facilitate visualization of large

Rietveld datasets (Vogel et al., 2018). Prior to MILK, MAUD

was not compatible with Cinema: Debye–Scherrer. The MILK

storage scheme for each Rietveld refinement step allows

individual steps to be visualized and evaluated with Cinema,

computer programs
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Figure 4
Example Python code from 3_analysis.py used to free scale parameters and demonstrate how the HIPPO-detector-specific parameters are looped
through. Using instrument-specific functions like free_scale_parameters and using collections of lower-level functional calls such as the function
free_scale_parameters ensure the sequence of refinements remains modular without loss of functionality.

Figure 5
Example of the Cinema: Debye–Scherrer dashboard, visualizing the final refinement run of the HIPPO texture and phase MILK analysis tutorial. Filter
options (upper left) for the parallel plot (upper right) together allow interaction with the Rietveld steps and data. Filters applied on the parallel plot (e.g.
only step_7 is active) allow the ‘Image Spread’, ‘Scatter Plot’ and ‘Table’ section to be filtered. These features allow large databases of Rietveld
analyses to be quickly visualized and problems (e.g. missing phases or the step where parameters run away) to be identified.



thus enabling efficient and complete inspection of the Rietveld

analysis. The Cinema framework was originally developed for

visualization at extreme scales (Ahrens et al., 2014) and can

also be used for real time or post hoc visualization of raw

diffraction images, a velocity interferometer system for any

reflector (VISAR), equations of state and other relevant

diffraction experiment information (Woodring et al., 2017;

Orban et al., 2020; Biwer et al., 2021).

For construction of the database, the script employed,

build_cinema_database.py, finds the parameter files,

retrieves parameters of interest, and collects PNG files of 1D

and 2D histograms (produced during 2_setup.py and

3_analysis.py and equivalent to plots available through

the MAUD GUI) into a Cinema-compatible database that is

saved to data.csv in the root folder of the MILK analysis.

All PNG files residing in the MILK folders are referenced in

data.csv.

In Fig. 5 the HIPPO tutorial dataset produced with

3_analysis.py is visualized with select parallel plot

columns enabled (check boxes in upper left corner) and only

the last Rietveld step, step_7, is selected (highlighted region

on the leftmost vertical axis of the parallel plot). Due to the

MILK folder structure, which contains each Rietveld step,

each step of the Rietveld process can be accessed, and thus

any issues that may occur (e.g. runaway parameter) can be

identified and the scripts modified to address the issue at the

step in which they occur. The ‘Image Spread’ tab at the bottom

shows the refinement of the first dataset as PNG files of 1D,

2D (of the different detector banks and sample rotations) and

pole figure plots which are exported from MAUD. A magni-

fied image can be viewed by clicking on an image or by

changing the ‘Image Size’. Though not shown, the metadata

can be plotted in an xy scatter plot (e.g. phase fraction versus

time or lattice parameter versus temperature) in the ‘Scatter

Plot’ tab and viewed in a table format in the ‘Table’ tab. For

more information, see the tutorial on the MILK wiki (Savage

et al., 2023; Vogel et al., 2018). By identifying problems with

refinement steps or parameters, the 3_analysis.py or

input parameters (e.g. from dataset.csv) can be modified

and the next iteration of the analysis process can be started.

5. Ongoing and future developments

The framework described here for scripted Rietveld analysis is

distinct from other software design such as the GSAS-II

Python interface in that parallel computation is applied

whenever diffraction data dependencies are not present. The

example in Section 4 demonstrated a speed-up proportional to

the number of cases so long as the available computer

resources (i.e. CPUs and memory) do not exceed the demands

of the diffraction datasets. The simple parallelism over

unconnected data is highly effective at reducing Rietveld

analysis time and the time needed to iterate over a refinement

strategy. As of MAUD version 2.998, MILK contains a �1 s

overhead for every refinement that comes from starting and

closing the Java instance. We are currently pursuing the use of

persistent Java instances to limit this overhead to a one-time

initialization. Such an overhead is not present in GSAS-II

Python and is mainly important in Rietveld analyses of single

diffractograms, which are often less than 1 s in duration and

are routinely carried out during real time analysis. Expensive

Rietveld analyses like in the Section 4 example take minutes

to complete and are less affected by the overhead. Currently

we are pursuing using our framework on high-performance

computing resources, with the goal of providing near real time

diffraction analysis. The data management strategies (i.e. the

separation of files for an individual analysis into its own

folder) and parallel computation developed with MILK can be

applied with little extension to other Rietveld software if a

Python interface is available. Therefore, in the future GSAS-

II, for example, could be used as the Rietveld analysis tool in

the MILK parallel framework.

By having a Python interface for the Rietveld process,

different schemes can be implemented to identify suitable

starting values that lead to convergence of the fit process. This

opens pathways to apply machine learning or artificial intel-

ligence based concepts into the Rietveld process. Removing

the human trial-and-error approach to Rietveld analysis using

advanced optimization and models will allow full Rietveld

analysis automation of most datasets. In essence, MILK

provides the interface between highly specialized, complex

diffraction data analysis and powerful tools and libraries for

which Python interfaces exist. Examples range from optimi-

zers (McKerns et al., 2012; Gagin & Levin, 2015), to state-of-

the-art machine learning libraries (Abadi et al., 2016; Paszke et

al., 2019), to deformation models describing lattice strain and

texture evolution under applied load (Ferreri et al., 2022). In

other words, MILK, like the Python interface to GSAS-II,

enables the user community to add functionality to Rietveld

analysis applications without relying on the efforts of Rietveld

code maintainers. Building on this concept, our group is

integrating the Mystic library (McKerns et al., 2012) to provide

uncertainty quantification and surrogate modeling to rapidly

identify starting values for Rietveld analysis and certify the

optimality of refinements, again with the end goal of providing

near real time diffraction data analysis. Improving the inte-

gration of MILK with MAUD by modifying the MAUD

source code (e.g. to improve graphical output, optimize

parameter file disk operations etc.) is also ongoing.

6. Summary

The Python-based MAUD Interface Language Kit (MILK)

introduces a Python interface, parallel computing, data

management and compatibility with visualization using the

Cinema database protocol into Rietveld analysis with MAUD.

The high-level Python interface of MILK enables complex

workflows to be implemented and large diffraction datasets to

be efficiently analyzed due to its visualization integration and

parallel computing capabilities. The software is compatible

with Mac OS, Linux and Windows and can be downloaded

from https://github.com/lanl/MILK, where detailed program

documentation, tutorials and example workflows are also

hosted.

computer programs
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Example data and documentation can be found at https://

github.com/lanl/MILK.
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