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By providing predicted protein structures from nearly all known protein

sequences, the artificial intelligence program AlphaFold (AF) is having a major

impact on structural biology. While a stunning accuracy has been achieved for

many folding units, predicted unstructured regions and the arrangement of

potentially flexible linkers connecting structured domains present challenges.

Focusing on single-chain structures without prosthetic groups, an earlier

comparison of features derived from small-angle X-ray scattering (SAXS) data

taken from the Small-Angle Scattering Biological Data Bank (SASBDB) is

extended to those calculated using the corresponding AF-predicted structures.

Selected SASBDB entries were carefully examined to ensure that they

represented data from monodisperse protein solutions and had sufficient

statistical precision and q resolution for reliable structural evaluation. Three

examples were identified where there is clear evidence that the single AF-

predicted structure cannot account for the experimental SAXS data. Instead,

excellent agreement is found with ensemble models generated by allowing for

flexible linkers between high-confidence predicted structured domains. A pool

of representative structures was generated using a Monte Carlo method that

adjusts backbone dihedral allowed angles along potentially flexible regions. A

fast ensemble modelling method was employed that optimizes the fit of pair

distance distribution functions [P(r) versus r] and intensity profiles [I(q) versus

q] computed from the pool to their experimental counterparts. These results

highlight the complementarity between AF prediction, solution SAXS and

molecular dynamics/conformational sampling for structural modelling of

proteins having both structured and flexible regions.

1. Introduction

The neural-network-based artificial intelligence (AI)

programs AlphaFold (AF) (Jumper et al., 2021) and

RosettaFold (Baek et al., 2021) have revolutionized the field of

protein structure prediction from sequence. In particular, the

AF consortium has produced and made publicly available a

database of predicted protein structures (https://alphafold.

ebi.ac.uk), first for the entire UniProt database of curated

protein sequences (Tunyasuvunakool et al., 2021) and more

recently for the entire catalogue of genomics-derived protein

sequences (UniProt Consortium, 2021). Impressively, AF-

predicted structures from the CASP14 data set achieved a

mean C� r.m.s.d. accuracy of �1 Å (Jumper et al., 2021).

The AF database has already had a major impact in struc-

tural biology, and the predicted structures are being used as

templates for solving crystal structures [see e.g. Flower &
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Hurley (2021), Chai et al. (2021), McCoy et al. (2022) and

Oeffner et al. (2022)], as an aid in the interpretation of

cryoEM maps [see e.g. Fontana et al. (2022)], in assessing the

accuracy of NMR structures in solution [see e.g. Fowler &

Williamson (2022)] and to infer structure–function relation-

ships [see e.g. Ferrario et al. (2022), Urban & Pompon (2022),

Akdel et al. (2022) and Heo et al. (2022)]. Conversely, AF

structures usually have regions with low confidence or poor

accuracy, and experimental information has the potential to

improve these predictions (Terwilliger et al., 2022).

While there are many examples of AF-predicted structures

having an impressive level of accuracy, there remain several

challenges. The AF prediction algorithm depends on deep

learning from an extensive catalogue of structures, which

nonetheless is limited by training on the set of solved protein

structures in the Worldwide Protein Data Bank (https://

www.wwpdb.org; wwPDB Consortium, 2019). Flexibility,

however, is often a necessary aspect of protein function, and

the protein universe is replete with multi-domain proteins

composed of structured units with flexible linkers of variable

length that limit both crystallographic and cryoEM studies.

Thus, we see that there are opportunities to test and

complement the AF predictions with experimental techniques,

notably those that are readily available in core facilities or

accessible on dedicated large infrastructures.

A recent paper (Brookes & Rocco, 2022) presented a

database stemming from the first two AF releases, where for

each predicted structure the calculated circular dichroism

(CD) spectrum, the hydrodynamic parameters, the pair-wise

atomic distance distribution function P(r) versus r [hereinafter

indicated simply as P(r)] and ancillary information are stored

(https://somo.genapp.rocks/somoaf/). On the basis of the

UniProt annotations, predicted initiator sequences and post-

translationally cleaved pro-peptides were removed from the

structures prior to the calculations. Calculated hydrodynamic

parameters were employed to show that, within a given

molecular mass interval, these parameters could effectively

distinguish between structures and thus could be employed for

rapid tests of the predicted conformation in solution (Brookes

& Rocco, 2022).

The P(r) profile, which can be determined from experiment

as the indirect Fourier transform of small-angle X-ray scat-

tering (SAXS) data (Glatter, 1977; Svergun et al., 1988), is

quite sensitive to the relative disposition of folded units, as

nicely demonstrated in a multi-domain test protein (Koch et

al., 2003). As such, P(r) is ideal for evaluating AF-predicted

structures containing potentially flexible linkers between

structured domains, noting that the solution SAXS experiment

reports on the time and ensemble average of the structures

present in solution. In the previous study (Brookes & Rocco,

2022) a set of solution SAXS data was selected from the Small-

Angle Scattering Biological Data Bank (SASBDB) (Valentini

et al., 2015; https://www.sasbdb.org) where there was a corre-

sponding AF-predicted structure. While there were several

examples of good agreement between the AF-predicted P(r)

profile and that derived from the SAXS data, there were a

number that showed significant differences. In this study, we

have returned to consider these comparisons in the context of

a careful evaluation of the SAXS profiles and their associated

metadata to ensure the data were from solutions of mono-

disperse particles, free of aggregation and interparticle

correlations, which is the fundamental requirement for reli-

able 3D atomistic modelling of SAXS data. The AF structures

were then examined for predicted unstructured and/or low-

confidence regions, which were assigned as flexible segments

to obtain an ensemble of structures that gave an improved fit

to the SAXS data. Our initial ensemble modelling focused on

fitting in real space with P(r) as the target function. This

approach facilitated rapid calculations from thousands of

alternative conformations generated using the Monomer

Monte Carlo (MMC) simulation tool in the SASSIE-web suite

(Curtis et al., 2012; Perkins et al., 2016) (https://sassie-

web.chem.utk.edu/sassie2/). Evaluation in reciprocal space

(i.e. against the measured intensity data) was also possible in

reasonable time using CRYSOL (Svergun et al., 1995). Each

resulting ensemble model was then further evaluated in reci-

procal space using the more physically advanced but compu-

tationally intensive WAXSiS program (Chen & Hub, 2014;

Knight & Hub, 2015) (https://waxsis.uni-saarland.de).

2. Methods

Initial data sets for analysis were selected by identifying

structures present in the US-SOMO-AF database (Brookes &

Rocco, 2022) with corresponding experimental SAXS inten-

sity data deposited in the SASBDB. Intensity profiles are

presented here as I(q) versus q [hereinafter simply indicated

as I(q), where q = (4�sin�)/� with � being half the scattering

angle and � the wavelength of the incident radiation].

Mandatory requirements included that the experimental data

were collected on complete single-chain structures with no

prosthetic groups and from the same organism as the corre-

sponding AF structure (Brookes & Rocco, 2022), which

limited the initial SASBDB pool to 43 entries.

P(r) is related to I(q) by a Fourier transform and, as the

finite experiment measurement range for I(q) prohibits an

analytical solution, P(r) is generally calculated from SAXS

data using indirect methods, for example as implemented in

the programs GNOM (Svergun, 1992) or BayesApp (Larsen &

Pedersen, 2021). Both methods yield a P(r) profile with

associated errors estimated using Monte Carlo simulations.

However, different P(r)-generating methods yield very

different error estimates starting from the same I(q), and the

question of their reliability is an open one. In this study, the

P(r) profiles calculated from SASBDB intensity curves and

used for comparison with model calculations and as targets for

ensemble modelling were obtained with GNOM as imple-

mented in PrimusQt/ATSAS 3.1 (Manalastas-Cantos et al.,

2021) and, for comparison, BayesApp as implemented at

https://somo.chem.utk.edu/bayesapp.

For each selected AF structure with a corresponding SAXS

I(q) profile, the conformational space of the AF-predicted

structure obtained from the US-SOMO-AF database was

explored utilizing the Monomer Monte Carlo (MMC) program
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of SASSIE-web (Curtis et al., 2012; Perkins et al., 2016) (https://

sassie-web.chem.utk.edu/sassie2/), where the backbone di-

hedral allowed angles along chosen segments of the protein

are changed in sequential discrete steps. Except for the residue

ranges for flexible regions and a number of trial attempts that

are detailed in Table S1 in the supporting information, the

default MMC parameters were used.

MMC flexible regions were selected by visual inspection of

the AF structures’ low-confidence regions. MMC rejects

structures with steric clashes, and it is recommended to run

10 000 to 50 000 trials to sample the conformational space

adequately. From the MMC pool of accepted structures (the

‘original pool’) we selected a subset by extracting every ‘sub-

selection stride’ from the MMC-produced multi-structure

PDB file with the mdconvert program of MDTraj (Version

1.9.4; McGibbon et al., 2015) utilizing the XSEDE (Towns et

al., 2014) allocated Jetstream2 (Hancock et al., 2021) cloud-

computing resource. In each case, the distribution of Rg values

for this final subset of structures was compared with that of the

original pool to ensure that it was representative. This repre-

sentative pool will hereafter be referred to simply as ‘the pool.’

Each multi-structure PDB file was processed by the open-

source hydrodynamic and SAS data analysis and simulation

program US-SOMO (Brookes & Rocco, 2018; Revision 6730+,

https://somo.aucsolutions.com/) in batch mode to compute Rg,

predicted P(r) profiles (normalized by the sample molecular

weight and with a 1 Å bin size) and I(q) curves generated

using CRYSOL (Svergun et al., 1995). The P(r) profiles were

computed on the dry structures as (Brookes et al., 2013)

PðrÞ ¼

P
i

P
j bi � b0ið Þ bj � b0j

� �
� r� rij

� �� �

hb� b0ið Þ
2 ; ð1Þ

where bi and bj are the numbers of electrons of the i and j

atomic groups, respectively, and the b0i and b0j terms account

for the solvent scattering density. For SAXS, b0i = 10 � (ri /

rwat)
3, where 10 is the number of electrons in a water molecule,

ri is the radius of the ith atom and rwat is the radius of a bulk

water molecule (1.93 Å). The Kronecker delta �(r � rij) is

applied to the distances rij between the centres of atoms i and j

for every bin r. While the contribution of the hydration layer is

not considered in this implementation of the P(r) calculation,

its effect is relatively minor. Tests comparing the P(r) calcu-

lated on the starting dry AF structures with those derived

from a WAXSiS-generated I(q) profile (see below) indicate a

shift of about 1 Å of the global pattern toward shorter r values,

and some local differences mainly in the amplitudes (data not

shown). Schemes utilizing explicit hydration of the starting

structures are computationally intensive (and not imple-

mented within US-SOMO). The approach used here allows for

fast processing of thousands of structures as a preliminary

screening step to generate a pool of suitable structures that are

then evaluated taking into account the contribution of

hydration (see below).

For this study, the US-SOMO batch processing protocol for

generating I(q) profiles of up to a few thousand structures

utilized CRYSOL (Version 2.8; Svergun et al., 1995), with 25

for the maximum number of spherical harmonics, 18 for the

order of Fibonacci’s grid, 0.335 e Å�3 for the solvent electron

density and 0.02 e Å�3 for the hydration shell contrast, using

the same q grid as the experimental one. Running on an eight-

core Intel Core i7-4790 CPU/16 GB RAM workstation (Linux

Ubuntu 16.04.7 LTS) for the Q16543 AF structure (Mw

44 459 Da, 378 residues) it takes�27 and�424 s for every 100

structures to compute the P(r) with 170 bins and the I(q) with

a q grid of 1869 points, respectively. A more recent CRYSOL

release (Version 3.2) has an option to use a different hydration

scheme with dummy water beads, which should in principle be

more efficient in dealing with structures presenting extended

non-structured segments (Franke et al., 2017). This version has

now been made accessible from within US-SOMO and will be

made available to the general user in the next planned release.

As a check, we repeated all I(q) calculations with CRYSOL

3.2 using the dummy water beads option, and a comparison of

the results obtained with CRYSOL 2.8 is presented in the

supporting information (Section S1 and Tables S2–S4) with

brief summary conclusions provided in the Discussion below.

GNOM P(r) curves derived from the experimental data

were automatically rebinned to 1 Å steps, with errors inter-

polated upon loading the GNOM *.out file into US-SOMO.

The NNLS (non-negatively constrained least-squares) utility

of US-SOMO (Brookes et al., 2016) was then used to fit the

predicted P(r) and I(q) curves to their experimentally derived

counterparts. NNLS optimization minimizes ||Ax� b||2 subject

to x� 0, where A is an m � n matrix, x an n vector and b an m

vector. When the n columns of A are populated with predicted

profiles and b with the experimental data, the algorithm, based

on projections, produces a result as an x vector populated with

zeros or positive numbers representing the fractions of the

corresponding predicted profiles (Lawson & Hanson, 1995).

There are no restrictions on the number of columns of A

(number of predicted profiles) but, given a sufficiently large

number of columns or solution-contributing predicted profiles

that are positive linear combinations of other predicted

profiles, differing collections could provide the same minimum

value for ||Ax � b||2 on the half-space x � 0. NNLS produces

only one such collection. The projection-set nature of the

algorithm apparently tends to provide the solution with the

minimum number of predictions. No rebinning was performed

on the original reference SAXS I(q) curves, notwithstanding

their evident oversampling at high q values. While this will

lead to somewhat artificially low �2 values as a goodness-of-fit

measure, here we are not concerned with their absolute values

but only with changes between the starting structure profiles

and the NNLS-selected composite ones. Moreover, with the

logarithmic rebinning needed to reduce the oversampling

effectively, important features in the error-weighted residual

I(q) plots between experiment and model would be

suppressed, such as oscillating features that signify differences

in mean dispositions of domains.

Structures identified by NNLS as contributing to the real-

space P(r) and to the reciprocal-space I(q) CRYSOL-based

curves were further processed by the more computationally

intensive program WAXSiS. This program uses a short explicit

research papers

912 Emre Brookes et al. � AlphaFold-predicted protein structures and SAXS J. Appl. Cryst. (2023). 56, 910–926



solvent molecular dynamics simulation to build a spatial

envelope containing the structure and its solvation shell, while

constraining the backbone atoms with a harmonic potential to

ensure no conformational deviations from the input structure.

The computation of the excluded-solvent scattering is based

on a pure-water simulation and a SAXS I(q) curve is

computed that accounts for the hydration contribution (Chen

& Hub, 2014; Knight & Hub, 2015). WAXSiS calculations used

the default options except for a thorough convergence choice

and using the experimental I(q) curve to define the q range

and interval to produce predicted I(q) curves that were also

subsequently NNLS-fitted to the experimental I(q) curve by

US-SOMO.

Root-mean-square (r.m.s.) average radii of gyration

{[h(Rg)2
i]1/2, hereinafter indicated simply as hRgi} were calcu-

lated from the computed Rg of each dry structure and from the

Guinier Rg reported by WAXSiS, weighted by their fractions

in the NNLS fit (PDB and WAXSiS hRgi values are given in

Table 2). As these two values were always very close, an

average between the two is quoted in Section 4 below.

Directly computing �2 for the P(r) NNLS fits presented

some issues related to the limited number of points and the

reliability of their associated errors when used as weights.

Further, there is merit in evaluating the model fits against the

measured I(q) data. Therefore, from the WAXSiS-calculated

I(q) of each selected MMC structure, a sum weighted by the

respective fractions from the P(r) NNLS fit was produced. The

resulting composite I(q) curve was then scaled against the

original data, yielding �2 values over the same data range and

with the same number of points as those determined for the

other NNLS fits, which then could be meaningfully compared.

Graphs were prepared using Origin (Version 6.0; Microcal)

or OriginLab 2019b (https://www.originlab.com). Atomistic

structure figures were prepared with UCSF Chimera (Version

1.15; Pettersen et al., 2004) using the ‘supersmooth’ ribbon

representation, and superpositions were done on all atoms in

the selected residues using Chimera’s MatchMaker. Figures

were assembled using PaintShopPro (Version 5.3; JASC

Software, now Corel, https://www.paintshoppro.com).

3. Selection of AF-predicted structures with
corresponding experimental SAXS data and evaluation
of SAXS data quality

An initial qualitative survey of SAXS data sets with corre-

sponding AF-predicted structures meeting the requirements

detailed above (in Section 2) revealed three candidates where

the AF-predicted and SAXS-derived P(r) values are signifi-

cantly different: AF-Q16543, AF-Q06187 and AF-Q9UKA9,

with corresponding SAXS data SASDBP9 (Bunney et al.,

2018), SASDF83 (Duarte et al., 2020) and SASDM77

(Simpson et al., 2004), respectively (Fig. 1). In each case there

were extended low-confidence regions in the AF-predicted

structure that might signify flexibility. Having identified these

three potential candidate structures that appear to require

modification to represent the solution state properly, we

proceeded to assess the quality of the SAXS data and their

suitability for modelling.
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Figure 1
Ribbon representations of each selected AF-predicted structure, colour-
coded from red to blue according to an increasing confidence level. (a)
Q16543 (Homo sapiens Hsp90 co-chaperone Cdc37, residues 1–378). (b)
Q06187 (H. sapiens Bruton’s tyrosine kinase, mature protein residues 2–
659). (c) Q9UKA9 (H. sapiens polypyrimidine tract-binding protein 2,
residues 1–531). The insets show their P(r) profiles calculated from the
dry structures, and SAXS-derived profiles as retrieved from SASBDB
(red and black lines, respectively). The scale bar shown in (b) also applies
to the other panels.



Solution SAXS data from proteins with substantial flex-

ibility present several challenges. First, they are more

susceptible to small degrees of aggregation compared with

folded structures, so it is highly desirable to work with data

collected using inline size-exclusion chromatography (SEC–

SAXS) when available. Second, the selection of dmax for a P(r)

transformation is challenging, as the P(r) from an ensemble of

structures with a range of dmax values generally yields a P(r)

that approaches dmax with a long, very low intensity tail with

large errors that nonetheless can have a significant effect on Rg

calculated from the second moment of P(r). Third, the

determination of the Porod volume from the scattering

invariant assumes an object of uniform scattering density and

a sharp interface with the solvent. While this is an arguably

valid approximation in the case of a compact fully structured

protein, this is hardly relevant in the case of a flexible struc-

ture.

For each of the candidate SAXS data sets, the SAXS-

derived molecular mass (Mexpt) agrees reasonably with the

mass calculated from the chemical composition (Mcalc)

(Table 1), although we note that quite different methods were

used for determining Mexpt (see the footnotes to Table 1).

Inspection of the P(r) transforms present in SASBDB for each

of these data sets revealed that the selected dmax did not yield

a P(r) profile with the expected gradual approach to a near-

horizontal tangent at dmax; rather there was a sharp cut-off

that was most severe for SASDM77. We therefore recalcu-

lated the P(r) transforms using GNOM with a standardized

approach for dmax selection: dmax was selected such that

release of the constraint P(r) = 0 at dmax did not result in a

significant increase in P(r) intensity at long r. The resulting

P(r) profiles all showed the expected shape at long r, but with

large errors as r approaches dmax. P(r) profiles obtained using

BayesApp resulted in profiles that had similar Rg values, but

with dmax values that were shorter by 8–20 Å. Thus, there is a

degree of uncertainty in the selection of dmax for these struc-

tures. On average, Guinier-derived Rg values were �2 Å

smaller than those derived from P(r), except for SASDM77

where the difference was �4 Å, but here the error in the P(r)

Rg was more than four times that for the other data sets. The

P(r) fits were all acceptable, as estimated by the GNOM total

quality estimate values (0.72–0.79). The �2 values for the P(r)

fits were in the range 1.03–1.15 with acceptable CorMAP P

values (Franke et al., 2015), except for SASDF83 (�2 1.35, P

value 0.0003) (Table 1). The error-weighted residual differ-

ence plot for the P(r) fit for SASDF83 was nevertheless flat

and featureless, with deviations predominantly in the range

�3. Alternative dmax values resulted in worse fitting para-

meters for this data set and it was a very narrow q region that

was responsible for the low P value (0.134–0.139 Å�1). We

thus conclude that all our GNOM-derived P(r) fits to

experiment are acceptable.

Finally, to give an accurate characterization of a structure of

maximum dimension dmax, one must adequately sample I(q) in

the Guinier regime and qmin should be < �/dmax. The experi-

mental qmin values for SASDBP9 and SASDF83 are 2.48 �

10�3 and 8.16 � 10�3 Å�1, respectively. There are 95 and 64

data points in their Guinier regions, respectively, noting that

for SASDBP9 the first 25 data points are excluded from

Guinier analysis due to an upturn indicative of parasitic

scattering or some large particle contaminant that is suffi-

ciently low level that it does not impact the SAXS-derived

molecular mass. For SASDM77, qmin is only 1.41 � 10�2 Å�1

with just 17 data points in the Guinier region. Thus, while

SASDBP9 and SASDF83 meet the minimal requirements for

characterizing structures as large as 350–400 Å, the limit for

SASDM77 is 220 Å, much closer to the experimentally

derived P(r) dmax value range (170–176 Å).

In conclusion, while the SAXS data we identified as indi-

cating that the AF-predicted structures required some modi-

fication to represent the solution conformations were not

collected in the preferred SEC–SAXS mode, we can conclude

that these batch-mode-acquired data are suitable for evalu-

ating atomistic modelling as assessed by the data quality

parameters in the 2017 guidelines for biomolecular small-

angle scattering (Trewhella et al., 2017).

4. Modelling the SAXS data

Briefly summarized, our overall approach to modelling began

by first quantitatively assessing the AF structure predicted

I(q) and P(r) profiles without modification against their

respective experimental SAXS profiles; �2 values for each AF

structure were calculated using WAXSiS-generated I(q)

profiles scaled to experiment, and Guinier and P(r)-derived

structural parameters were compared. For these comparisons,

and for all modelling with P(r) as the target function, the

experimentally derived P(r) recalculated with the standar-

dized approach for dmax selection target was used. Considering

the observed differences plus the low-confidence predicted

regions for the AF structures, the conformational space to be

explored in developing an ensemble model was expanded by
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Table 1
Parameters derived from SAXS data.

SASBDB ID,
AF structure ID

Mcalc

(kDa)
Mexpt

(kDa)
Guinier
Rg (Å)

Maximum
qRg

P(r) Rg

(Å)†
dmax

(Å)†
P(r) fit:
�2‡

P(r) fit:
P value‡

SASDBP9, Q16543 44 49§ 40.9 � 0.5 1.0 42.4 � 0.3 170 1.03 0.155
SASDF83, Q06187 77 67} 41.4 � 0.4 1.0 43.8 � 0.3 176 1.35 0.0003
SASDM77, Q9UKA9 57 60†† 39.1 � 0.9 1.3 43.9 � 1.1 170 1.11 0.95

† Values are for the GNOM-derived P(r). Values obtained using the BayesApp-calculated P(r) without inputting a dmax value were for Rg 41.8, 43.5 and 45.2, and for dmax 152, 152 and
162, for SASDBP9, SASDF83 and SASDM77, respectively. ‡ �2 and P values were calculated using the Data Comparison tool of PrimusQt (Manalastas-Cantos et al., 2021). § From
I(0) relative to a standard, bovine serum albumin (BSA). } From Bayesian inference. †† From DAMMIN envelope volume, conversion factor not specified.



employing MMC with potentially flexible sequence segments

to generate a pool of potential structures (‘the original pool’),

from which a representative subset (‘the pool’) was selected.

Ensemble modelling was first performed using NNLS with this

pool of structures to optimize the fit to the experimentally

derived P(r), without and with errors generated in the indirect

Fourier transform. To evaluate the resulting conformational

ensembles in reciprocal space, the ensemble I(q) profile was

calculated by summing WAXSiS-generated I(q) profiles for

the individual conformations in each ensemble, weighted by

the NNLS-reported fraction. To compare results obtained by

optimizing the fit to P(r) with those obtained by directly fitting

in reciprocal space against the measured I(q), NNLS optimi-

zations were also performed starting with the same MMC pool

of potential structures as for the P(r) fitting but using

CRYSOL 2.8-generated individual predicted I(q) profiles.

Finally, WAXSiS was used to calculate I(q) profiles for all

conformations present in the ensemble fits to P(r) or I(q), and

these were subjected to NNLS optimization against the

experimental I(q) profile.

4.1. AF-Q16543 predicted structure and SASDBP9 data

The AF-Q16543 structure [Fig. 1(a)] is composed of two

folded domains connected by an unstructured linker spanning

residues 121–139, with an AF average prediction confidence

level (APCL) of 66 � 14%. There is also a long unstructured

C-terminal tail (residues 343–378) with an APCL of

35 � 10%. The P(r) calculated for the AF structure differs

significantly from that deposited in the SASBDB for

SASDBP9 [see Fig. 1(a), inset]. The AF-Q16543 P(r) has a

double peak and a shoulder, indicative of multiple folded

domains with dispositions that are, on average, relatively

constrained. The SAXS-derived P(r) has a single peak with a

shoulder and an extended tail approaching a dmax value that is
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Table 2
Model fit parameters (�2) and mean structural parameters [PDB hRgi, WAXSiS hRgi, P(r) hdmaxi, and P(r) max dmax and their percent contribution] for
NNLS ensemble fits.

hRgi stands for the r.m.s. average radius of gyration [h(Rg)2
i]1/2 (see Section 2, Methods). Expt. is an abbreviation for experimental and conf. is an abbreviation for

conformations.

(a) Fits to SASDBP9 based on AF-Q16543, NNLS fits with flexible linkers (sequence segments 121–139 and 343–378).

Fit method WAXSiS, I(q), scaled NNLS, expt. P(r) target NNLS, expt. I(q) target NNLS, expt. I(q) target

MMC pool P(r)

Structure pool AF-Q16543 No error weighting Error weighting MMC pool [CRYSOL 2.8 I(q)] All NNLS selected conf. [WAXSiS I(q)]

Fit parameters (�2) 19.044 1.399† 2.065† 1.602 1.228

PDB hRgi (Å) 41.7 38.6 39.2 40.8
WAXSiS hRgi (Å) 41.5 38.5 39.1 39.3
P(r) hdmaxi (Å) 157.1 139.4 146.0 150.1
P(r) max dmax (Å) 201 (14%) 158 (8%) 185 (23%) 187 (6%)

(b) Fits to SASDF83 based on AF-Q06187, NNLS fits with flexible linker (sequence segment 170–210).

Fit method WAXSiS I(q), scaled NNLS, expt. P(r) target NNLS, expt. I(q) target NNLS, expt. I(q) target

MMC pool P(r)

Structure pool AF-Q06187 No error weighting Error weighting MMC pool [CRYSOL 2.8 I(q)] All NNLS selected conf. [WAXSiS I(q)]

Fit parameters (�2) 31.250 1.997† 2.716† 1.673 1.763

PDB hRgi (Å) 40.7 42.7 42.3 41.1
WAXSiS hRgi (Å) 40.6 42.4 42.0 41.0
P(r) hdmaxi (Å) 133.1 138.7 136.4 132.1
P(r) max dmax (Å) 165 (15%) 184 (4%) 187 (2%) 178 (6%)

(c) Fits to SASDM77 based on AF-Q9UKA9, NNLS fits with flexible linkers (sequence segments 1–54 and 273–336).

Fit method WAXSiS, I(q), scaled NNLS, expt. P(r) target NNLS, expt. I(q) target NNLS, expt. I(q) target

MMC pool P(r)

Structure pool AF-Q9UKA9 No error weighting Error weighting MMC pool [CRYSOL 2.8 I(q)] All NNLS selected conf. [WAXSiS I(q)]

Fit parameters (�2) 3.674 1.279† 1.493† 1.208 1.179

PDB hRgi (Å) 43.8 40.4 52.2 48.4
WAXSiS hRgi (Å) 43.7 40.5 52.0 48.4
P(r) hdmaxi (Å) 152.8 143.8 162.9 152.8
P(r) max dmax (Å) 192 (4%) 168 (10%) 243 (8%) 243 (5%)

† The �2 for the P(r) NNLS fits were determined by computing the I(q) of each selected MMC structure using WAXSiS, and then making a weighted sum using the respective fractions
from the NNLS fit. The resulting I(q) curve was then scaled against the original data.



similar to the AF-calculated value, suggesting a broad distri-

bution of compact to highly extended structures, weighted

towards the more compact ones, consistent with a flexible

linker in solution and a potentially flexible C-terminal region.

The high �2 value (19.044) [Table 2(a)] calculated between the

computed I(q) for the AF structure and the experimental I(q)

after scaling [Fig. 2(a)] indicates that there are substantial

differences between the AF-predicted structure and the

solution state. The large oscillations in the error-weighted

residual plot for the experimental versus predicted I(q)

[Fig. 2(b)] (�12 to 16) indicate that the differences are highly

significant.
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Figure 2
(a) I(q) versus q for SASDBP9 (black symbols with standard error bars) overlaid with the fit of the AF-Q16543 WAXSiS-calculated SAXS profile (red
line) and with the NNLS ensemble fit model generated from the CRYSOL 2.8-calculated SAXS profiles of the MMC pool structures (violet line). (b)
Error-weighted residual plots for the fits shown in panel (a). (c) and (d) GNOM-derived P(r) profiles (black symbols without/with standard error bars)
overlaid with that from the AF-Q16543 prediction (red lines) and with the NNLS ensemble fit from the P(r) calculated on the MMC pool without and
with error weighting, respectively (blue and orange lines). (e) I(q) versus q for SASDBP9 (black symbols with standard error bars) overlaid with the
NNLS ensemble fit model calculated using the WAXSiS-generated I(q) versus q profiles of all NNLS-selected structures from the CRYSOL 2.8 and P(r)
fits (magenta line). In the inset, four representative structures selected with a significant percentage by at least two of the four NNLS fits are shown, after
superposition on the 1–120 N-terminal residues [see Table 2(a) for the full fitting results]. ( f ) Error-weighted residual plot for the fit shown in panel (e).



4.1.1. Ensemble modelling with P(r) as the target function.

The MMC protocol was used to generate a pool of potential

solution conformations for AF-Q16543 by allowing dihedral

angle variations for sequence segments 121–139 and 343–378

(the run summary is given in Table S1). The original pool

included 15 661 structures, of which 1740 representative ones

(one in nine) formed the pool input to the NNLS tool to find

the best fit to the experimentally derived P(r). Visual

inspection of the P(r) fit without errors [Fig. 2(c)] shows

excellent qualitative agreement. The resulting �2 value of

1.399 [Table 2(a)] for the composite WAXSiS-calculated I(q)

fit to the experimental data is more than an order of magni-

tude improvement compared with the unmodified structure.

Furthermore, the hRgi of 41.6 Å is in excellent agreement with

the SAXS-derived values [Tables 1 and 2(a)]. The P(r)

maximum dmax value is within the uncertainty of the experi-

mental P(r) dmax, with the population weight of the structure

having the longest dmax being 14%. The considerably shorter

hdmaxi compared with the experimental P(r) dmax reflects the

spread in dmax values among the selected structures. In

contrast, the NNLS fit employing error weighting [Fig. 2(d)]

clearly underused the contributions of structures having dmax

values in the long-r range, where the experimentally derived

P(r) has the largest errors. Notably, the �2 value was signifi-

cantly higher (2.065) and the hRgi and maximum dmax values

were all lower than the experimentally derived ones, with an

even shorter hdmaxi [Table 2(a)]. These results bring into

question the utility and/or accuracy of the P(r)-associated

errors in this protocol.

Histograms of the percent contribution to the hRgi of

individual structures in the P(r) NNLS fits [Figs. 3(a) and 3(b)]

show that a single structure with an Rg of 36 Å accounts for

�41 and �62% of the ensemble population without and with

error weighting, respectively (see also Table S2). As expected

from the above analysis, the histogram for Rg values obtained

without error weighting is skewed towards higher values

[Fig. 3(a)]. The two experimentally derived Guinier and P(r)

Rg values are near a cluster of contributing structures with

intermediate Rg values, while that for the AF structure is near

a small cluster of the most extended ones, albeit with low

percentage contributions, that are altogether missing from the

ensemble obtained with error weighting. Inspection of the

individual P(r) profiles of the contributing structures and their

percent contributions for the NNLS fits without and with error

weighting [Figs. S1(a) and S1(b), respectively] reveals that the

P(r) profiles can be clustered into five and four categories,
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Figure 3
Histogram plots of the Rg values and their percent contribution for the individual structures selected by the NNLS fits for (a)–(d) the SASDBP9/Q16543,
( f )–(i) the SASDF83/Q06187 and (k)–(n) the SASDM77/Q9UKA9 systems, respectively. (a), ( f ) and (k) P(r) NNLS fits without error weighting. (b), (g)
and (l) P(r) NNLS fits with error weighting. (c), (h) and (m) CRYSOL NNLS fits. (d), (i) and (n) WAXSiS NNLS fits on the structures selected by all the
other methods. In all histogram panels, the inverted blue and red triangles indicate the Rg values derived from Guinier and GNOM P(r) analyses of the
experimental data, respectively, while the dark cyan inverted triangles represent the Rg of the starting AF structures. (e), ( j) and (o) Distributions of the
Rg values for the structures in the original MMC pool (solid black lines) and for the sub-selected MMC pool (solid red lines) used for the NNLS fitting.
(e) Q16543, (j) Q06187 and (o) Q9UKA9.



respectively. The P(r) shape clustering is supported by a

similar clustering observed for the ribbon representations of

each structure, after superposition on the N-terminal 25–110

sequence [Figs. S1(c) and S1(d)].

4.1.2. Ensemble modelling with I(q) as the target function.

The ensemble model obtained using NNLS with CRYSOL-

calculated I(q) profiles for the same MMC pool of structures

as for the P(r) fits yielded an I(q) profile fit [Figs. 2(a) and

2(b)] whose quality is comparable to the P(r) fit without error

weighting, though with a slightly higher �2 value [1.602,

Table 2(a)]. The hRgi value was �6% lower than the experi-

mentally derived values, and the maximum dmax value (23%

contribution) was �9% higher than that of the GNOM-

derived P(r), with a hdmaxi in between those of the P(r) NNLS

fits [Tables 1 and 2(a)]. The corresponding histogram of the Rg

values [Fig. 3(c)] shows a similar preference for more compact

structures to that observed for the conformational ensemble

obtained from the P(r) fit with error weighting. Three struc-

tures having Rg values in the range 36–43 Å account for more

than �92% of the structures present, with one of them

(contributing �22%) being close to the experimentally

derived Rg values.

Finally, all the structures selected by the NNLS fits with

either P(r) or I(q) as the target, plus the starting AF-predicted

structure (a total of 22 structures), were taken as a set and

calculated WAXSiS I(q) profiles were used in an NNLS fit to

the SASDBP9 I(q) [Figs. 2(e) and 2( f)]. This calculation

yielded the lowest �2 value [1.228, Table 2(a)], and the hdmaxi

and maximum dmax values are essentially the same as those

found by the NNLS fit with CRYSOL-generated I(q) profiles

with the larger MMC pool, while the hRgi values are closer to

those obtained by the NNLS fits of the P(r) without error

weighting. The corresponding Rg distribution histogram

[Fig. 3(d)] shows two major clusters of Rg values in the ranges

36–38 and 40–43 Å, accounting for �49 and �36% of the

structures, respectively, the latter encompassing experimen-

tally derived Rg values (see Table 1). In partial contrast with

the results obtained using CRYSOL, two more elongated

structures were selected for a �15% contribution. Moreover,

the starting AF-predicted structure, which was not selected by

either the two P(r)-based fits or the CRYSOL fit, contributes

4.5% to the WAXSiS-based NNLS fit (Table S2).

For completeness, overlays of the SASDBP9 experimental

profile with the CRYSOL- and WAXSiS-generated individual

I(q) profiles of the selected structures, with their percent

contributions, are shown in Figs. S2(a) and S2(b), respectively.

They are accompanied by ribbon representations of the

corresponding structures aligned and grouped according to

the P(r)-derived classes [Fig. S2(c)], with a lone extra single

structure that contributes�22 and�13% to the CRYSOL and

WAXSiS NNLS fits, respectively.

Finally, the four structures with the highest percent contri-

butions from all the NNLS fits [inset in Fig. 2(e)] all have Rg

values in the range 36–42 Å, corresponding to structures in the

MMC sets at the lower end of the Rg distribution, as shown in

Fig. 3(e), which also highlights the good correspondence

between the original entire MMC pool and the pool employed

for the NNLS fits. Overall, our analysis indicates that this

protein adopts significantly more compact conformations than

does the starting AF-Q16543 structure.

4.2. AF-predicted structure Q06187 and SASDF83 data

The structure of AF-Q06187 [Fig. 1(b)] comprises an

N-terminal folded domain (residues 1–169) connected by an

essentially unstructured linker (residues 170–210, APCL

36 � 5%) to a larger folded C-terminal domain (residues 211–

659). Parts of both domains appear close in space, although no

real contact interface is observed. The experimentally derived

P(r) retrieved from the SASDF83 entry is significantly more

extended (by �60 to 70 Å) than that calculated for the

structure [see inset in Fig. 1(b)]. As found for the AF-Q16543/

SASDBP9 case, its WAXSiS-generated I(q) profile gives a

very poor fit to the experimental curve [Fig. 4(a); �2 = 31.25,

Table 2(b)] and an oscillating error-weighted residual plot

(�14 to 18) [Fig. 4(b)]. These observations strongly suggest

that the sequence segment 170–210 could be a flexible linker

and the two domains are, on average, more separated in

solution than in the AF-predicted structure.

4.2.1. Ensemble modelling with P(r) as the target function.

A total of 14 582 accepted conformations were generated

using the MMC protocol by allowing dihedral angle variations

in the 170–210 linker, from which 972 were selected (one every

15; run summary provided in Table S1) as the pool for input to

the NNLS tool to find the optimal fit to the SASDF83 GNOM-

derived P(r). Calculations were performed without and with

error weighting [Figs. 4(c) and 4(d), respectively]. As for AF-

Q16543, visual inspection indicates that the NNLS fits yield

improved agreement, with error weighting resulting in a worse

fit, as indicated by the �2 values for the corresponding

WAXSiS-based composite I(q) fit to the experimental data

[1.997 and 2.716, respectively, Table 2(b)]. In both cases,

however, there is still more than an order of magnitude

improvement over the unmodified structure and the hRgi

values are in reasonable agreement with the Guinier and P(r)-

derived experimental Rg values [Tables 1 and 2(b)]. Further,

the P(r)-derived longest dmax values show deviations from

experimental values [Tables 1 and 2(b)] on a similar scale to

what was observed for AF-Q16543, but the hdmaxi values are

considerably shorter than the experimental P(r) dmax,

suggesting a clustering of selected structures towards more

compact ones within the pool. Indeed, histograms of the

percent contribution to the hRgi of individual structures in the

P(r) NNLS fits [Figs. 3( f) and 3(g)] show a cluster with Rg

values of 32–36 Å (together accounting for 53 and 55% of the

contribution), close to that of the starting AF structure, with

one structure being heavily selected by both fits with or

without errors (see also Table S3). A single structure with an

Rg value practically identical to that from the GNOM-derived

P(r) was selected only by the NNLS fit without errors and with

a 31% contribution. Notwithstanding the visually poorer fit at

longer r values for the NNLS P(r) fit with errors, it selected

structures with larger Rg values, although with relatively

smaller percent contributions than for calculations without

error weighting.
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The individual P(r) contributions and global views of the

ensembles of structures selected by the two NNLS fits (Fig. S3)

show a similar P(r) clustering between the two calculations,

with three clear classes, one of which can be split into two by

the different orientation of the N-terminal domain that is

absent from the P(r) NNLS fit with error weighting.

4.2.2. Ensemble modelling with I(q) as the target function.

The experimental I(q) for SASDF83 includes 1284 data
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Figure 4
(a) I(q) versus q SAXS data taken from SASDF83 (black symbols with standard error bars) overlaid with the fit of the AF-Q06187 WAXSiS-calculated
SAXS profile (red line) and with the NNLS ensemble fit model generated from the CRYSOL 2.8-calculated SAXS profiles on the MMC pool structures
(violet line). (b) Error-weighted residual plots for the fits shown in panel (a). (c) and (d) GNOM-derived P(r) profiles from SAXS data (black symbols
without/with standard error bars) overlaid with that from the AF-Q06187 prediction (red lines) and with the NNLS ensemble fits from the P(r)
calculated on the MMC pool structures without and with error weighting, respectively (blue and orange lines). (e) I(q) versus q SAXS data taken from
SASDF83 (black symbols with standard error bars) overlaid with the NNLS ensemble fit model calculated using the WAXSiS-generated I(q) versus q
profiles of all NNLS-selected structures from the CRYSOL 2.8 and P(r) fits (magenta line). In the inset, four representative structures selected with a
significant percentage by at least two of the four NNLS fits are shown, after superposition on the 213–659 C-terminal residues [see Table 2(b) for the full
fitting results]. ( f ) Error-weighted residual plot for the fit shown in panel (e).



points with a non-uniform q spacing (�q): �q is 4.696 �

10�4 Å�1 for q in the range [0.8164, 2.648] � 10�2 Å�1, and

then �q has variable steps in the range 2.3 � 10�6 to 4.696 �

10�4 Å�1 up to q = 0.14398 Å�1, followed by a uniform

�q = 4.713� 10�4 Å�1 to qmax = 0.49462 Å�1. The US-SOMO

CRYSOL implementation generated I(q) profiles for each

structure from the MMC pool using a fixed grid spacing of

4.696 � 10�4 Å�1, yielding 1038 I(q) points that were inter-

polated to match the 1284 points of the experimental data for

the NNLS fitting procedure with SASDF83 I(q) as the target.

The resulting ensemble model gives a significantly improved

fit to the experimental data [Figs. 4(a) and 4(b)] with a �2 of

1.673 [Table 2(b)]. The hRgi value is, within experimental

error, equal to the Guinier-derived value and lies between

those of the P(r) NNLS fits [Tables 1 and 2(b)]. The histogram

of the Rg distribution for the selected structures [Fig. 3(h)] is

similar to that obtained from the P(r) NNLS fit with error

weighting, with the cluster at 32–36 Å accounting for�60% of

the contribution. The hdmaxi is similar to the P(r) NNLS values

and the maximum dmax is close, within the uncertainties, to the

GNOM-derived value from experimental data, with the most

extended structure being present at a very low (2%) contri-

bution [Tables 1 and 2(b)].

The WAXSiS-generated I(q) profiles from all the structures

selected for any of the NNLS fits plus the starting AF-

predicted structure (for a total of 21 structures) were then

used as input for an NNLS fit against the SASDF83 I(q)

profile [Figs. 4(e) and 4( f)]. The �2 value of 1.763 for this fit is

just slightly worse than that of the fit using only the CRYSOL-

generated I(q) profiles from the MMC pool. The hRgi is again

almost identical to the Guinier-derived value, the hdmaxi is

similar to that found for all other fits and the structure with the

longest dmax (6% contribution) is very similar to the experi-

mentally derived value [Tables 1 and 2(b)]. The histogram of

Rg values for the selected structures [Fig. 3(i)] shows two

major peaks, at 34 and 46 Å, with 46 and 34% contributions,

respectively, reflecting significant populations of more

extended conformations compared with the AF starting

structure (which was not selected; see also Table S3).

The SASDF83 experimental profile is overlaid with the

CRYSOL- and WAXSiS-generated individual I(q) profiles of

the selected structures with their percent contributions in

Figs. S4(a) and S4(b), respectively, accompanied by the

corresponding structures as ribbon representations grouped

according to the P(r)-derived classes [Fig. S4(c), same orien-

tations as in Figs. S3(c) and S3(d)]. Here an additional

compact structure, with a similar Rg value to the second

compact class present in Fig. S3(c) but a different orientation

of the N-terminal domain, is heavily selected by the CRYSOL

NNLS fit (�33%) and is also present in the WAXSiS fit

(�6%). The intermediate class having a lone structure in

Fig. S3(c) is more populated in the I(q) fits [Fig. S4(c)], as is

the more extended structural class.

The four structures with the highest percent contributions

from all NNLS fits are shown as ribbon representations after

superposition on the C-terminal 218–659 sequence [Fig. 4(e),

inset]. The highest proportion of Rg values are all in the lower

half of the MMC-generated structure Rg distribution (<48 Å),

with smaller percent contributions in the upper range (48–

62 Å), as shown in Fig. 3( j), which again highlights the good

correspondence between the original entire MMC pool and

the pool employed for the NNLS fits. Overall, our analyses

indicate that this protein assumes a range of conformations in

solution that on average are significantly more extended than

the starting AF-predicted structure.

4.3. AF-Q9UKA9 predicted structure and SASDM77 data

The structure of AF-Q9UKA9 [Fig. 1(c)] comprises two

small N-terminal folded domains (residues 58–159 and 177–

272) connected by a relatively short predicted unstructured

segment (APCL 35 � 4%) and linked by a much longer

predicted unstructured segment (residues 273–336, APCL

42 � 13%) to a C-terminal domain (residues 337–531) where

two subdomains appear to have a defined interface between

them. At the N-terminal there is also a long predicted

unstructured segment (residues 1–57, APCL 36 � 4%). As for

the AF-Q06187 case, the experimentally derived P(r)

retrieved from the SASDM77 entry is more extended than

that calculated for the structure [see inset in Fig. 1(c)], albeit

to a lesser extent (by �20 Å). From Fig. 5(a) it is evident that

the WAXSiS-generated I(q) fits poorly, although with a rela-

tively lower �2 value (3.674) that in part reflects the larger

statistical errors in this data set compared with our other two

examples. Significantly, there is a clear oscillation in the error-

weighted residual plot (�5 to 8) that is most evident in the

intermediate q range, �0.04 to �0.15 Å�1 [Fig. 5(b)]. These

observations suggest that some of the potentially unstructured

regions could be flexible in solution, resulting in variable

spatial dispositions between the domains.

4.3.1. Ensemble modelling with P(r) as the target function.

A first test was conducted with MMC where only the

N-terminal 1–57 segment was allowed to be flexible, but this

resulted in very minor changes in the P(r) distribution that

could not account for the observed differences from experi-

ment (data not shown). We then included in the MMC run the

predicted unstructured linker (residues 273–336) plus the

N-terminal 1–57 segment, choosing not to add the potential

additional short low-confidence sequence segment (residues

160–176) to limit the degrees of freedom in the modelling. The

MMC run allowing the dihedral angles of the two sequence

segments to vary yielded 17 284 conformations, from which

1728 conformations were selected (one in every ten; run

summary provided in Table S1) for NNLS fitting to the

SASDM77-derived P(r). Visually good NNLS fits were

obtained, without and with error weighting [Figs. 5(c) and

5(d)]. As found for the other two examples, a better fit is

obtained without error weighting, most evident in the long tail

at long r where the P(r) errors are largest. The �2 values for

the fits to the measured I(q) of the WAXSiS-generated

composite I(q) profiles for all the selected structures, weighted

by their contribution, were 1.279 and 1.493, respectively

[Table 2(c)], which are 3- and 2.5-fold improvements, respec-

tively, compared with the starting AF-predicted structure. The

hRgi for the NNLS fit with error weighting is very close to the
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Guinier-derived value, while when error weighting for the fit

was omitted a close match with the larger GNOM-derived

values was obtained [Tables 1 and 2(c)]. The P(r)-derived

longest dmax value for the NNLS fit with errors was essentially

the same as the GNOM-derived value, but 22 Å longer

without error weighting [Tables 1 and 2(c)]. The hdmaxi values

are smaller than the GNOM-derived P(r) dmax, suggesting a

higher proportion of more compact structures selected in the
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Figure 5
(a) I(q) versus q SAXS data taken from SASDM77 (black symbols with standard error bars) overlaid with the fit of the AF-Q9UKA9 WAXSiS-
calculated SAXS profile (red line) and with the NNLS ensemble fit model generated from the CRYSOL 2.8-calculated SAXS profiles on the MMC pool
structures (violet line). (b) Error-weighted residual plots for the fits shown in panel (a). (c) and (d) GNOM-derived P(r) profiles from SAXS data (black
symbols with standard error bars) overlaid with that from the AF-Q9UKA9 prediction (red lines) and with the NNLS ensemble fits from P(r) calculated
on the MMC pool structures without and with error weighting, respectively (blue and orange lines). (e) I(q) versus q SAXS data taken from SASDM77
(black symbols with standard error bars) overlaid with the NNLS ensemble fit model calculated using the WAXSiS-generated I(q) versus q profiles of all
NNLS-selected structures from the CRYSOL 2.8 and P(r) fits (magenta line). In the inset, four representative structures selected with a significant
percentage by at least two of the four NNLS fits are shown, after superposition on the 63–270 N-terminal residues [see Table 2(c) for the full fitting
results]. ( f ) Error-weighted residual plot for the fit shown in panel (e).



fit. Histograms of the percent contribution to the hRgi of

individual structures in the P(r) NNLS fits [Figs. 3(k) and 3(l)]

indeed show a predominant cluster of structures with small Rg

values (34–40 Å) comparable to that of the starting AF

structure, and very close to the Guinier-derived value,

accounting for 58 and 75% of the contribution, with two being

strongly selected by fits with or without error weighting.

Fitting without error weighting gave a single structure

contributing significantly (�10%) to a higher Rg value (see

also Table S4).

The individual P(r) contributions and global views of the

ensembles of structures selected by the two NNLS fits are

shown in Fig. S5. A broad distribution of P(r) profiles is

apparent in the NNLS fit without errors [Fig. S5(a)], which is

somewhat reduced with error weighting [Fig. S5(b)]. Four and

three principal structural classes could be defined, respectively

[Figs. S5(c) and S5(d)], with a larger percentage of contri-

buting structures clustering in the low-Rg range. A few struc-

tures having a wide separation between the domains are more

present in the NNLS fits without errors.

4.3.2. Ensemble modelling with I(q) as the target function.

As for SASDF83, the experimental I(q) for SASDM77 does

not have a uniform �q: �q is 1.102 � 10�3 Å�1 for q �

6.9519 � 10�2 Å�1, thereafter having a variable step (�q in

the range [3.53, 4.53] � 10�4 Å�1) to qmax = 0.32532 Å�1.

CRYSOL generated I(q) profiles on the MMC pool using a

fixed grid spacing of 1.102 � 10�3 Å�1, resulting in 295 I(q)

points that were interpolated to match the 644 experimental

data points for the NNLS fitting procedure. An excellent fit

[Figs. 5(a) and 5(b)] was obtained with a �2 of 1.208,

comparable to the value of 1.279 obtained with the P(r) NNLS

fit without errors [Table 2(c)]. However, the hRgi value of

52.1 Å is significantly larger than the Rg of both the P(r)

NNLS fits and the experimental values [Tables 1 and 2(c)].

While the hdmaxi value in this case is close to the GNOM-

derived dmax value, the maximum dmax is also greater than the

experimentally derived value (243 versus 170 Å), with a 7%

contribution [Tables 1 and 2(c)]. These results are reflected in

the Rg histogram [Fig. 3(m)] where, together with the cluster at

Rg values smaller than or near to that of the starting AF

structure or close to the Guinier-derived value, there are

individual structures with quite large Rg values, up to �92 Å

for a structure that is 7% of the ensemble population.

The WAXSiS-generated I(q) profiles from all the structures

selected for any of the NNLS fits, plus the starting AF struc-

ture (a total of 24 structures), were then used as input for an

NNLS fit against the SASDM77 I(q) profile [Figs. 5(e) and

5(f)], resulting in an excellent fit with the best �2 of 1.179

among all the NNLS fits performed on this sample [Table

2(c)]. The quite high hRgi value of �48.4 Å, as well as the

hdmaxi and maximum dmax, with the most elongated structure

contributing 4% to the ensemble, are in line with the values

obtained with the CRYSOL/NNLS fit [Table 2(c)]. The Rg

histogram [Fig. 3(n)] shows, however, that in this case the

cluster at smaller Rg values (more extended than in the

CRYSOL fit case, 35–45 Å) is even more predominant,

accounting for 75% of the structures selected, and spanning

from the AF starting structure (which was not selected; see

also Table S4) to those of the GNOM-derived values.

The individual I(q) profiles selected in the CRYSOL and

WAXSiS NNLS fits can be seen in Figs. S6(a) and S6(b),

respectively, with the corresponding structural classes in

Fig. S6(c) [same superposition and orientations as those in

Figs. S5(c) and S5(d)]. The compact conformational cluster

can be split into two, followed by two clusters of relatively and

quite extended structures, respectively, and the most extended

one can be set apart, also based on its very peculiar I(q) profile

[pink lines in Figs. S6(a) and S6(b)].

As with the other two systems studied, the four structures

with the highest percent contributions from all NNLS fits are

shown as ribbon representations after superposition on the

N-terminal 63–270 domain [Fig. 5(e), inset]. The highest

proportion of Rg values are all in the ascending half of the

MMC-generated pool Rg distribution (32–60 Å), with smaller

percent contributions in the other half (60–92 Å), selected

only by the I(q) NNLS fits as shown in Fig. 3(o), which also

confirms the good correspondence between the original entire

MMC pool and the pool employed for the NNLS fits.

This example is distinct from the other two in that the

populations obtained by modelling with P(r) versus I(q) as the

target give different results with respect to the population of

extended structures present, reflected in both the hRgi and

maximum P(r) dmax values. It has already been noted that the

SAXS data for this example are of poorer statistical quality

than the other two data sets, and it is also the case that qmin is

only 0.0141 Å�1 (compared with 0.0025 and 0.0082 Å�1 for

SASDBP9 and SASDF83, respectively), with far fewer data

points in the Guinier region (by factors of three to five). These

observations raise the question of whether the low-q limit and

sampling frequency in the Guinier regime for SASDM77 are

sufficient for a reliable characterization of the most extended

structures present in the sample. For this data set, the

experimental qmin is such that structures with dmax > 220 Å�1

would not be reliably characterized, and it would also limit the

accuracy of dmax when calculating P(r). Modelling with P(r) as

the target may thus artificially limit dmax, while modelling with

I(q) as the target would probably allow for more extended

structures.

With some question as to the precise nature of the popu-

lation of extended structures, our analysis nevertheless

suggests that the predominant confomations for this protein

are just slightly more extended than that of the starting AF

structure but can experience transitions to very elongated

conformations in a relatively low proportion of the total

population.

5. Discussion

AlphaFold has been shown to provide excellent predictions

for large numbers of proteins. However, proteins with flexible

segments cannot be adequately represented with a single static

structure. Although this could be seen as a weakness of AF, it

simply reflects what is often a necessary aspect in protein

function. Coupling AF predictions with experimentally
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derived constraints and conformational space expansion could

provide the researcher with an enhanced representation of the

system under study.

Indeed, for the three examples identified here where there

is an AF-predicted structure and a corresponding SAXS data

set, we have shown that the AF-predicted structure cannot

account for the experimental data without modifications.

Using the confidence level indicators provided with each AF-

predicted structure, we identified potential flexible linkers

connecting the higher-confidence structured domains. Using

the MMC routine, which efficiently creates tens of thousands

of plausible all-atom structures with torsion angles � and  in

the allowed regions of the Ramachandran plot, we generated a

pool of conformers from which a weighted population was

identified that predicted the experimental SAXS data. In two

cases (SASDBP9 and SASDF83), modelling with the calcu-

lated P(r) as the target gave similar results, in terms of the

range and average Rg and dmax values, to modelling with I(q)

as the target. In the third case, there were strong similarities

but with a difference in the population of the most extended

structures present in the optimized ensemble. The result

obtained when modelling I(q) included significantly more

extended structures than those obtained when modelling P(r).

This difference appears to be attributable to a too-large qmin

and �q in the Guinier region for the SASDM77 data to

characterize reliably the structures with the longest dmax

values. These data were collected in 2004 on the European

Molecular Biology Laboratory (EMBL) X33 beamline at the

DORIS III storage ring (Hamburg, Germany) using a 1D gas

detector (Blanchet et al., 2012) that has since been decom-

missioned. Improvements in instrumentation since then

deliver data of a quality and q range more in line with the

SASDBP9 data set (collected on the P12 beamline of EMBL

at the storage ring PETRA-III of the Deutsches Elektronen-

Synchrotron, Hamburg, using a Pilatus 2M detector) and

SASDF83 data set [collected on the BM29 beamline at the

ESRF (Grenoble, France) using a Dectris Pilatus 1M 2D

detector (Pernot et al., 2013)], which would potentially resolve

the discrepancy observed here for SASDM77 modelling with

P(r) versus I(q) as the target.

Our results demonstrate that modelling with P(r) as the

target can give reliable results, provided that the SAXS data

meet quality metrics that ensure the data represent mono-

disperse proteins in solution, free of interparticle correlations,

and both qmin and �q meet the requirements for reliable

characterization of the most extended structures present.

Depending on the specific system, the scattering curve I(q)

may be a more sensitive reporter of a global conformational

change than the P(r) profile. Conversely, the P(r) can exhibit a

wealth of structural features associated with domain shapes

and their arrangement within the molecule that are not

evident in an apparently featureless scattering curve.

Computationally, the main advantage for modelling in real

space is the ease and speed compared with the much more

intensive I(q) calculation, especially if methods relying on

explicit water all-atom molecular dynamics to account for

hydration are used, e.g. as in the case for WAXSiS. While our

P(r) calculations from individual structure coordinates did not

account for the scattering contribution from hydration water,

this effect is relatively minor compared with the difference

observed between the AF structure and experimentally

derived P(r), and it also becomes less significant as the protein

size increases. Nevertheless, it could account for some of the

differences observed between P(r) and I(q) NNLS fits, as both

WAXSiS and CRYSOL consider the contribution from

hydration water. On the other hand, if we compare the models

pre-selected by P(r)- and I(q)-based methods (Tables S2–S4)

we see that, for AF-Q16543, of the eight models selected by

NNLS on the WAXSiS-generated I(q), three (with a

combined 47% contribution) were also picked at the dry P(r)

level. For the AF-Q06187 system, the numbers were five (with

a combined 65% contribution) over six, and for the AF-

Q9UKA9 system the numbers were six (with a combined 70%

contribution) over ten. In any case, the development of

methods to account reliably for hydration water in computing

the P(r) from dry structures without sacrificing its speed

advantage, such as those based on the statistical distributions

of water used in US-SOMO to compute hydrodynamic prop-

erties (Rai et al., 2005), would constitute a welcome

improvement.

The main challenge for modelling the real-space function

lies in the fact that the experimentally derived P(r) is obtained

as an indirect Fourier transform that often includes a user-

selected dmax value along with assumptions that P(r) goes to

zero at r = 0 and dmax. For flexible structures, depending on the

nature of the population and the measured qmin, there can be

significant uncertainty in dmax, with P(r) exhibiting a long low-

intensity tail with large errors. Using multiple methods to

calculate P(r) can provide a measure of the uncertainty in

dmax, and here we compared GNOM-derived P(r) profiles

obtained using a standard approach to dmax selection and a

Bayesian application (BayesApp) without a user-selected dmax.

The latter method generally yielded somewhat smaller dmax

values, and almost an order of magnitude smaller uncertain-

ties. We repeated the NNLS analysis for SASDBP9 and found

very similar results to those observed using the GNOM-

derived P(r) (data not shown), indicating that the low-

intensity large-error tail on the P(r) was not very influential.

Regardless of the modelling method used, best practice is

always to assess the fit against the actual measured data, which

for SAXS is the I(q) profile. In all three cases tested here, the

best-fit ensembles from the P(r) modelling also gave good fits

to the experimental I(q) as assessed by �2 and error-weighted

residual plots. While error weighting in our P(r) fitting

resulted in some differences, further work would be required

to understand how to account for the errors properly, as they

are not true counting statistics. Indeed, we have observed

differences in the magnitude of errors up to a factor of ten

between different software programs computing P(r)

from I(q).

The computation of the I(q) profile from a structure is also

dependent, among other things, on the treatment of the

hydration contribution. Several computational methods are

available, and a comparison of some of the most widely used
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ones has been presented in a recent benchmarking study

(Trewhella et al., 2022). To complement our P(r)-based pre-

selections we have chosen CRYSOL, as implemented within

US-SOMO (Brookes & Rocco, 2018), which has proven to be

fast enough to allow batch-mode computation over a few

thousand structures without resorting to high-end computing

facilities. The main results presented here were based on

CRYSOL 2.8, which approximates the hydration as a layer of

uniform density and uniform thickness. The calculations were

redone with CRYSOL 3.2 using the more recently imple-

mented option for explicit representation of hydration as

dummy beads (Franke et al., 2017), which is in principle better

suited to structures presenting extended unstructured regions.

However, relatively minor differences were observed (see

Section S1). Moreover, when a more advanced computational

approach was employed that uses a short molecular dynamics

simulation within a full solvation box, namely WAXSiS (Chen

& Hub, 2014; Knight & Hub, 2015), very similar results were

obtained using structures pre-selected by the P(r) approach

and either CRYSOL 2.8 or CRYSOL 3.2, or both (Section S1

and Tables S2–S4). Possibly, when a structure contains a mix of

folded and unstructured regions, the differences in the

hydration models are not as significant compared with the case

of, for instance, an intrinsically disordered protein.

For this study, we were dependent on the chance co-

incidence of there being a SAXS data set corresponding to an

AF-predicted structure where significant differences were

apparent between the predicted and experimentally derived

P(r) functions. From the initial pool of 43 data sets, just three

examples were identified where the experimental data

generally satisfied the quality criteria presented in the SAS

guidelines (Trewhella et al., 2017). While none of these were

obtained using the preferred SEC–SAXS measurement mode

that increases the likelihood of the sample being mono-

disperse, the quality assessment done demonstrates that

careful measurement in batch mode can yield reliable data.

Among the criteria to evaluate the quality of SAXS data, the

accuracy of SAXS-derived molecular mass values is critical

and not always easy to achieve. There are multiple methods

available that sometimes provide differing values that should

be accounted for, but there is a strong temptation simply to

accept the one that gives the best agreement with expectation.

For the three data sets we analysed here, three different

methods were used for the reported SAXS-derived molecular

mass: calculated from I(0) relative to a BSA standard

(Mylonas & Svergun, 2007) for SASDBP9, from Bayesian

inference (Hajizadeh et al., 2018) for SASDF83 and from a

DAMMIN envelope volume (Svergun, 1999) for SASDM77.

In reporting SAXS data, it is highly recommended to provide

SAXS-derived Mexpt values determined using multiple

methods, but importantly including from I(0)/c [where c is the

protein concentration of the sample (mass/volume)], with

scattering intensities placed on an absolute scale (Trewhella et

al., 2017). This method requires an accurate concentration

measurement of the SAXS sample and knowledge of the

partial specific volume, which can be calculated from the

sequence [see Trewhella et al. (2022)]. The uncertainty in the

concentration determination, coupled with that in the partial

specific volume calculation, may be the limiting factor, but for

all its shortcomings, this method for estimating Mexpt is

important, particularly in the case of flexible molecules for

which estimates derived from the scattering curve indepen-

dent of the concentration are more problematic.

We initially considered a fourth example for this study, AF-

P50891 and its corresponding SASBDB data set SASDHP4,

where the predicted and experimental P(r) profiles differed

significantly. However, this protein presented three well

characterized N-glycosylation sites (Olson et al., 2020). Using

the Glycam website (https://glycam.org) we built the three

high-mannose carbohydrate chains to complete the atomic

description of the protein, and the differences between

prediction and experiment at the I(q) profile level were

substantially reduced, demonstrating the importance of

accounting for post-translational modifications. However,

further analysis of this system was beyond the scope of this

study.

Coupling of the MMC methodology with NNLS fitting in

both real and reciprocal space as presented in this work has

led to interesting insights in each of the systems presented.

Since automation of the entire real-space analysis and of some

aspects of the reciprocal-space analysis, such as internally

calculated CRYSOL profiles and externally generated

WAXSiS profiles, does not seem to present major hurdles,

further development with a dedicated module of the US-

SOMO online website (https://somoweb.genapp.rocks) is

planned. This additional useful tool for biomolecular SAXS

would nicely complement the very important advances that

AlphaFold has brought to the wider biostructural community.
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