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Model lipid bilayers have been widely employed as a minimal system to

investigate the structural properties of biological membranes by small-angle

X-ray (SAXS) and neutron scattering (SANS) techniques. These have

nanometre resolution and can give information regarding membrane thickness

and scattering length densities (SLDs) of polar and apolar regions. However,

biological membranes are complex systems containing different lipids and

protein species, in which lipid domains can be dynamically assembled and

disassembled. Therefore, SLD variations can occur within the biomembrane. In

this work, a novel method has been developed to simulate SAXS and SANS

profiles obtained from large unilamellar vesicles containing SLD inhomogene-

ities that are spatially correlated over the membrane surface. Such inhomo-

geneities are represented by cylindrical entities with equivalent SLDs. Stacking

of bilayers is also included in the model, with no correlation between horizontal

and vertical order. The model is applied to a lipid bilayer containing SLD

inhomogeneities representing pores, lipid domains, and transmembrane,

partially immersed and anchored proteins. It is demonstrated that all the

structural information from the host lipid bilayer and from the SLD

inhomogeneity can be consistently retrieved by a combined analysis of

experimental SAXS and SANS data through the methodology proposed here.

1. Introduction

Small-angle X-ray scattering (SAXS) and small-angle neutron

scattering (SANS) are known to be suitable experimental

techniques to investigate, at nanometric resolution, the

structure of self-assembling systems formed by amphiphilic

molecules, such as lipids (the main component of biological

membranes) and surfactants (the molecules at the basis of

detergents and cosmetics) (Glatter & Kratky, 1982). Small-

angle scattering (SAS) can provide information about the

shape of the aggregated structures, which basically spans from

spheres to cylinders or lamellae, their dimensions and the

spatial correlation between these nanosized objects. The latter

comprises the signature of their lyotropic polymorphism: for

instance, the typical phases observed for lipids, which are

dependent on the main chemical-physical parameters, such as

concentration, temperature, pressure, pH and ionic strength,

are the micellar phase (direct or inverse), the hexagonal phase

(direct or inverse), the lamellar phase (including the multi-

lamellar phase formed by vesicles) and the various types of

cubic phases (Mariani et al., 1988).

Concerning the study of nano-scaled model lipid bilayers

(e.g. lipid vesicles dispersed in an aqueous environment), the
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advantage of SAXS is its dependence not only on the overall

dimension of the vesicles but also on their internal structure.

This is due to the spontaneous organization of amphiphilic

molecules in two domains, the first hydrophobic, mainly

formed by methylene groups CH2 of low electron density

(which, multiplied by the classical radius of the electron re =

0.28 � 10�12 cm, gives the scattering length density, SLD) with

respect to the aqueous solution, and the second polar, where

the presence of electronegative atoms such as oxygen,

nitrogen and phosphorus determines a high electron density.

The polar domain includes hydration water molecules and, e.g.

in the case of charged phospholipids, a fraction of counterions,

both contributing to the polar domain average electron

density.

The SAXS signal originates from the Fourier transform of

the electron-density profile of the lipid bilayer, so that any

electron-density variation is mapped onto the experimental

SAXS intensity recorded as a function of the scattering angle.

The analysis of SAXS data can be carried out through

different levels of approximation. In the simplest approach,

which is the most common reported in the literature (Luzzati,

1968; Guinier, 1963; Feigin & Svergun, 1987; Lindner & Zemb,

2002), the lipid bilayer thickness and the electron densities of

both polar and hydrophobic domains are considered free

parameters that can be determined by the best fit to the

experimental SAXS curve. However, for many techniques

based on scattering, different sets of parameters can lead to a

similar SAXS signal. Therefore, some constraints must be

imposed on the fitting parameters, for example exploiting the

known physicochemical and structural properties of the lipids

used. The combined analysis of SANS data over the same

investigated self-assembled structures allows us to retrieve

concomitantly the most appropriate fitting parameters from

the SAS data. SANS is sensitive to the neutron scattering

length density, which can be modified by controlling the

degree of deuteration of water and lipids (Lindner & Zemb,

2002; Petrache et al., 1997; Klauda et al., 2006; Kučerka et al.,

2008; Pan et al., 2015; De Rosa et al., 2018).

When the bilayers are organized in a multilamellar phase, it

is possible to extract information about the structural para-

meters of the lamellar stacking: the SAS diffraction peaks

furnish the repetition distance (e.g. the total thickness of the

bilayer and water layers) from the peak position and the

degree of correlation between the lamella from its width.

Although the scattering intensity from bilayers made up of

only one type of lipid has been widely described, it is well

established that biological membranes are more complex

systems. They host proteins in different ways, whether

anchored in the surface, partially immersed in the hydro-

phobic domain or as transmembrane proteins straddling the

whole thickness of the membrane. Lipid domains formed by

distinct lipids can be assembled and disassembled, providing

clues to the binding of specific proteins (Sezgin et al., 2017).

Further, antimicrobial peptides or toxins can promote pores in

the membranes (Mesa-Galloso et al., 2021). Because of their

effects on the SLD profile, all these situations may produce

different but characteristic SAS curves (Heberle et al., 2013;

Marquardt et al., 2015; Doktorova et al., 2019; Semeraro et al.,

2021).

Different analytical or semi-analytical models have been

developed to describe the form factor of spherical vesicles

containing lipid domains from scattering data. Pencer et al.

(2005) used coarse-grained models to calculate the form factor

of radially polydisperse spherical vesicles containing a single

domain or different small domains. The model was applied to

fit SANS data of lipid mixtures that show phase separation at

low temperatures. The contrast conditions were optimized

using both deuterated and hydrogenated lipids dissolved in

H2O/D2O mixtures in such a way that at high temperature,

when there is no phase separation, the contrast between the

lipid mixture and the solvent was zero. Interestingly, applying

the coarse-grained model to SANS data of unilamellar vesicles

(LUV) of DOPC:DPPC:cholesterol1 (molar ratio 1 :1 :1), the

authors showed that, at room temperature, each LUV

displayed approximately 30 lipid domains of average radius

100 Å. A coarse-grained approach for calculating the form

factor of polydisperse spherical vesicles forming lipid domains

was also used by Heberle et al. (2013) and applied to analyse

SANS data of lipid mixtures of DOPC:POPC:DSPC:chol-

esterol under optimal contrast conditions, with the aim of

calculating bilayer thickness and domain size. The authors

obtained values of domain radius and number of domains that

could vary from 68 Å and 23 domains to 225 Å for one to four

domains, respectively, depending on the molar ratio of the

lipids. Anghel et al. (2007) utilized, for the first time, the

powerful spherical harmonic approach (Stuhrmann, 1970;

Svergun & Stuhrmann, 1991; Spinozzi et al., 1998) to calculate

the form factor of a spherical vesicle containing one circular

nanodomain. This approach was then extended (Heberle et al.,

2015) and the analytical form factor for the case of several

domains of arbitrary size and spatial configuration was

derived. In subsequent work, Anghel et al. (2018, 2019)

calculated the correlation between domains in the case of

vesicles containing two or three domains. For vesicles with

more than three domains, they simulated the correlation

between domains using a Monte Carlo method, the results of

which were subsequently interpreted using a Percus–Yevick

equation in spherical geometry combined with the Ornstein–

Zernike relation. Dorrell et al. (2020) developed an advanced

method to calculate the SANS curves of highly curved and

fluctuating vesicles. This method combines a molecular and a

continuum approach to discriminate between inner and outer

leaflets of the vesicle. Recently, Krzyzanowski et al. (2023)

have analysed SANS curves of a mixture of two lipids, DLPC

and DPPC, that exhibits solidus–liquidus phase coexistence by

using a bead model to calculate the form factor of poly-

disperse vesicles.

Most of the articles cited above concern the study, espe-

cially by SANS, of small polydisperse spherical vesicles

(diameter 300–600 Å) in which there are circular domains
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1 Lipid abbreviations used are as follows: DOPC is dioleoylphosphatidylcho-
line, DPPC is dipalmitoylphosphatidylcholine, POPC is 1-palmitoyl-2-oleoyl-
phosphatidylcholine, DSPC is distearoylphosphatidylcholine and DLPC is
dilauroylphosphatidylcholine.



having a constant SLD. The effects of the curvature and the

total vesicle area are important constraints to establish the

number and size of the domains. In this work we use a

different approach. We work exclusively in planar geometry,

thus assuming that the radius of the vesicle is so large that it

does not show curvature effects or limit the number of

domains. We describe how the SAS curves from such flat lipid

bilayers are affected by the presence of SLD inhomogeneities

such as those arising from pores, lipid domains and membrane

proteins, and how structural information about these in-

homogeneities can be retrieved by model fitting. In particular,

we simulate SAXS and SANS profiles for lipid bilayers

containing DOPC and DPPC phospholipids and a certain

number of laterally correlated SLD inhomogeneities (here-

after referred to as ‘islands’), defined as cylindrical entities

representing lipid domains, pores, aqueous channel-forming

proteins, anchored proteins, or partially immersed or trans-

membrane proteins, taking into account their SLDs. The

resulting SLD inhomogeneity model has been integrated into

the GENFIT software (Spinozzi et al., 2014), freely available

at https://sites.google.com/site/genfitweb/, and was used to fit

the simulated curves. The good agreement between fitted and

simulated profiles obtained in the different investigated cases

confirms the robustness of the method. The model also

includes the possibility of bilayer stacking with no correlation

between horizontal and vertical order.

2. Model development

To take into account possible SLD inhomogeneities in the

SAS profiles of lipid bilayers, the following methodology has

been developed. First, we consider a solution of randomly

oriented stacks of N parallel bilayers. Associated with each

bilayer are M identical islands, described by Ns cylindrical

shells of SLD inhomogeneities with their common axis

perpendicular to the bilayer surface (Fig. 1). We assume that

the bilayer surface is the area of a circle with radius Rb much

greater than the typical bilayer thickness.

The SLD of the system at the point r � rk þ z ẑz (ẑz is the unit

vector in the direction perpendicular to the bilayer xy plane)

can be written as

�ðrÞ ¼ �0 þ sbðrkÞ

(XN

n¼1

�bðz� znÞ � �0

� �

þ
XM

m¼1

XNs

k¼1

skðrk � rknmÞ �kðz� znÞ � �bðz� znÞ
� �)

; ð1Þ

where zn is the vertical displacement of the nth bilayer and

rknm is the two-dimensional vector in the xy plane of the nth

bilayer that gives the position of the centre of the mth island.

�0 is the solvent SLD. Referring to a bilayer placed at the

centre of the reference system, the function sb(rk) is equal to 1

when |rk| � Rb and 0 otherwise. The bilayer SLD profile along

the z axis is described by the function �b(z). On the other

hand, when the origin is at the centre of an island, the function

sk(rk) is 1 when the point rk belongs to the kth cylindrical shell

of the island, whose SLD profile along the z axis is �k(z);

otherwise it is 0. The scattering amplitude is the Fourier

transform of the SLD [equation (1)] in excess with respect to

�0,

AðqÞ ¼

Z
dr �ðrÞ � �0

� �
exp ðiq � rÞ ð2Þ

¼Abðq?ÞASðqkÞ
XN

n¼1

exp ðiq?znÞ þ
XNs

k¼1

Akðq?ÞAS;kðqkÞ

�
XN

n¼1

exp ðiq?znÞ
XM

m¼1

exp ðiqk � rknmÞ: ð3Þ

The scattering vector, defined as q = q sin �q cos �qx̂x +

q sin�q sin �qŷy + q cos �qẑz (x̂x and ŷy being unit vectors along the

axes x and y, respectively), is also written as q � qk þ q?ẑz. We

have introduced the following four partial amplitudes,

Abðq?Þ ¼

Z
dz �bðzÞ � �0

� �
exp ðiq?zÞ; ð4Þ

Akðq?Þ ¼

Z
dz �kðzÞ � �0

� �
exp ðiq?zÞ � Abðq?Þ; ð5Þ

ASðqkÞ ¼

Z
drk sbðrkÞ exp ðiqk � rkÞ; ð6Þ

AS;kðqkÞ ¼

Z
drk skðrkÞ exp ðiqk � rkÞ: ð7Þ

Ab(q?) is the Fourier transform of the SLD of the bilayer

without islands in excess with respect to the solvent, Ak(q?) is

the Fourier transform of the SLD of the kth cylindrical shell

that exceeds the corresponding SLD of the bilayer without

islands, ASðqkÞ is the xy Fourier transform of the surface of the

whole bilayer without islands, and finally AS;kðqkÞ is the xy

Fourier transform of the kth circular shell on the bilayer

surface.

All the SLD profiles along the z axis, �l(z) [with l

standing for the bilayer without islands (l = b) or the kth cylin-

drical shell of the island (l = k)], are modelled by an Nl -level

research papers

1350 Francesco Spinozzi et al. � Modelling SAS from flat bilayers J. Appl. Cryst. (2023). 56, 1348–1360

Figure 1
Schematic diagram of stacking of bilayers with SLD inhomogeneities
(referred to as islands throughout the paper). The island-free bilayer is
described by Nb = 5 levels of SLD, represented by magenta (lipid polar
head group), blue (alkyl chains of the lipids), cyan (the inner part of the
bilayer rich in CH3 groups), blue and magenta layers, in order. The island
contains Ns = 3 cylindrical shells with the following levels of SLD: N1 = 0
(white hole), N2 = 1 (green layer), N3 = 5 (dark magenta, dark blue, dark
cyan, dark blue and dark magenta layers).



function, with transitions between two successive levels

described by the smooth error function erf(z) (Spinozzi et al.,

2010).

�lðzÞ ¼ �0 þ
1

2

XNl

j¼1

ð�j;l � �j�1;lÞ 1þ erf
z� zj;l

ð21=2Þ�j;l

� �� �
; ð8Þ

where zj, l is the z coordinate of the jth level of the lth profile

with thickness Dj, l,

zj;l ¼

0 Nl ¼ 0;
z1;l j ¼ 1 and Nl � 1;

z1;l þ
Pj�1

j1¼1 Dj1;l
j > 1 and Nl > 1,

8<
: ð9Þ

and �j, l is the smoothness of the transition between the

(j � 1)th and the jth levels (Fig. 2). In equation (8), we set

�0;l � �Nl;l
� �0. Note that the expression above does not

assume any symmetry of �l(z).

According to these assumptions, the four amplitudes in

equations (4)–(7) become the following analytical expressions:

Abðq?Þ ¼

i

q?

XNb

j¼1

zj;b �j;b � �j�1;b

� 	
exp �

1

2
ðq?�j;bÞ

2

� �
exp ðiq?zj;bÞ

zj;b

;

ð10Þ

Akðq?Þ ¼
i

q?

XNk

j¼1

zj;k �j;k � �j�1;k

� 	
exp �

1

2
ðq?�j;kÞ

2

� �

�
exp ðiq?zj;kÞ

zj;k

� Abðq?Þ; ð11Þ

ASðqkÞ ¼ 2�R2
b

J1ðqkRbÞ

qkRb

; ð12Þ

AS;kðqkÞ ¼ 2�R2
k

J1ðqkRkÞ

qkRk

� 2�R2
k�1

J1ðqkRk�1Þ

qkRk�1

; ð13Þ

where J1(x) are the first Bessel functions of integer order, and

Rk represents the radius of the kth cylindrical shell of the

island, with R0 � 0 by definition.

At q = 0, the asymptotic values of these functions are

Abð0Þ ¼ �
XNb

j¼1

zj;b �j;b � �j�1;b

� 	
; ð14Þ

Akð0Þ ¼ �
XNk

j¼1

zj;k �j;k � �j�1;k

� 	
� Abð0Þ; ð15Þ

ASð0Þ ¼ �R2
b; ð16Þ

AS;kð0Þ ¼ �R2
k � �R2

k�1: ð17Þ

The modulus square of the scattering amplitude becomes

AðqÞA	ðqÞ ¼ jAbðq?Þj
2A2
SðqkÞ

XN

n;n0¼1

exp ðiq?znn0 Þ

þ Abðq?ÞASðqkÞ
XNs

k0¼1

A	k0 ðq?ÞAS;k0 ðqkÞ

�
XN

n;n0¼1

exp ðiq?znn0 Þ
XM

m0¼1

exp ð�iqk � rkn0m0 Þ

þ A	bðq?ÞASðqkÞ
XNs

k¼1

Akðq?ÞAS;kðqkÞ

�
XN

n;n0¼1

exp ð�iq?znn0 Þ
XM

m¼1

exp ðiqk � rknmÞ

þ
XNs

k0¼1

Ak0 ðq?ÞAS;k0 ðqkÞ














2

�
XN

n;n0¼1

exp ðiq?znn0 Þ
XM

m;m0¼1

exp ðiqk � rknmn0m0 Þ; ð18Þ

where znn0 ¼ zn � zn0 and rknmn0m0 ¼ rknm � rkn0m0 . By averaging

over all possible stacks of the bilayer (zn) and all possible

positions of islands (rknm) and by assuming that there is no

correlation between vertical and horizontal order, the

previous equation transforms into

hjAðqÞj2ifrknmg;fzng
¼ NjAbðq?Þj

2A2
SðqkÞ S

N
bbðq?Þ

þ NMASðqkÞ S
N
bbðq?Þ

� 2 Re S	dðqkÞAbðq?Þ
XNs

k¼1

A	kðq?ÞAS;kðqkÞ

" #

þ NM
XNs

k¼1

Akðq?ÞAS;kðqkÞ














2

SN
bbðq?Þ S

M
ddðqkÞ; ð19Þ
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Figure 2
A representation of an island in a bilayer with the geometric parameters
indicated. The bilayer contains Nb = 5 levels of SLD, colour coded as in
Fig. 1. The island contains Ns = 3 cylindrical shells with the following
levels of SLD: N1 = 0, N2 = 1, N3 = 5 (see Fig. 1 caption).



where we have introduced the 1D bilayer–bilayer structure

factor,

SN
bbðq?Þ ¼

1

N

XN

n;n0¼1

exp ðiq?znn0 Þ

* +
znn0

; ð20Þ

and the 2D island and island–island structure factors,

SM
d ðqkÞ ¼

1

M

XM

m¼1

exp ðiqk � rknmÞ

* +
rknm

; ð21Þ

SM
ddðqkÞ ¼

1

M

XM

m;m0¼1

exp ðiqk � rknn0mm0 Þ

* +
rknn0mm0

: ð22Þ

The angle brackets represent the averages over the distribu-

tion of stacking distances znn0 � zn � zn0 [equation (20)],

island positions rknm [equation (21)] and island–island

distances rknn0mm0 � rknm � rkn0m0 [equation (22)]. We assume

that the island distribution along the xy bilayer plane is

described by the well known paracrystal theory (PT) in two

dimensions (Hosemann & Bagchi, 1952, 1962; Hosemann et

al., 1967; Wilke, 1983; Matsuoka et al., 1987; Lazzari, 2002;

Frühwirth et al., 2004). Firstly, we consider that the island

distribution along the xy bilayer plane is based on a distorted

two-dimensional hexagonal lattice, with unit-cell vectors

a1 ¼ a x̂x and a2 ¼ ða=2Þ ½x̂xþ ð31=2Þŷy
. The lattice parameter a

represents the average island–island distance. Secondly, along

both directions a1 and a2, we assume a unique average

number, Na = M1/2, of islands with a unique distortion factor,

ga = �a/a, �a being the Gaussian standard deviation of the

isotropic distortion. Note that the lattice parameter a estab-

lishes the surface density of the islands, according to

nd �
M

�R2
b

¼
2

a2ð31=2Þ
: ð23Þ

Clearly, the distance between two islands cannot be less than

twice the maximum radius of the island, a � 2RNs
. The prob-

ability of finding an island at a distance rk from the first island

is given by the convolution of the probability of finding an

island at a distance r0k with respect to the first array along a1

and the probability of finding an island at a distance rk � r0k
with respect to the second array along a2,

pdðrkÞ ¼

Z
pd1
ðr0kÞ pd2

ðrk � r0kÞ dr0k: ð24Þ

In turn, the probability pdk
ðrkÞ is obtained by summing the

convolutions of the 2D Gaussian functions

pdk
ðrkÞ ¼ �ðrkÞ þ

XNa�1

n¼1

Gn;kðrkÞ; ð25Þ

Gn;kðrkÞ ¼
1

2�jnj�2
a

exp �
jrk � nakj

2

2jnj�2
a

� �
: ð26Þ

Note that the lattice vector ak is given by

ak ¼

Z
rkG1;kðrkÞ drk ð27Þ

and the unique standard deviation by

�2
a ¼

Z
rkl
� akl




 


2G1;kðrkÞ drk ð28Þ

for any k = 1, 2 and component l = x, y. The island structure

factor is the Fourier transform of pd(rk),

SM
d ðqkÞ ¼

1

M

Z
exp ðiqk � rkÞ pdðrkÞ drk ð29Þ

¼
1

M

Y2

k¼1

Z
exp ðiqk � rkÞ pdk

ðrkÞ drk ð30Þ

¼
1

M

Y2

k¼1

1� F
Na

k

1� Fk

; ð31Þ

Fk ¼ exp �
1

2
ðagaqkÞ

2
þ iqk � ak

� �
: ð32Þ

The probability of finding a pair of islands at a mutual

distance rk is similarly obtained by the convolution of two pair

probabilities,

pddðrkÞ ¼

Z
pdd1
ðr0kÞ pdd2

ðrk � r0kÞ dr0k; ð33Þ

and each probability, according to PT theory, is given by a

combination of convoluted Gaussians,

pddk
ðrkÞ ¼ Na�ðrkÞ þ

XNa�1

n¼1

ðNa � nÞ Gn;kðrkÞ þG�n;kðrkÞ
� �

:

ð34Þ

The island–island structure factor is clearly the Fourier

transform of pdd(rk),

SM
ddðqkÞ ¼

1

M

Z
exp iqk � rk

� 	
pddðrkÞ drk ð35Þ

¼
1

M

Y2

k¼1

Z
exp iqk � rk

� 	
pddk
ðrkÞ drk ð36Þ

¼
Y2

k¼1

Re
1þ Fk

1� Fk

�
2Fkð1� F

Na

k Þ

Nað1� FkÞ
2

� �
: ð37Þ

The bilayer–bilayer structure factor is calculated on the

basis of one unit vector, a3 ¼ c ẑz, c being the average stacking

distance. According to Frühwirth et al. (2004), considering a

stack of N bilayers with islands, the bilayer–bilayer structure

factor can be written following the PT theory or the modified

Caillé theory (MCT) as

SN
bbðqÞ ¼

X2�p

i¼�2�p

piSTðq;N þ iÞ; ð38Þ

with T = PT or MCT, where

SPTðq;N þ iÞ ¼ Re
1þ F3

1� F3

�
2F3ð1� FNþi

3 Þ

ðN þ iÞð1� F3Þ
2

� �
; ð39Þ
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F3 ¼ exp �
1

2
ðcgc?qÞ

2

� �
exp ðiqcÞ; ð40Þ

SMCTðq;N þ iÞ ¼ 1þ
2

N þ i

XNþi�1

n¼1

ðN þ i� nÞ cosðnqcÞ

� ð�nÞ
�½c=ð2�Þ
2q2�1 exp �	½c=ð2�Þ
2q2�1

 �
: ð41Þ

gc? is the perpendicular distortion factor, �1 is the Caillé

parameter and 	 is Euler’s constant. According to Zhang et al.

(1996), the distortion factor can be expressed in terms of �1,

gc? = (0.087�1)1/2. Polydispersity over N should be introduced

in order to eliminate ‘intrinsic’ oscillations of the mono-

disperse paracrystalline structure factor at low q that have

never been seen in experimental data (Frühwirth et al., 2004).

Sampling points are weighted by a discrete Gaussian distri-

bution, as shown in equations (S1) and (S2) of the supporting

information.

The differential scattering cross section per bilayer is

obtained by calculating the orientational average of the

squared modulus of the amplitude [equation (19)] and

dividing by N,

d�

d�
ðqÞ ¼

1

N
jAðqÞj2
� �

frknmg;fzng

D E
cos�q;�q

¼ jAbðq?Þj
2A2
SðqkÞ S

N
bbðq?Þ

� �
cos�q
þ2M

*
ASðqkÞ S

N
bbðq?Þ

� Re SM
d ðqkÞ

� �
�q

Abðq?Þ
XNs

k¼1

A	kðq?ÞAS;kðqkÞ

" #+
cos �q

þM

* XNs

k¼1

Akðq?ÞAS;kðqkÞ














2

� SN
bbðq?Þ SM

ddðqkÞ
� �

�q

+
cos �q

; ð42Þ

where h. . .icos�q
and h. . .i�q

denote the zenith and azimuth

averages, namely 1
2

R 1

�1ð. . .Þ d cos�q and 1
2�

R 2�

0 ð. . .Þ d�q,

respectively.

For a large bilayer radius (qRb� 1) the factor A2
SðqkÞ in the

average integral over cos �q of the first term of equation (42) is

dominated by asymptotic behaviour,

A2
SðqkÞ ¼

2�

q2
�R2

b�ð�qÞ; ð43Þ

�(�q) being the Dirac � function. By similar arguments, it can

be shown that the factor ASðqkÞ belonging to the average

integral over cos �q in the second term of equation (42) has the

following asymptotic behaviour:

ASðqkÞ ¼
2�

q2
�ð�qÞ: ð44Þ

However, according to equation (23), for large Rb the number

of islands M also becomes large and, on the basis of equation

(31), the island structure factor hS1d ðqkÞi�q
drops to zero apart

from hS1d ð0kÞi�q
¼ 1 (see Fig. S1 in the supporting informa-

tion). Under these conditions equation (42) reduces to

d�

d�
ðqÞ ¼

2�

q2
�R2

bjAbðqÞj
2SN

bbðqÞ

þM

(
4�

q2
SN

bbðqÞRe AbðqÞ
XNs

k¼1

A	kðqÞAS;kð0Þ

" #

þ

* XNs

k¼1

Akðq?ÞAS;kðqkÞ














2

� SN
bbðq?Þ S1ddðqkÞ

� �
�q

+
cos�q

)
: ð45Þ

According to equation (37), the island–island structure

factor for an infinite two-dimensional paracrystal is

S1ddðqkÞ ¼
Y2

k¼1

Re
1þ Fk

1� Fk

� �

¼ �ðqkÞ þ
Y2

k¼1;Fk 6¼1

Re
1þ Fk

1� Fk

� �
ð46Þ

¼ �ðqkÞ þ S1;dist
dd ðqkÞ: ð47Þ

A final equation that describes the experimental scattering

intensity (more properly called ‘macroscopic differential

scattering cross section’) in terms of d�=d�ðqÞ should be given

by

d�

d�
ðqÞ ¼ 


cV

V

d�

d�
ðqÞ þ B; ð48Þ

where cV is the volume fraction of the whole scattering matter

in the system and V is the volume of a single bilayer with

islands. Here 
 and B represent a scaling factor and a flat

background, respectively, both due to instrumental effects.

Note that, in the case of SANS, B could be due to incoherent

neutron scattering phenomena. The volume V of a bilayer with

islands can be expressed as a function of the thickness of a

bilayer without islands, tb � zNb;b
� z1;b, and the thickness of

the cylindrical shells, tk � zNk;k
� z1;k,

V ¼�R2
btb þM

XNs

k¼1

� R2
k � R2

k�1

� 	

� tk �

ZzNb;b

z1;b

rect
z� z1;k

zNk;k
� z1;k

�
1

2

 !
dz

2
64

3
75; ð49Þ

teff ¼
V

�R2
b

¼ tb þ nd

XNs

k¼1

� R2
k � R2

k�1

� 	

� tk �

ZzNb ;b

z1;b

rect
z� z1;k

zNk;k
� z1;k

�
1

2

 !
dz

2
64

3
75; ð50Þ

where
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rectðxÞ ¼
1 jxj � 1

2;
0 jxj> 1

2.

�
ð51Þ

In conclusion, the scattering intensity to be fitted to the

experimental data becomes a function that does not depend

on Rb,

d�

d�
ðqÞ ¼ 


cV

teff
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2

� SN
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� �

�q

+
cos�q

)!
þ B: ð52Þ

The model developed here, described by equation (52), is

named SASBIN and is integrated in the GENFIT software

(Spinozzi et al., 2014). Interestingly, considering no multilayer

stacking [SN
bbðqÞ = SN

bbðq?Þ = 1] in equation (52), two limit cases

may call our attention. Firstly, in the case where one has a very

large island-containing bilayer, and hence the distances a

between the islands are also very large (nd is quite small), the

resulting scattering is a mixture of two independent scatterings

from the flat surfaces (bilayer and island) [see Section S2 for

in-depth detail, equation (S5)]. Secondly, in the case of very

small islands distributed in the lipid bilayer, the scattering

intensity resolves to that of a homogeneous bilayer given by a

mixture of the two electron-density profiles from the bilayer

and the islands [see Section S2, equation (S10)].

In the following, we present some examples of SAXS

profiles from lipid bilayers containing different scatterers, such

as proteins immersed or not in the hydrophobic medium, and

lipid domains with distinct SLDs with respect to the host

bilayer. The question of how the presence of pores impacts on

the lipid bilayer scattering will also be addressed. The corre-

sponding SANS profiles are presented in the supporting

information.

3. Results and discussion

3.1. Lipid domains

It is well known that the presence of domains in lipid

bilayers can be recognized by the presence of distinct lamellar

diffraction peaks over the lipid bilayer form factor measured

from SAS multilamellar vesicles (Heftberger et al., 2015).

SANS data performed on LUVs made of a mixture of deut-

erated and protonated lipids of different species can give

information on the protonated lipid domain size, provided the

deuterated portion matches the SLD of D2O/H2O (Pencer et

al., 2005; Kinnun et al., 2023; Heberle et al., 2013). Here, we

demonstrate the possibility of extracting this information from

SAXS (and SANS) curves simulated according to our

modelling, without the need for using SLD contrast matching.

Fig. 3 shows simulations of SAXS curves obtained using

equation (52) (with 
 = 1 and B = 0) of fluid–gel lipid phases

formed by the coexistence of DOPC (aliphatic chains in fluid

conformation) in a bilayer of DPPC (aliphatic chains in gel

conformation). A schematic representation is shown in Fig. S2.

Corresponding SANS curves in pure D2O (deuteration grade

xD = 1) are shown in Fig. S3. All calculations have been done
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Figure 3
Simulated SAXS curves from coexisting DOPC fluid phase–DPPC gel
phase. CDPPC = 3 mM and the lattice distortion factor ga = 0.3. a
corresponds to the centre-to-centre distance between the DOPC lipid
domains dispersed in the DPPC host bilayer. R1 corresponds to the radius
of a cylindrical island representing a domain (Fig. S2). The surface density
of domains, according to equation (23), ranges from 0.51 Å�2 to
1.8 � 10�8 Å�2.



with CDPPC = 3 mM. Three distortion factors have been

applied to the simulations (ga = 0.1, 0.2 and 0.3). For the lower

ga factor, i.e. a low distortion factor with respect to the

hexagonal array of SLDs proposed in the model, small

diffraction peaks could appear over the scattering curves

(Fig. S4). To be more realistic regarding SLDs distributed in a

lipid bilayer system, we choose to show here all simulations

with ga = 0.3.

Figs. 3(a), 3(b) and 3(c) correspond to different

DPPC:DOPC molar ratios, as indicated. In each panel, the

curves refer to different sets of the lattice distance a and

domain radius R1, which are related to the concentrations of

DPPC and DOPC according to a2 = �R2
1f1þ 2CDPPC aDPPC=

½ð31=2ÞCDOPC aDOPC
g, where aDPPC and aDOPC are the areas per

molecule in the bilayer. For both lipids, the area per molecule

al (with l = b for DPPC and l = 1 for DOPC), the volume vl , the

thicknesses Dj, l, the corresponding electron densities �j, l, X and

neutron SLDs in pure D2O �j, l, N (the region index j = 1, 2, 3

referring to the polar head region, the intermediate hydro-

phobic region rich in CH2 and the terminal region rich in CH3,

respectively), and the smoothness parameters �j, l are shown in

Table 1. They have been calculated by the best fit with

equation (10) to the form factors of pure DPPC and DOPC

obtained with the chemical group model (De Rosa et al.,

2018). The volume fraction of the sample, seen in equation

(52), is cV = NA(CDPPCvDPPC + CDOPCvDOPC), where NA is

Avogadro’s number.

In all panels of Fig. 3, SAXS curves of pure DOPC and pure

DPPC are shown for comparison. Note that, at a

DOPC:DPPC molar ratio of 1 :1 [Fig. 3(a)], the resulting

scattering has the minima of the form factor as the mean q

positions between the minima of the DPPC and DOPC scat-

tering curves. These minima are displaced towards the minima

of the DPPC or DOPC SAXS curves according to the increase

in the amount of DPPC or DOPC in the lipid bilayer,

respectively [Figs. 3(b) and 3(c)]. Interestingly, for a small

DOPC domain size (a = 1.5 Å) one can clearly observe a deep

first minimum arising from the mixture of the two electron-

density profiles, taking into account the surface fraction of

each component [DOPC domains and the DPPC bilayer,

equation (S10) of the supporting information]. On the other

hand, for large DOPC domains, the minima become very

shallow with respect to those observed from small domains,

reflecting the fact that the scattering of two independent

scatterers is also weighted by the surface fraction of each

component [equation (S5) of the supporting information]. It is
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Table 1
DPPC and DOPC parameters used in the simulations.

Parameter DPPC (l = b) DOPC (l = 1)

al (Å2) 57 60
vl (Å3) 1140 1270
D1, l (Å) 12.0 11.9
D2, l (Å) 10.7 9.9
D3, l (Å) 3.50 5.87
�1, l,X (e Å�3) 0.412 0.408
�2, l,X (e Å�3) 0.317 0.302
�3, l,X (e Å�3) 0.245 0.264
�1, l,N (10�6 Å�2) 4.203 4.294
�2, l,N (10�6 Å�2) �0.349 �0.265
�3, l,N (10�6 Å�2) �0.602 �0.446
�1, l (Å) 2.49 3.50
�2, l (Å) 2.39 3.48
�3, l (Å) 2.01 4.02

Table 2
Parameters from the best fit to the SAS curves shown in Fig. 4
representing DOPC domains in a DPPC bilayer.

The length unit is ångströms. For X-rays, electron densities are expressed in
e Å�3. For neutrons, SLDs are expressed in 10�6 Å�2.

Parameter In Out

R1 60.0 59 � 1
D1,b 12.0 12.01 � 0.03
D2,b 10.6 10.78 � 0.03
D3,b 3.64 3.45 � 0.04
�1,b,X 0.411 0.4123 � 0.0002
�1,b,N 4.29 4.22 � 0.03
�2,b,X 0.316 0.3163 � 0.0001
�2,b,N �0.618 �0.76 � 0.02
�3,b,X 0.247 0.2427 � 0.0006
�3, b, N �0.126 �0.15 � 0.07
�1,b 2.56 2.71 � 0.04
�2,b 2.22 2.30 � 0.04
�3,b 1.74 2.05 � 0.06
D1,1 12.3 12.47 � 0.06
D2,1 12.3 11.60 � 0.05
D3,1 3.13 3.74 � 0.03
�1,1,X 0.407 0.4054 � 0.0003
�1,1,N 4.33 4.19 � 0.04
�2,1,X 0.296 0.2965 � 0.0002
�2,1,N �0.529 �0.59 � 0.08
�3,1,X 0.246 0.2578 � 0.0008
�3,1,N �0.106 �0.21 � 0.07
�1,1 3.47 3.40 � 0.07
�2,1 3.51 3.24 � 0.09
�3,1 4.12 3.0 � 0.2
ga 0.300 0.197 � 0.002

Figure 4
Best global fits (black lines) of simulated SAXS (red and blue lines) and
SANS (green and magenta lines) curves of 3 mM DPPC and DOPC
domains in 3 mM DPPC, respectively (ga = 0.3, a = 150 Å, R1 = 60 Å,
corresponding to CDOPC = 3.94 mM). The simulated curves have been
randomly moved by sampling from a Gaussian distribution with standard
deviation proportional to [d�/d�(q)]1/2. Curves are vertically displaced
for clarity.



evident that the size of the domain, i.e. the radius R1 of the

island representing an SLD inhomogeneity, can be retrieved

from the SAXS curve since the depth of the minima of the

oscillations is related to the parameter a and hence to R1 [see,

for instance, the result presented for a = 108.3 Å, green lines in

Figs. 3(a)–3(c)]. The scattering intensities d� /d�(q) also

depend on the a (and R1) values, since they are related to the

surface density of the islands nd according to equation (52).

The SANS profiles display significant differences on changing

the a parameter and DOPC:DPPC molar ratio (Fig. S3). As a

consequence, a combined SAXS/SANS analysis can give

strong support to the structural parameters obtained from

lipid-domain-containing bilayers. As an example, we present

the consistency of the combined SAXS/SANS data analysis

performed by the GENFIT software from a lipid bilayer

composed of DOPC:DPPC in a 1:1 molar ratio, with input

parameters a = 150 Å, R1 = 60 Å and ga = 0.3 (see Fig. 4 and

Table 2). Note that the output parameters are quite similar to

the ones considered as input parameters.

3.2. Proteins-containing lipid bilayers

Fig. 5 shows the simulated SAXS curves obtained with a =

150 Å (left-hand panels) and a = 250 Å (right-hand panels) for

three transmembrane proteins [panels (a) and (b)], for water

pores [panels (c) and (d)] and for cytochrome c in different

positions with respect to the bilayer centre [panels (e) and

( f)]. Such systems are represented in Figs. S5–S8. In all cases,

the simulations have been done at 3 mM DPPC and with a

unique island–island distortion factor ga = 0.3. Corresponding

SANS simulations at xD = 1 are shown in Fig. S9.

The form factors of each protein (represented in Fig. 6)

were determined with the SASMOL method (Ortore et al.,

2009) without considering the difference in the mass density

between the first hydration shell water and bulk water.

Subsequently, the calculated form factors were fitted with a

core–shell cylinder model, according to equation (S11) shown

in the supporting information. Note that this approximation is

necessary in order subsequently to describe the proteins

embedded in the membranes using the island model intro-

duced in Section 2. The fitting parameters are the radius R of

the cylinder core, the shell thickness �, and the fractions �i and

�e of polypeptide matter in the core and shell regions,

respectively, described in Table 3. Curves simulated with

SASMOL and the best fits obtained by the core–shell cylinder

model are shown in Fig. S10. The fitted parameters were

related to the cylindrical islands used to describe the struc-

tures of the transmembrane proteins (aquaporin, bacter-

iorhodopsin and ATPase) in a DPPC bilayer with the SASBIN

model. In detail, the island is formed by two cylindrical shells

(Ns = 2), with N1 = 1 and N2 = 1. The corresponding radii are

R1 = R and R2 = R + � and the SLDs are those obtained by the

core–shell cylinder model [equations (S13) and (S14) of the

supporting information]. The thicknesses are D1, 1 = D1, 2 = L.

For aquaporin and bacteriorhodopsin, to simulate perfect

positioning within the bilayer, we set z1, 1 = z1, 2 =�L/2. On the

other hand, for ATPase, since almost half of the protein’s

longest dimension is embedded in the bilayer [see Fig. 6(c)],

we set z1, 1 = z1, 2 = �L/4. Considering the area of the protein

towards the xy plane, ap ¼ �R2
2, and the area per polar head of

DPPC, aDPPC, an expression of the protein concentration Cp as

a function of the lattice parameter a can be easily derived, Cp =

CbaDPPC/[(31/2)a2
� 2ap]. Values are reported in the legends of

Fig. 5(a) and 5(b). The volume fraction of the sample is cV =

NA(CbvDPPC + Cpvp).

It should be noted that a values of 150 and 250 Å were

chosen because the largest studied protein radius (ATPase) is

42.8 Å, i.e. a total cylindrical diameter of ca 86 Å. Thus, the

distance between the islands was less than twice or three times

their diameter, for comparison. Furthermore, each of the

transmembrane proteins has an aqueous pore of different

dimension ranging from 5.8 to 18 Å (Table 3). Although the

proteins produce different scattering profiles with respect to

the protein-free DPPC bilayer [Figs. 5(a) and 5(b)], the most

marked effect is the smoothness of the oscillation minima,
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Table 3
Protein parameters used in the simulations of SAXS and SANS curves
shown in Fig. S10.

Aquaporin
(PDB 3d9s)

Bacterio-
rhodopsin
(PDB 1fbb)

ATPase
(PDB 3wgv)

Cytochrome c
(PDB 1giw)

Mw (g mol�1) 102 505 73 690 109 942 11 721
Vp (Å3) 133 006 96 506 138 965 14 839
R (Å) 5.78 8.01 18.2 0.262
� (Å) 28.6 21.0 24.6 15.0
�i 0.211 0.0195 1.00 0.718
�e 0.904 0.870 0.0557 0.886
L† (Å) 41.4 45.5 107 22.8
�p,X (e Å�3) 0.411 0.411 0.420 0.420
�p,N (10�6 Å�2) 2.828 2.732 3.009 3.119

† Input parameters are derived parameters.

Table 4
Best fit parameters of the curves shown in Fig. 7 representing the
transmembrane protein bacteriorhodopsin in a DPPC bilayer.

The length unit is ångströms. For X-rays, electron densities are expressed in
e Å�3. For neutrons, SLDs are expressed in 10�6 Å�2.

In Out

R1 8.01 8 � 1
t 21.0 20.8 � 0.6
�e 0.870 0.800 � 0.003
�i 0.0195 0.05 � 0.02
L† 45.5 49.2 � 0.7
D1,b 12.0 11.6 � 0.2
D2,b 10.6 11.3 � 0.1
D3,b 3.64 3.0 � 0.1
�1,b,X 0.411 0.414 � 0.001
�1,b,N 4.29 4.26 � 0.05
�2,b,X 0.316 0.318 � 0.001
�2,b,N �0.618 �0.80 � 0.06
�3,b,X 0.247 0.231 � 0.002
�3,b,N �0.126 �0.2 � 0.3
�1,b 2.56 2.9 � 0.2
�2,b 2.22 2.34 � 0.07
�3,b 1.74 2.4 � 0.2
ga 0.300 0.36 � 0.02

† Input parameters are derived parameters.



which is correlated to the a values as discussed for lipid

domains. Note that the ratio between the first, second and

third minimum depths can vary depending on the protein

species. Moreover, the scattering intensity varies with SLD

contrast between the island and the surrounding medium. In

the case of SANS profiles (Fig. S9), all investigated protein

profiles are quite distinguishable for q values between 0.2 and

0.4 Å�1. Therefore, the combined SAXS/SANS experiments

allow us to obtain information about the dimensions of the

immersed proteins in the lipid bilayer. For the sake of vali-

dation, Fig. 7 shows the simulated SAXS and SANS experi-

ments for bacteriorhodopsin, along with the best fitting result

obtained with GENFIT, while Table 4 displays the input and

output fitting parameters. The good agreement between them

confirms the robustness of the SASBIN method. For the sake

of completeness, further GENFIT analyses of simulated
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Figure 5
Simulated SAXS curves of islands in a DPPC bilayer at CDPPC = 3 mM according to the SASBIN model. (a) and (b) Three different transmembrane
proteins (as indicated) with lattice parameter a of (a) 150 Å and (b) 250 Å. (c) and (d) Three different water pores (with indicated pore radius Rw) with
lattice parameter a of (c) 150 Å and (d) 250 Å. (e) and ( f ) Three different positions of cytochrome c (as indicated) with lattice parameter a of (e) 150 Å
and ( f ) 250 Å. In all cases the distortion parameter is ga = 0.3.



SAXS/SANS curves regarding aquaporin and ATPase in a

DPPC bilayer are reported in Figs. S11 and S12, respectively,

and the fitting parameters are shown in Tables S1 and S2.

The case of cytochrome c, here simply considered an

example of a model protein that could interact differently with

a membrane in an anchored (� = 0), a monotopic (� = 1/2) or a

transmembrane geometry (� = 1), is different. For an anchored

configuration, we have, for both shells (Ns = 2, with radii R1 =

R and R2 = R + �), six levels (N1 = N2 = 6), the first five levels

being equal to those of the bilayer and the sixth level consti-

tuted by the protein. For a monotopic configuration, for both

shells (Ns = 2, with radii R1 = R and R2 = R + �) we have four

levels, the first three levels being equal to those of the bilayer

and the fourth level constituted by the protein. The protein

concentration is related to the lattice parameter by Cp =

CbaDPPC/[(31/2)a2
� 2�ap]. Simulated SAXS and SANS curves

for the three cases are shown in Figs. 5(e) and 5( f) and

Figs. S9(e) and S9( f), respectively.

As one can see from Figs. 5(e) and 5( f), the signature of

anchored, monotopic and transmembrane proteins can also be

verified through the ratio between the minimum depths from

SAXS curves, whereas differences in the SANS profiles with

respect to the cytochrome c free DPPC membrane mainly

occurs at q ranging from 0.2 to 0.4 Å�1. Once again, one

can retrieve significant information about anchoring or
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Table 5
Best fit parameters of curves shown in Fig. 8 representing cytochrome c in
a DPPC bilayer with a monotopic configuration.

The length unit is ångströms. For X-rays, electron densities are expressed in
e Å�3. For neutrons, SLDs are expressed in 10�6 Å�2.

In Out

R1 0.262 1.9 � 0.7
� 15.0 12 � 1
�e 0.886 1.0 � 0.1
�i 0.718 1.0 � 0.2
L† 22.8 22 � 1
� 0.500 0.7 � 0.2
D1,b 12.0 11.9 � 0.1
D2,b 10.6 11.07 � 0.06
D3,b 3.64 3.12 � 0.04
�1,b,X 0.411 0.414 � 0.001
�1,b,N 4.29 4.25 � 0.07
�2,b,X 0.316 0.3143 � 0.0008
�2,b,N �0.618 �0.61 � 0.08
�3,b,X 0.247 0.241 � 0.001
�3,b,N �0.126 �0.3 � 0.2
�1,b 2.56 2.69 � 0.08
�2,b 2.22 2.5 � 0.1
�3,b 1.74 1.6 � 0.1
ga 0.300 0.42 � 0.03

† Input parameters are derived parameters.

Figure 6
Ribbon representations of (a) aquaporin (PDB code 3d9s; Horsefield et
al., 2008), (b) bacteriorhodopsin (PDB code 1fbb; Subramaniam &
Henderson, 2000), (c) ATPase (PDB code 3wgv; Kanai et al., 2003) and
(d) cytochrome c (PDB code 1giw; Banci et al., 1999). (Top row) Views in
the xy plane of the membrane. (Bottom row) Views across the membrane
(xz plane) together with a cartoon representation of the lipid bilayer.

Figure 7
Best global fits (black lines) of SAXS (red and blue lines) and SANS
(green and magenta lines) curves of DPPC and bacteriorhodopsin in
DPPC according to the simulations shown in Fig. 5(a) and Fig. S9(a). The
simulated curves have been randomly moved by sampling from a
Gaussian distribution with standard deviation proportional to [d�/
d�(q)]1/2. Curves are vertically displaced for clarity.

Figure 8
Best global fits (black lines) of SAXS (red and blue lines) and SANS
(green and magenta lines) curves of DPPC and cytochrome c in DPPC in
the monotopic configuration according to the simulations shown in
Fig. 5(e) and Fig. S9(e). The simulated curves have been randomly moved
by sampling from a Gaussian distribution with standard deviation
proportional to [d�/d�(q)]1/2. Curves are vertically displaced for clarity.



intercalation of the protein in the lipid membrane from

combined SAXS/SANS data analysis. As an example, Fig. 8

presents the simulated experiment along with the best fitting

result, and Table 5 displays the input and output fitting

parameters, for cytochrome c in a monotopic configuration,

demonstrating the completeness of the methodology used

here.

3.3. Pore-containing membranes

Water pores with radius Rw are described by the geometry

of the inner surface of a torus (Spinozzi et al., 2010). A

representation is provided in Fig. S6. This geometry is mapped

onto a three-level cylinder island (Ns = 3), with radii R1 = Rw,

R2 = Rw + D1, b and R3 = Rw + D1, b + D2, b + D3, b, and the

corresponding number of SLD levels N1 = 0, N2 = 1 and N3 = 3.

The lower z level of the first shell z1, 2 and the thickness of the

region D1, 2 are analytically calculated in such a way that the

volume of the cylindrical shell is equal to the volume of the

part of the inner torus with an x projection between �R2 and

�R1, as shown in Fig. S6. The lower z level of the second shell

z1, 3 and the thicknesses of the two regions D1, 2 and D2, 2 are

calculated in such a way that the volumes of the two cylindrical

shells are equal to the volumes of the two parts of the inner

torus with an x projection between �R3 and �R2, as shown in

Fig. S6. The results lead to these expressions: z1, 1 = �F6D1, b,

D1, 1 = 2F6D1, b, z1, 2 =�F7D1, b + F4F1, D1, 2 = F7D1, b and D2, 2 =

2F4F1. The factors F1 to F7 are given in Section S4. Note that

they depend on the pore radius Rw. Simulated SAXS and

SANS curves for the three values of Rw are shown in Figs. 5(c)

and 5(d) and in Figs. S9(c) and S9(d), respectively.

As one can see from Figs. 5(c) and 5(d), it is possible to

recognize different pore dimensions, ranging from 10 to 30 Å,

from the SAXS curves since the scattering profiles may have

different minimum q positions and the intensities are smaller

than those produced by a pore-free bilayer, due to differences

in the SLD contrast between the pore and the bilayer.

Concomitantly, the SANS curves also reflect the scattering

differences of membranes containing pores [Figs. S9(c) and

S9(d)]. Therefore, the combined SANS/SAXS results can

furnish the values of the pore radius Rw, such as those

produced for instance by peptides and toxins interacting with

membranes, and of the numerical density nd when SLD

inhomogeneities are accounted for as here proposed by the

SASBIN model.

4. Concluding remarks

Small-angle X-ray and neutron scattering have traditionally

been used to determine the structure of single-component

biomimetic membranes that can be represented by unilamellar

and multilamellar vesicles. SAXS and SANS intensities over a

q range are intrinsically related to the Fourier transform of the

SLD profile of the lipid bilayer. In the simplest analysis

commonly reported in the literature, the lipid bilayer thick-

ness and the SLDs of both polar and hydrophobic regions are

considered free parameters that can be determined by the best

fit to the experimental SAS curve. More recently, a method

considering the scattering of lipid chemical groups has been

introduced in the literature (Wiener & White, 1991a,b; Pan et

al., 2015, 2012; De Rosa et al., 2018) which allows us to extract

more in-depth structural details of membranes composed of a

mixture of lipids. SANS has also been applied to investigating

the size of lipid domains by contrast matching (Pencer et al.,

2005; Heberle et al., 2013) and proteins inserted into the

membrane (Spinozzi et al., 2022). In this work, we have

presented the new SASBIN model to analyse SAXS and

SANS curves from large unilamellar vesicles containing SLD

inhomogeneities. These may represent pores and lipid

domains distributed in the lipid bilayer, or proteins anchored

or immersed in the membrane. Through development of the

SASBIN model, we have shown it is possible to recognize the

presence of inhomogeneities in the SAS curves, and their

dimensions and spatial distribution.

5. Related literature

For further literature related to the supporting information,

see Jacrot (1976).
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