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Fluctuation X-ray scattering (FXS) offers a complementary approach for nano-

and bioparticle imaging with an X-ray free-electron laser (XFEL), by extracting

structural information from correlations in scattered XFEL pulses. Here a

workflow is presented for single-particle structure determination using FXS. The

workflow includes procedures for extracting the rotational invariants from FXS

patterns, performing structure reconstructions via iterative phasing of the

invariants, and aligning and averaging multiple reconstructions. The recon-

struction pipeline is implemented in the open-source software xFrame and its

functionality is demonstrated on several simulated structures.

1. Introduction

Advances in X-ray sources and instrumentation over recent

decades (Jaeschke et al., 2016) have been accompanied by an

extensive development of techniques and methods for X-ray

diffraction and imaging (Chapman et al., 2006; Rodenburg,

2008; Nugent, 2010; Nakasako et al., 2020). The emergence of

high-power X-ray free-electron lasers (XFELs) (Ueda, 2018)

opened new horizons for crystallographic studies of biological

materials (Chapman et al., 2011; Boutet et al., 2012; Wiedorn et

al., 2018), most importantly in the time domain (Pandey et al.,

2020; Orville, 2020). At the same time, intense and ultrashort

X-ray pulses produced by an XFEL made it possible to carry

out ‘diffraction before destruction’ experiments on individual

bioparticles (Bogan et al., 2008; Mancuso et al., 2010; Seibert et

al., 2011; Hantke et al., 2014; Kimura et al., 2014; Ekeberg et al.,

2015; Rose et al., 2018), as it was previously envisioned (Solem

& Baldwin, 1982; Neutze et al., 2000; Gaffney & Chapman,

2007). Such experiments open up the possibility of imaging

particles for which it is difficult or impossible to obtain crys-

tals. At the same time, while serial crystallography with an

XFEL allows for high-resolution structure determination of

proteins and macromolecules, single-particle imaging (SPI) is

a developing way to provide biologically significant structural

information (Aquila et al., 2015; Chapman, 2019; Bielecki et

al., 2020).

Several approaches have been proposed so far for structure

determination of bioparticles from scattering measurements

with an XFEL. The most common approach is based on

iterative phasing of the measured single-particle intensity

patterns (Fienup, 1982; Marchesini, 2007), which enables ab

initio high-throughput imaging of 2D structure projections

(Seibert et al., 2011; Hantke et al., 2014; Kimura et al., 2014).
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Since, generally, a complete 3D structure of a particle is of

interest, it is necessary to assemble the 3D scattered intensity

distribution from 2D diffraction patterns, measured from

reproducible particles in unknown orientations (Ekeberg et

al., 2015; Rose et al., 2018; Nakano et al., 2018; Assalauova et

al., 2020). The latter is known as the orientation determination

problem and is often solved using Bayesian methods (Loh &

Elser, 2009; Flamant et al., 2016) or other approaches (Bortel

& Tegze, 2011; Yefanov & Vartanyants, 2013; Fung et al., 2009;

Giannakis et al., 2012; Kassemeyer et al., 2013; Nakano et al.,

2017). Such a two-step SPI approach, involving orientation

determination and iterative phasing, can only be applied to the

diffraction snapshots measured from individual particles. This

might be challenging to accomplish in practice for arbitrary

small bioparticles such as proteins, for which the individual

snapshots are weak and noisy (Ekeberg et al., 2022).

One of the possible ways to study weakly scattering

noncrystalline particles is to perform X-ray measurements on

a multiparticle system, as realized in biological small-angle

X-ray scattering (SAXS) (Chaudhuri et al., 2017; Vela &

Svergun, 2020). Such solution scattering measurements are,

however, associated with loss of information caused by the

rotational averaging of intensities from individual particles in

the ensemble, and typically result in a low-resolution fit of the

particle structure. At the same time, taking solution scattering

snapshots by XFEL pulses which are shorter than the char-

acteristic rotational diffusion time of the particles allows one

to measure structural information that is usually inaccessible

in traditional SAXS at synchrotron sources. This additional

information is hidden in the scattered intensity fluctuations

defined by an instantaneous configuration of the ensemble of

particles, and can be extracted by means of angular cross-

correlation functions (CCFs). The fluctuation X-ray scattering

(FXS) approach thus seeks to determine the structure of a

single particle, by using statistically averaged CCFs measured

from a dilute multiparticle system (Kam, 1977, 1980; Kam et

al., 1981). Therefore, FXS can potentially bridge the gap

between conventional imaging and crystallographic methods.

FXS is a natural extension of SAXS because it also relies on

rotationally invariant descriptions of the 3D single-particle

intensity distribution (Kurta et al., 2017). Similarly to SAXS,

forward modeling approaches are also applicable to FXS data,

where the reciprocal-space constraints are expressed by CCFs

(Liu et al., 2013; Malmerberg et al., 2015; Kurta et al., 2017). In

fact, the information content of FXS measurements is

substantially higher as compared with SAXS. For instance, in

the case of 2D structure determination, it has been shown that

the information accessible via FXS is equivalent to complete

knowledge of the 2D single-particle intensity pattern (Kurta et

al., 2013; Pedrini et al., 2013). Moreover, despite the limited

information content of two-point CCFs (Elser, 2011), they are

sufficient to produce successful ab initio 3D structure recon-

structions (Donatelli et al., 2015; Kurta et al., 2017; Pande et al.,

2018).

Although the idea of biological FXS was formulated almost

half a century ago (Kam, 1977), it was first put into practice

only recently with the advent of XFELs (Kurta et al., 2017;

Pande et al., 2018). Progress in the development of X-ray

instrumentation and sample delivery systems has led to a

recent surge in FXS-related activity (Wochner et al., 2009;

Altarelli et al., 2010; Saldin et al., 2010, 2011; Kirian et al., 2011;

Kurta et al., 2012; Starodub et al., 2012; Mendez et al., 2016;

Martin, 2017). At the same time, practical applications of FXS

are still quite rare compared with the more traditional SPI or

SAXS (Kurta et al., 2016). The availability of relevant practical

algorithms and open-source software that implement the quite

involved and often obscure mathematical apparatus of FXS

may help to advance in this direction. Here we present a

workflow for single-particle structure determination via

iterative phasing based on rotational invariants which are

accessible in FXS. The workflow is implemented in the open-

source software suite xFrame, which includes methods for

computing the CCF, extracting rotational invariants and

performing structure reconstructions, as well as subsequent

alignment and averaging of multiple reconstructions.

2. Theoretical background

2.1. Fluctuation X-ray scattering

We first define the real-space single-particle electron

density by �(r) and the corresponding scattered X-ray inten-

sity distribution in reciprocal space by I(q), where r and q are

the real- and reciprocal-space vectors, respectively. Within the

kinematic X-ray scattering approximation the density �(r) is

related to the scattered intensity I(q) in the far field via the

absolute square of its Fourier transform b�ðqÞ,

IðqÞ ¼ KðqÞ
R
�ðrÞ expð� iqrÞ dr

�
�

�
�2¼ KðqÞ b�ðqÞ

�
�

�
�2; ð1Þ

where K(q) is a q-dependent term which encompasses rele-

vant experimental factors, e.g. polarization of X-rays, incident

intensity fluctuations etc. [see, for instance, a review of

possible intensity corrections in SAXS experiments (Pawn,

2013)]. Hereafter, we assume that each experimental image

can be properly corrected for K(q), so that the resulting scaled

I(q) is defined only by the electron density of the sample. We

also assume that any background scattering present in realistic

measurements (e.g. solvent scattering or parasitic scattering

from beamline components), which is neglected in equation

(1), can also be properly corrected. We can then consider

realizations of an ensemble of Np � 1 reproducible particles,

randomly positioned and oriented in space. Similarly to

conventional SAXS from dilute solutions of biological parti-

cles (Vela & Svergun, 2020), we assume scattering conditions

such that interference scattering between different particles

can be neglected. Furthermore, let us denote the electron

density of a particular instance of the dilute multiparticle

system by �!(r) and its scattered intensity by I!(q), where !

stands for the orientation states of all contained Np particles.

In a typical FXS experiment (Fig. 1), the instantaneous scat-

tered intensity IE�
! ðqÞ measured on a large-area detector

represents a 2D cut of the 3D scattered intensity I!(q) defined

by a portion of the Ewald sphere E�, where � denotes the

wavelength of the incident X-ray beam, indicating the
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dependence of the Ewald sphere radius on the photon energy.

This geometric condition can be formulated in spherical

coordinates (q � 0, 0 � � � �, 0 � � < 2�) as a q dependence

of the polar angle � (Saldin et al., 2009),

�ðqÞ ¼ �=2 � arcsin½q=ð2�Þ�; ð2Þ

where � = 2�/� is the angular wavenumber, q = jqj =

2� sinð�=2Þ is the magnitude of the scattering vector, � is the

scattering angle, and thus IE�
! ðq; �Þ = b�! q; �ðqÞ; �½ �

�
�

�
�2 [see

Fig. 1(b)]. By slight abuse of notation, we shall from now on

use I! to denote both the full 3D intensity distribution of a

sample and its 2D cut IE�
! along the Ewald sphere.

The central idea of FXS is that from a collection of M

scattering images I!i
ðq; �Þ, i = 1, . . . , M, corresponding to M

random realizations of the multiparticle system, information

about the single-particle electron density �(r) [equation (1)]

can be extracted. This can be accomplished using the angular

CCFs (Kam, 1977, 1980). In the present study we employ the

average two-point CCF defined at distinct momentum transfer

magnitudes q and q0 as (Kam, 1977)

CMðq; q0;�Þ ¼
1

2�M

XM

i¼1

Z2�

0

I!i
ðq; �ÞI!i

ðq0;�þ �Þ d�; ð3Þ

where 0 � � < 2� is the angular coordinate and statistical

averaging is performed over M scattering patterns.

2.2. Rotational invariants in fluctuation X-ray scattering

In order to establish the connection between the single-

particle intensity I(q) [equation (1)] and CM(q, q0, �) [equa-

tion (3)], it is customary to express I(q) using a suitable

orthonormal basis. In this work we consider two cases of

practical interest, which we shall call the 2D and 3D cases:

they correspond to uniform distributions of particle orienta-

tions !i over (a) the rotation group SO(2) in two dimensions

or (b) the rotation group SO(3) in three (see Fig. 2). Using

circular harmonics in the 2D case and spherical harmonics in

the 3D case, it is possible to show that I(q) and CM(q, q0, �)

can be related via the rotational invariants Bn and Bl,

respectively (Kam, 1977; Saldin et al., 2009; Altarelli et al.,

2010, 2012; Donatelli et al., 2015; Kurta et al., 2016).

2.2.1. 2D case: rotational invariants Bn. In the 2D case we

are interested in a 2D projection of the 3D particle structure,

under the constraint that orientations of the particles

composing a dilute system can only differ from each other by

rotations around axes parallel to the incident X-ray beam

[Figs. 2(a) and 2(b)]. Experimentally such situations have been

realized in a study of nanoparticles deposited on a membrane

(Pedrini et al., 2013). According to the projection-slice

theorem, the 2D projection of the structure is related to the

scattered intensity distribution measured in a plane that cuts

reciprocal space orthogonal to the incident-beam direction

and passes through the reciprocal-space origin. Such

measurements can only be performed at ‘flat Ewald sphere’
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Figure 2
Snapshots of the samples corresponding to the (a), (b) 2D and (c), (d) 3D
cases (see Section 2.2). Particle orientations are uniformly distributed (a),
(b) over the rotation group SO(2) about the z axis (which is parallel to the
incident X-ray beam direction) and (c), (d) over the rotation group
SO(3). Here (a) and (c) are the bulk 3D samples, while (b) and (d) are the
planar 2D samples.

Figure 1
Scattering geometry of an FXS experiment. (a) The incident X-ray beam
is diffracted from a sample solution (or aerosol) and recorded in the far
field on a 2D detector. Here �! corresponds to the illuminated portion of
the dilute sample and I! denotes the scattered intensity. (b) Measured
diffraction pattern mapped on the Ewald sphere E�, where q ¼ kout � kin

is the scattering vector, kin is the wavevector of the incident X-ray pulse,
kout is the wavevector of the scattered pulse and jkinj ¼ jkoutj ¼ �.



conditions, e.g. in SAXS geometry, when �(q) ’ �/2 [see

equation (2)].

Considering the 2D single-particle scattering intensity

[equation (1)] in polar coordinates (q, �), the circular

harmonic expansion (Fourier series expansion) of I(q, �) can

be specified as

Iðq; �Þ ¼
P1

n¼� 1

InðqÞ expðin�Þ; ð4aÞ

InðqÞ ¼
1

2�

Z2�

0

Iðq; �Þ expð� in�Þ d�; ð4bÞ

where In(q) are circular harmonic expansion coefficients of the

single-particle scattering intensity.

Using equation (4a) in (3), the average CCF at M!1 can

be written as (Kurta et al., 2013)

Cðq; q0;�Þ � lim
M!1

CMðq; q0;�Þ ¼
P1

n¼� 1

Bnðq; q0Þ expðin�Þ;

ð5Þ

which identifies the invariants Bn(q, q0) as circular harmonic

expansion coefficients of Cðq; q0;�Þ. Similar to the 3D case,

this result is valid for a dilute system of particles (Np� 1), with

Bn(q, q0) expressed as

Bnðq; q0Þ ¼ InðqÞI
�
n ðq
0Þ

N2
p; if n ¼ 0;

Np; otherwise;

�

ð6Þ

where the asterisk ‘*’ denotes complex conjugation.

Note that equation (6) provides a direct connection

between the experimentally accessible invariants Bn and the

harmonic expansion coefficients In(q) of the 2D single-particle

intensity. The rotational invariance of Bn is a direct conse-

quence of the Fourier shift theorem. It implies that a rotation

Rð’Þ by an angle ’ acts on the harmonic coefficients In(q) by

multiplication with a phase factor, i.e.

InðqÞ � !
Rð’Þ

InðqÞ expðin’Þ: ð7Þ

2.2.2. 3D case: rotational invariants Bl. In the 3D case we

are interested in the 3D structure of particles, while the

orientations of the particles composing a dilute system are

uniformly distributed over SO(3) [Figs. 2(c) and 2(d)]. This

situation corresponds to typical conditions in conventional

biological SAXS measurements. The spherical harmonic

expansion of the single-particle scattered intensity I(q, �, �)

[equation (1)] can be specified as

Iðq; �; �Þ ¼
P1

l¼0

Pl

m¼� l

Il
mðqÞY

l
mð�; �Þ; ð8aÞ

Il
mðqÞ ¼

R2�

0

R�

0

Iðq; �; �ÞYl�
m ð�; �Þ sin � d� d�; ð8bÞ

where Yl
mð�; �Þ are spherical harmonics and Il

mðqÞ denote the

expansion coefficients. By substituting equation (8a) into (3),

the average CCF at M!1 can be expressed via (Kam, 1977;

Saldin et al., 2009)

Cðq; q0;�Þ � lim
M!1

CMðq; q0;�Þ

¼
P1

l¼0

Blðq; q0ÞFlðq; q0;�Þ; ð9Þ

where Bl(q, q0) represent the rotational invariants and

Fl(q, q0, �) is defined using Legendre polynomials Pl via

Flðq; q0;�Þ ¼ Plðsin � sin �0 cos �þ cos � cos �0Þ; ð10Þ

in which the angles � and �0 are related to q and q0 using

equation (2). Importantly, equation (9) is also valid when

averaging CM(q, q0, �) over scattering intensities I!i
ðq; �Þ

from a dilute system of (Np � 1) particles and the invariants

Bl(q, q0) can be expressed in terms of the expansion coeffi-

cients Il
mðqÞ by

Blðq; q0Þ ¼
Xl

m¼� l

Il
mðqÞI

l�
m ðq

0Þ
N2

p; if l ¼ 0;

Np; otherwise:

�

ð11Þ

The rotational invariance of Bl(q, q0) is a direct conse-

quence of the fact that for a given order l the spherical

harmonics Yl
mð�; �Þ satisfy

Pl

m¼� l

Yl
mð�; �ÞY

l�
m ð�; �Þ ¼ ð2l þ 1Þ=4�

which, as a constant, is invariant under rotations. Alter-

natively, consider that a rotation Rð�; �; �Þ in SO(3) defined

by Euler angles (�, �, �) acts on the expansion coefficients

Il
mðqÞ via the Wigner D matrices Dl

nmð�; �; �Þ, i.e.

Il
mðqÞ � !

Rð�;�;�Þ Pl

n¼� l

Il
nðqÞD

l
nmð�; �; �Þ; ð12Þ

which satisfy the orthogonality condition

Pl

m¼� l

Dl�
nmð�; �; �ÞD

l
n0mð�; �; �Þ ¼ �nn0 ;

where �nn0 is the Kronecker delta (Rose, 1957).

2.3. Information content of Bn and Bl

For simplicity, we shall proceed by considering the single-

particle case (Np = 1). Before making use of the invariants Bn

and Bl [equations (6) and (11)] for single-particle structure

recovery, it is instructive to understand how much information

they retain about the single-particle intensity I(q). Consid-

ering a discretization of the momentum transfer variable q

[see equation (47) in Appendix A], it is possible to treat the

harmonic coefficients as complex matrices, that is In for fixed n

is a matrix of size N � 1 (i.e. a column vector) with elements

In(qk), and Il for fixed l is a matrix of size N � (2l + 1) with

elements Il
mðqkÞ. This allows one to express the invariants for

fixed orders n and l as matrix products,

Bn ¼ InIyn; Bl ¼ IlI
y
l ; ð13Þ

where the symbol ‘†’ denotes the conjugate transpose. By

construction, these are positive semi-definite Hermitian

matrices, and thus diagonalizable with positive eigenvalues

(Saldin et al., 2009; Donatelli et al., 2015). The maximal rank of

Bn is 1, while the maximal rank of Bl is Nl = min(2l + 1, N).
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Together this means that there exists a complex vector vn of

length N and a positive eigenvalue �n, as well as a complex

N � Nl matrix Vl and a diagonal matrix Kl of eigenvalues

�l;1; . . . ; �l;Nl
, such that

Bn ¼ vn�nvyn; Bl ¼ VlKlV
y
l : ð14Þ

Equations (13) and (14) show two different decompositions of

the same positive semi-definite matrices Bn and Bl in the 2D

and 3D cases, respectively. Since such decompositions are

unique up to unitary transformations (Kam, 1977), there exists

a complex phase factor un such that uu† = 1 (here the phase

factor is a complex number with an absolute value of 1 or,

equivalently, a complex unitary matrix u of size 1 � 1, i.e. a

singleton matrix), as well as a complex matrix Ul of size

Nl � (2l + 1) such that UlU
y
l ¼ id (hereafter ‘id’ stands for the

identity matrix), which satisfy

In ¼ vn

ffiffiffiffiffi
�n

p
un ¼evnun; Il ¼ Vl

ffiffiffiffiffi
Kl

p
Ul ¼ eVlUl; ð15Þ

where for brevity we defined evn ¼ vn

ffiffiffiffiffi
�n

p
and eVl ¼ Vl

ffiffiffiffiffi
Kl

p
.

One may notice the formal analogy of the expressions for In

and Il. The information contained in each invariant is thus

enough to specify the corresponding intensity harmonic

coefficients, In(q) or Il
mðqÞ, up to a unitary matrix for each

expansion order. In the present context, the problem of

determining these unknown unitary matrices is analogous to

solving the orientation determination problem in SPI.

In coherent X-ray diffraction imaging (CXDI), and parti-

cularly in SPI, to reconstruct the real-space structure one

seeks to solve the phase problem using the measured scat-

tering intensities as constraints (Chapman et al., 2006). The

inverse problem in FXS can be solved in a similar way, by

employing the measured invariants Bn and Bl as constraints.

The main approaches to solving the inverse problem in FXS

include analytical phasing (Kurta et al., 2013; Pedrini et al.,

2013), iterative phasing (Donatelli et al., 2015; Kurta et al.,

2017; Pande et al., 2018) and optimization (Saldin et al., 2011;

von Ardenne et al., 2018). The single-particle structure

reconstruction workflow presented below is based on the

multitiered iterative phase retrieval algorithm (MTIP)

(Donatelli et al., 2015). The MTIP algorithm represents a

generalization of conventional iterative phasing schemes

employed in CXDI and enables ab initio 2D and 3D single-

particle structure recovery (e.g. without symmetry constraints)

from the rotational invariants Bn and Bl.

3. Single-particle structure reconstruction workflow

A complete workflow for single-particle structure determina-

tion from diffraction patterns measured in an FXS experiment

includes a number of procedures:

(i) Statistical averaging of the angular two-point CCF.

(ii) Extraction of rotational invariants (Bn or Bl) from the

CCF.

(iii) Reconstruction of the single-particle density �(r) and

intensity I(q) via iterative phasing using the invariants.

(iv) Alignment and averaging of the reconstruction results.

A detailed description of the procedures implemented in

our reconstruction workflow is provided in the following

subsections.

3.1. Calculation of the average two-point CCF

In practical calculations of the angular CCF (3) we consider

a uniform polar grid. The angular grid points, �t and �t, are

given by �t = �t = t2�/N�, where N� is the number of angular

grid points, and the radial sampling points are defined in

equation (47). The average two-point CCF can be determined

on this grid as

CMðqk; qp;�tÞ ¼
1

M

XM

i¼1

"
XN� � 1

j¼0

I!i
ðqk; �jÞWiðqk; �jÞ

� I!i
ðqp;�t þ �jÞWiðqp;�t þ �jÞ

#

�"
XN� � 1

j¼0

Wiðqk; �jÞWiðqp;�t þ �jÞ

#

; ð16Þ

where Wi(qk, �j) is a binary mask for the ith image (Zaluzhnyy

et al., 2017). The mask has the value of 0 for all sampling points

(qk, �j) for which image data should be excluded (masked)

from the analysis, and the value of 1 otherwise. Equation (16)

suggests that, in practice, the CCF can be successfully deter-

mined even if many pixels are masked on individual diffrac-

tion patterns (see Section S4 of the supporting information), in

the limiting case allowing measurements to be made using

two-point detectors [see, for instance, Clark et al. (1983)].

3.2. Extraction of the rotational invariants

In the 2D case, equation (5) directly identifies the invariants

Bn(q, q0) as the coefficients of the circular harmonic expansion

of the averaged CCF Cðq; q0;�Þ, and thus their determination

is straightforward. In the 3D case, the relation between the

invariants Bl(q, q0) and Cðq; q0;�Þ, given by equations (9) and

(10), is more complicated. At flat Ewald sphere conditions

(small-angle approximation) equation (10) simplifies to

Flðq; q0;�Þ ¼ Plðcos �Þ. In this case equation (9) represents

the Legendre series expansion of Cðq1; q2;�Þ, and the invar-

iants Bl(q, q0) can be extracted by applying the inverse

Legendre transform to Cðq1; q2;�Þ. In general, at curved

Ewald sphere conditions [�(q) 6¼ �/2], the inverse Legendre

transform extraction is not applicable since Fl(q, q0, �) do not

satisfy the orthogonality property of Legendre polynomials;

therefore other approaches need to be applied.

A common way of extracting the invariants Bl(q, q0) is to

consider equation (9), for each pair of fixed q and q0 and

discretized angular coordinate � [see CM(qk, qp, �t) in

equation (16)], as a system of N� linear equations. By treating

the CCF Cðq; q0;�Þ at fixed q and q0 as a vector C� of size

N�, the invariant Bl(q, q0) as a vector Bl of size L + 1, and

Fl(q, q0, �) as an N� � (L + 1) matrix Fl
�, it is possible to

specify this system of linear equations as

C� ¼ Fl
�Bl; ð17Þ
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where L is the maximal considered invariant order, defined by

the complexity of the particle structure and extent of the

measured correlation data in reciprocal space. In practical

applications, usually N� > L; therefore, the matrix Fl
� is not

square, and the overdetermined system of linear equations

(17) may only be solved approximately. Usually least-squares

methods such as the pseudo-inversion (Ford, 2014), based on a

singular value decomposition of Fl
�, are used to solve such

linear systems.

Here we propose a different extraction method for the

invariants Bl which is based on the circular harmonic expan-

sion coefficients of the averaged CCF. It is possible to express

Fl(q, q0, �) in equation (9) in terms of spherical harmonics

Yl
mð�; �Þ as (Saldin et al., 2009)

Flðq; q0;�Þ ¼
1

2l þ 1

Xl

m¼� l

Ym
l ð�; �ÞY

m�
l ð�

0; �þ�Þ; ð18Þ

while the spherical harmonics can be specified using the

associated Legendre polynomials P
jmj
l as

Yl
mð�; �Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l þ 1Þðl � mÞ!

4�ðl þmÞ!

s

P
jmj
l ðcos �Þ expðim�Þ: ð19Þ

By combining equations (18) and (19) with (9), the averaged

CCF can be expressed as

Cðq; q0;�Þ ¼
X1

l¼0

Blðq; q0Þ
Xl

m¼� l

ðl � mÞ!

4�ðl þmÞ!
P
jmj
l ðcos �Þ

� P
jmj
l ðcos �0Þ expð� im�Þ: ð20Þ

From this equation one may see that the circular harmonic

expansion coefficients Cnðq; q0Þ ¼ ð1=2�Þ
R 2�

0
Cðq; q0;�Þ �

expð� in�Þ d� take the form

Cnðq; q0Þ ¼
P

l�jnj

Blðq; q0ÞP
jnj

l ðcos �ÞP
jnj

l ðcos �0Þ ð21Þ

with

P
jnj

l ðcos �Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl � nÞ!

4�ðl þ nÞ!

s

P
jnj
l ðcos �Þ: ð22Þ

Since the associated Legendre polynomials P
jnj
l vanish for

l < |n|, the summation in equation (21) involves only orders l�

|n|. This means that Bl for a given l is completely determined

by the circular harmonic expansion coefficients C0; . . . ; Cl, up

to the order n = l. Considering a cutoff order L we obtain a

linear system of equations that can be written in matrix form

as

Cn ¼ Pl
nBl; ð23Þ

where n, l � L, and Pl
n is the (L + 1) � (L + 1) upper-

triangular matrix whose elements are

Pl
n ¼ P

jnj

l ðcos �ÞP
jnj

l ðcos �0Þ: ð24Þ

The upper-triangular linear system (23) can be directly solved

using back-substitution (Ford, 2014). The computational

complexity of the proposed method of extraction of Bl,

including calculation of the Fourier coefficients Cnðq; q0Þ, is

given by O N� logðN�Þ þ ðLþ 1Þ2
� �

, as opposed to

O½N2
�ðLþ 1Þ� when solving equation (17) directly using

singular value decomposition.

Note that B0(q, q0) can be directly determined from the

measured SAXS intensity profiles, ISAXSðqÞ ¼ ½1=ð2�MÞ� �
PM

i¼1

R 2�

0
I!i
ðq; �Þ d� [see equation (3)], as B0(q, q0) =

4�ISAXS(q)ISAXS(q0), where the 4� factor is due to the chosen

normalization of the spherical harmonics [see equation (19)].

This way of determining B0(q, q0) should be preferred in the

case of noisy diffraction patterns, and is unavoidable if more

complex forms of the CCFs are applied to mitigate back-

ground scattering [see, for instance, Kurta et al. (2017)].

3.3. Iterative phasing using the MTIP algorithm

For ab initio single-particle structure determination from

the extracted invariants Bn or Bl, we employ the MTIP algo-

rithm (Donatelli et al., 2015; Kommera et al., 2021) with certain

modifications (see Sections 3.3.3 and 3.3.4). Similarly to other

iterative phasing methods used in CXDI/SPI, the single-

particle structure is recovered by iteratively enforcing

constraints in real and reciprocal spaces. Details of the

implemented iterative phasing loop are described in the

following subsections.

3.3.1. Real-space constraints. A finite size of a particle leads

to the formulation of the commonly used real-space support

constraint, which defines a region of space where the electron

density is expected to have nonzero values. Each reconstruc-

tion run starts with an initial random guess for the electron

density �(r) of a particle. In our implementation the initial

support function S(r) is defined as a sphere, which can be

optimally set to the expected size of the reconstruction target.

As the reconstruction progresses the support constraint is

systematically updated according to the shrinkwrap (SW)

algorithm (Marchesini et al., 2003), that is the updated support

is determined as an isosurface at a specified threshold of the

convolution between the current density guess �0(r) and a

Gaussian function, i.e.

S �0ðrÞ ¼
1; if �0ðrÞ

�
�

�
� ?

1

�
ffiffiffiffiffiffi
2�
p exp �

jrj2

2�2

� �� �� �

>�;

0; otherwise:

8
><

>:

ð25Þ

Here ? denotes convolution, and the free parameters � and �

define the standard deviation of the Gaussian function and a

relative threshold, respectively. Usually, the initial value of � is

chosen to be slightly above the expected full-period resolution

of the reconstructed density and gradually decreases as the

reconstruction progresses. The threshold � is defined relative

to the maximum density value max½�0ðrÞ� in the current

phasing iteration and remains constant.

An often encountered set of real-space constraints used in

X-ray imaging can be formulated as a (density) value

projection PV, implemented here in the following general

form:
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PV �
0ðrÞ ¼ �ReðrÞ þ i�ImðrÞ; ð26aÞ

with

�ReðrÞ ¼

Vmin
Re ; if Re½�0ðrÞ�<Vmin

Re ;

Vmax
Re ; if Re½�0ðrÞ�>Vmax

Re ;

Re½�0ðrÞ�; otherwise

8
<

:
ð26bÞ

and

�ImðrÞ ¼

Vmin
Im ; if Im½�0ðrÞ�<Vmin

Im ;

Vmax
Im ; if Im½�0ðrÞ�>Vmax

Im ;

Im½�0ðrÞ�; otherwise:

8
<

:
ð26cÞ

Re(·) and Im(·) define the real and imaginary parts of the

corresponding arguments, and Vmin
Re , Vmax

Re , Vmin
Im and Vmax

Im are

free parameters. Depending on a particular choice of these

four parameters, it is possible to set arbitrary bounds on the

real and imaginary parts of �(r), particularly to impose reality

or non-negativity. The value projection of �0(r) on the support

function can then be defined as

PSV �
0ðrÞ ¼ SPV �

0ðrÞ: ð27Þ

The real-space domain incorporates the well known X-ray

imaging algorithms, such as error reduction (ER) (Gerchberg

& Saxton, 1972) and hybrid input–output (HIO) (Fienup,

1982). Iterative update of �(r) by these methods can be

expressed using the projection PSV. In the ER scheme, the

input electron density in the (i + 1)th iteration is defined using

the output of the ith iteration as (see Fig. 3)

�ðiþ1ÞðrÞ ¼ PSV�
0
ðiÞðrÞ; ð28Þ

while for the HIO algorithm we have

�ðiþ1ÞðrÞ ¼
�0ðiÞðrÞ; if PSV�

0
ðiÞðrÞ ¼ �

0
ðiÞðrÞ;

�ðiÞðrÞ � �½�
0
ðiÞðrÞ � PSV�

0
ðiÞðrÞ�; otherwise;

�

ð29Þ

where � 2 (0, 1] is a free parameter that regulates the strength

of the negative feedback (Fienup, 1982; Donatelli et al., 2015).

3.3.2. Reciprocal-space constraints. The main reciprocal-

space constraint is realized by means of the correlation

projection PC (see Fig. 3), which takes the current approx-

imation of the single-particle intensity harmonic coefficients In

or Il
m and determines the closest function, in the discrete L2

norm, whose harmonic coefficients comply with equation (15).

In the 2D case this corresponds to finding the complex

phase factors un (with |un| = 1) for which the discrete L2

distance between In andevnun becomes minimal (Donatelli et

al., 2015), that is

un ¼ arg min
un with junj¼1

kIn � evnunk
2
q ¼ arg max

un with junj¼1

Re hIn;evnuniq
� �

¼
hIn;evniq

jhIn;evniqj
¼

PN� 1

k¼0 InðqkÞev
�
nðqkÞqk

j
PN� 1

k¼0 InðqkÞev
�
nðqkÞqkj

: ð30Þ

|| · ||q and h ·, · iq are the L2 norm and scalar product, respec-

tively, weighted by qk in order to comply with a continuous L2

norm defined on a spherical grid. In the derivation of equation

(30) it was considered that the maximal real part of the scalar

product hIn;evnuniq is obtained for the phase factor un that

forces it to become real. Using the latter result, it is possible to

formulate the correlation projection PC in the 2D case as

PCIn ¼evn

hIn;evniq

jhIn;evniqj
� I0n: ð31Þ

Analogously, in the 3D case one seeks to minimize (Donatelli

et al., 2015)

arg min
Ul2Uð2lþ1Þ

kIl � eVlUlkFq
¼ arg min

Ul2Uð2lþ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

m;k

q2
kðIl � eVlUlÞ

2
m;k

r

ð32Þ

over all unitary matrices Ul of size 2l + 1, where jj � jjFq
is the

Frobenius norm (Ford, 2014) weighted by the square of the

radial points q2
k. The weighting factors q2

k are again present to

comply with the L2 norm defined on a spherical grid. Such a

minimization problem is known as a unitary Procrustes

problem (Gower & Dijksterhuis, 2004). Instead of zero

padding eVl in the case of Nl � (2l + 1), we alter the mini-

mization constraint of equation (32) in requiring Ul to be a

semi-unitary matrix, by which we mean an Nl � (2l + 1) matrix

that satisfies UlU
y
l ¼ id. A solution to the minimization

problem (32) is found using the singular value decomposition
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Figure 3
A scheme of the implemented MTIP loop. The filled orange squares mark the entry points for constraints, and the black square denotes the initial density
guess. The quantities labeled on the scheme (�, I, In/Im

l etc.) should be interpreted as iterative estimates of the corresponding theoretical quantities
defined in equations (4)–(11).



XlRlT
y
l of the Nl � (2l + 1) matrix eV

y
l D2Il, where eV

y
l is the

conjugate transpose of eVl defined in equation (15), D is

the N � N diagonal matrix of radial grid points D =

diag(q0, . . . , qN� 1), while Xl and T
y
l are unitary matrices of

sizes Nl � Nl and Nl � (2l + 1), respectively, and Rl is an

Nl � Nl diagonal matrix of non-negative singular values. The

minimizing matrix Ul is then given by

Ul ¼ XlT
y
l ; ð33Þ

and consequently the correlation projection PC in the 3D case

can be specified as

PCIl ¼ eVlXlT
y
l ¼ I0l: ð34Þ

The other projection applied in reciprocal space is the

intensity projection PI defined as

PIb�ðqÞ � b�
0ðqÞ ¼

b�ðqÞ

jb�ðqÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re½I 0ðqÞ�

p
; if Re½I 0ðqÞ�> 0;

0; otherwise:

8
><

>:

ð35Þ

This is formulated similarly to the Fourier modulus projection,

which serves as the main reciprocal-space constraint in

conventional CXDI/SPI. Note that the described formalism

differs from conventional SPI in that here I0(q) is not the

experimentally measured scattered intensity but rather its

current approximation, which is, along with the real-space

density �ðrÞ, iteratively refined using the measured invariants

Bn and Bl as constraints.

3.3.3. Polar and spherical Fourier transforms. Since the

main reciprocal projection PC is formulated in terms of

harmonic coefficients of the scattered intensity, the need arises

to implement the complete phasing loop (see Fig. 3) on a

polar/spherical grid (including the Fourier transforms), in

order to avoid the inaccuracies and performance limitations

which would be imposed otherwise by repeated interpolations

between Cartesian and polar/spherical grids. There is,

however, no discrete Fourier transform in polar or spherical

coordinates which would allow for repeated forward and

inverse transforms. The approach applied here, as proposed by

Donatelli et al. (2015), is to numerically approximate Hankel

transforms, which connect the harmonic expansion of a func-

tion to the harmonic expansion of its Fourier transform.

Consider �n(r) and �l
mðrÞ to be the harmonic expansion

coefficients of an electron density in polar and spherical

coordinates, and let b�nðqÞ and b� l
mðqÞ be the expansion coef-

ficients of the respective scattering amplitudes (Fourier

transformed densities). The connection between �n(r) and

b�nðrÞ in the 2D case is then given by the Hankel transform

b�mðqÞ ¼ ð� iÞ
m
R1

0

�mðrÞ JmðqrÞr dr; ð36aÞ

�mðrÞ ¼ ðiÞ
m
R1

0

b�mðqÞ JmðqrÞq dq; ð36bÞ

where Jm are Bessel functions of the first kind on integer order

m. In the spherical (3D) case one finds

b� l
mðqÞ ¼

ffiffiffi
2

�

r

ð� iÞ
l

Z1

0

�l
mðrÞjlðqrÞr2 dr; ð37aÞ

�l
mðrÞ ¼

ffiffiffi
2

�

r

ðiÞ
l

Z1

0

b� l
mðqÞjlðqrÞq2 dq; ð37bÞ

where jl are spherical Bessel functions. One approach to

numerically approximate the continuous Hankel transforms

given in equations (36) and (37) is to expand the harmonic

coefficients �m(r) or �l
mðrÞ (and their reciprocal-space coun-

terparts) in some orthogonal basis, thereby shifting the Hankel

integral to the expansion functions (see Appendix B). In the

original version of MTIP this is accomplished using the cosine/

sine series expansions (Donatelli et al., 2015) (see Appendix

B2). We also developed another approximation based on

Zernike polynomial expansions, which allowed us to obtain

closed-form expressions for the quadrature weights of the

discretized Hankel transform (see Appendix B3). Further

investigation, however, showed that both approaches

converge to direct approximations of the integrals in equa-

tions (36) and (37) using a Riemann sum (see Appendices B1

and B4). We therefore employ the midpoint rule as a default

approximation scheme for the Hankel integrals in our

reconstruction workflow (see Appendix B4). In the 2D case,

the Hankel transform (36) can thus be approximated on a

discrete polar grid as

b�mðqkÞ ’
ð� iÞ

m

Q2
max

XN� 1

p¼0

�mðrpÞ!mðp; kÞ; ð38aÞ

�mðrpÞ ’
im

R2
max

XN� 1

k¼0

b�mðqkÞ!mðk; pÞ; ð38bÞ

with the quadrature weights !m(p, k) being defined by

!mðp; kÞ ¼
�2ð1þ 2pÞ

2
Jm

�

4N
ð1þ 2pÞð1þ 2kÞ

h i
: ð38cÞ

In the 3D case, the spherical Hankel transform (37) is

approximated by

b� l
mðqkÞ ’

ð� iÞ
l

Q3
max

XN� 1

p¼0

�l
mðrpÞ!lðp; kÞ; ð39aÞ

�l
mðrpÞ ’

il

R3
max

XN� 1

k¼0

b� l
mðqkÞ!lðk; pÞ; ð39bÞ

using the quadrature weights

!lðp; kÞ ¼
�2

ffiffiffi
�
p

2
ffiffiffi
2
p ð1þ 2pÞ

2
jl

�

4N
ð1þ 2pÞð1þ 2kÞ

h i
: ð39cÞ

Note that the weights in the inverse transforms (38b) and

(39b) are determined by transposing the parameters p and k in

the weight functions specified for the forward transforms in

equations (38c) and (39c), respectively.
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3.3.4. Fourier transform stabilization. We empirically found

that stabilizing the Fourier transforms in the iterative loop by

the following procedure may improve the convergence of

reconstructions. The basic idea behind this operation is to

reduce possible errors due to approximating the continuous

Fourier transform in each MTIP iteration (see Section 3.3.3).

Using the notation in Fig. 3 this correction can be expressed by

modifying the definition of �0 ¼ FT� 1ðb� 0Þ as

�0 ¼ FT� 1ðb� 0Þ þ � � FT� 1ðb� Þ
� �

; ð40Þ

where FT� 1 denotes the inverse Fourier transform. In the limit

of a completely converged MTIP reconstruction, i.e. when

b� ¼ b� 0, meaning that the reciprocal-space projections do not

change the intensity anymore, this definition ensures that the

modified density �0 coincides with the input density � of the

current iteration. Without this procedure �0 and � would differ

due to the applied Fourier transform approximations.

3.3.5. Error metrics. The evolution of the iterative phasing

process can be tracked using several metrics, which may serve

as convergence and error estimates. In analogy to error

metrics commonly used in conventional X-ray imaging

(Fienup, 1978, 1982), we define the relative normalized errors

in reciprocal and real space as (see Fig. 3)

Ereciprocal ¼
jjIðqÞ � I 0ðqÞjjL2

jjIðqÞjjL2

; ð41aÞ

Ereal ¼
jj�0ðrÞ � PSV�

0ðrÞjjL2

jj�0ðrÞjjL2

; ð41bÞ

where PSV is the density projection defined in equation (27).

Here jj � jjL2 denotes the L2 norm in polar/spherical coordi-

nates, that is

jjf jjL2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�

0

R1

0

f ðr; �Þf ðr; �Þ
�
r dr d�

s

and

jjgjjL2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�

0

R�

0

R1

0

gðr; �; �Þgðr; �; �Þ
�
r2 sin � dr d� d�

s

;

for square integrable functions f(r, �) and g(r, �, �). Since, as

previously mentioned, the single-particle scattered intensity is

initially unknown in FXS and reconstructed during the

phasing process, the metrics Ereciprocal and Ereal can only serve

as convergence indicators and do not directly estimate the

deviation of the current solution from experimental obser-

vables. For this reason, we also define metrics for determining

the relative difference in the L2 norm on the level of the

invariants as

En ¼

R R
q q0 Bnðq; q0Þ � BI

nðq; q0Þ
�
�

�
�2 dq dq0

R R
q q0 Bnðq; q0Þ

�
�

�
�2 dq dq0

; ð42aÞ

El ¼

R R
q2ðq0Þ

2
Blðq; q0Þ � BI

l ðq; q0Þ
�
�

�
�2 dq dq0

R R
q2ðq0Þ

2
Blðq; qÞ
�
�

�
�2 dq dq0

; ð42bÞ

where Bn(q, q0) and Bl(q, q0) denote the input invariants

employed as constraints, while BI
nðq; q0Þ and BI

l ðq; q0Þ are the

invariants calculated from the harmonic coefficients In(q) and

Il
mðqÞ corresponding to the current phasing loop iteration (see

Fig. 3).

3.4. Alignment and averaging of reconstructions

The invariants Bn or Bl, employed as input data in the

phasing process, do not contain (by definition) any informa-

tion about the absolute position, orientation and point inver-

sion of a particle in space. Therefore, individual

reconstructions �(r) initiated from a random density guess

may vary in these properties. Similarly to conventional itera-

tive phasing schemes, the MTIP algorithm may also produce

nonunique solutions (Donatelli et al., 2015). Therefore, it is

customary to present the final solution as an average of

selected and aligned individual reconstructions.

Combining the action of rotations on the intensity harmonic

coefficients in two [equation (7)] and three dimensions

[equation (12)], in their matrix form, with equation (15) allows

one to examine their action on the level of the unknowns un

and Ul via

In expðin’Þ ¼evnun expðin’Þ ¼evnu0n; ð43aÞ

IlDlð�; �; �Þ ¼ eVlUlD
lð�; �; �Þ ¼ eVlU

0
l; ð43bÞ

where we interpret Dl(�, �, �) for each l as a (2l + 1) � (2l + 1)

matrix. Since in the 2D case un is itself a phase factor, the

rotational freedom in ’ allows us to freely specify u0n for a

single chosen order n during the iterative phasing process. This

condition causes the number of possible orientation states an

individual reconstruction can attain to become finite. This, in

turn, enables a posteriori algebraic orientation determination

on the level of individual 2D reconstructions (see Section S2

of the supporting information).

In the 3D case, the restriction posed by equation (43b) is

not strong enough to fix any of the unknown matrices U0l
during the reconstruction process. Therefore, orientational

alignment of 3D reconstructions is performed after

completing the iterative phasing as follows. First, all recon-

structions are centered at their respective centers of density

and a reference reconstruction �ref is selected. All recon-

structions are then orientationally aligned with respect to this

reference using fast Fourier transforms on the special ortho-

gonal group SO(3) as described by Kostelec & Rockmore

(2008). This procedure enables efficient calculations of the

rotational cross-correlation CðRÞ between the reference

�ref(r, �, �) and any other reconstructed density �(r, �, �),

which is given by

CðRÞ ¼
Rrmax

rmin

dr
R�

0

sin � d�
R2�

0

d� �refðr; �; �ÞR�ðr; �; �Þ: ð44Þ

R is a rotation in SO(3) andR�ðr; �; �Þ is a rotated version of

the reconstructed density �(r, �, �).

The cross-correlation CðRÞ is maximal at the rotation

R ¼ Ropt for which the rotated density Ropt� optimally
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matches the corresponding reference �ref. To facilitate struc-

ture alignment it is helpful to limit the range (rmin, rmax) to

regions of the reconstructed densities that are not spherically

symmetric. In order to correct for a possible point inversion in

the reconstructions, we apply this alignment procedure to each

3D reconstruction �, as well as its point-inverse �inv, resulting

in two aligned candidates per reconstruction. Finally, we

determine the relative distance of the two candidates

�rot 2 fRopt�;Ropt�invg from the reference density �ref using

the L2 norm,

Lð�rot; �refÞ ¼
jj�rot � �refjjL2

jj�refjjL2

; ð45Þ

and select the candidate �rot with the lowest distance for

subsequent averaging.

Note that, in the 2D case, after centering and aligning the

reconstructions according to the procedure described in

Section S2 of the supporting information, we also use equation

(45) to correct for point inversion.

The presented algorithm allows one to select the recon-

structions to be used in the final average on the basis of their

error metrics (41) and (42), as well as their distance (45) from

the reference structure. Finally a resolution estimate of the

average can be computed using a generalized version of the

phase retrieval transfer function (PRTF) (Kurta et al., 2017),

PRTFðqÞ ¼
hFT½�iðrÞ�ii
�
�

�
�

hjb� 0iðqÞjii
; ð46Þ

where h·ii denotes averaging over the selected collection of

aligned reconstructions and FT[�i(r)] is the Fourier transform

of the ith aligned electron density (see Fig. 3). If we assume

that jb� 0iðqÞj are identical in all individual reconstructions, as is

the case in conventional CXDI [where jb� 0iðqÞj ¼
ffiffiffiffiffiffiffiffi
IðqÞ

p
and

I(q) is the experimentally determined intensity], expression

(46) reduces to the conventional PRTF formula [see e.g.

Chapman et al. (2006)].

4. xFrame: a Python implementation of the recon-

struction workflow

The reconstruction workflow described in Section 3 is imple-

mented in the open-source software suite xFrame available at

https://github.com/European-XFEL/xFrame. The software

consists of the back-end framework, which takes care of

technical details unrelated to the reconstruction process (e.g.

multiprocessing, GPU access, data storage, input settings etc.),

and the fxs project which implements various routines of the

reconstruction pipeline (calculations of the CCF, extraction of

invariants, iterative phasing, averaging of reconstructions).

4.1. Dependencies

Table 1 lists xFrame dependencies and their usage. For

computationally expensive operations such as the Fourier and

harmonic transforms, we use existing software that references

to C or Fortran routines wherever possible. In all other cases

we rely on numpy vectorization and GPU acceleration using

OpenCL. Although xFrame depends exclusively on cross-

platform packages, it has currently only been tested on Linux-

based operating systems.

4.2. Input/output data formats

xFrame requires input data in the form of a set of diffraction

patterns in binary format or a statistically averaged two-point

CCF CM(q, q0, �) in HDF5 format. Human-readable YAML

files are used to specify the input settings for different xFrame

routines. The output data produced by xFrame are stored in

four standard formats, which are HDF5, YAML, VTK and

PNG. The HDF5 format is used for general-purpose data

storage, e.g. to save calculated metrics and reconstruction

results, and the output YAML files are used to store the input

settings associated with a particular reconstruction. Finally,

VTK files and PNG images target visualization of recon-

struction results. Specifically, the open-source VTK file format

allows one to examine the reconstructed densities on their

native spherical or polar grid without any further post-

processing.

4.3. xFrame usage

A typical reconstruction pipeline using the command-line

interface of xFrame is shown in Fig. 4. It is possible to enter the
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Table 1
List of dependencies of xFrame.

Package Usage

numpy (Harris et al., 2020) All parts of xFrame

scipy (Virtanen et al., 2020) Invariants extraction
pyOpenCL GPU access
shtns (Schaeffer, 2013) Spherical harmonic transforms
pysofft (SOFT) (Kostelec & Rockmore,

2008)
3D alignment of reconstructions

matplotlib (Hunter, 2007) 2D plots
openCV (Bradski, 2000) 2D plots

vtk (Schroeder et al., 2006) 3D plots
h5py (The HDF Group et al., 2020) Data storage
ruamel.yaml Software settings
click Command-line interface
psutil Hardware information

Figure 4
Diagram of a typical reconstruction workflow (left) using the command-
line tools (right) of xFrame. Each of the xFrame commands takes as an
argument a human-readable settings file that specifies all relevant
options.

https://github.com/European-XFEL/xFrame


workflow at different points, by running xframe fxs

correlate to compute the CCF (16) from a set of input

diffraction patterns, or extracting the rotational invariants Bn

or Bl from the two-point CCF (by running xframe fxs

extract with a specified input CCF in HDF5 format), or

directly running reconstructions using the extracted invariants

(xframe fxs reconstruct), which can then be aligned

and averaged in a final step using xframe fxs average.

Apart from the command-line interface it is also possible to

use xFrame directly as a Python module. Details on the

installation process as well as tutorials can be found at https://

xframe-fxs.readthedocs.io.

The iterative phasing process is implemented in a way that

allows one to run a single reconstruction per available CPU

core using the Python multiprocessing module, while at the

same time access to the GPU resources is shared among all

parallel reconstructions (see Section S1 in the supporting

information).

5. Reconstructions from simulated data using xFrame

Here we demonstrate single-particle structure recovery from

simulated FXS data using xFrame. The scattering intensities

(1) were simulated assuming ideal kinematic X-ray scattering

without noise. We considered dilute limit approximation,

where inter-particle interference can be neglected, and

simulated 105 diffraction patterns for each of the considered

model structures presented in Fig. 5. Diffraction patterns

were computed up to a maximum momentum transfer
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Figure 5
Three model structures (models A–C) considered for reconstructions
using xFrame: (a)–(d) a pentagonal cluster consisting of spheres of
uniform density with a diameter of 140 nm, with the red spheres being of
doubled density as compared with the blue spheres; (e)–(h) the human
apoptosome (PDB entry 3j2t; Yuan et al., 2013); (i)–(l) the mechano-
sensitive ion channel Piezo1 (PDB entry 6b3r; Guo & MacKinnon, 2017).
The two upper rows show distinct views of the 3D structures. The third
row displays 2D slices through the centers of the respective 3D models,
and the bottom row displays 2D projections on the image plane, which
were produced using the electron-density maps generated in UCSF
Chimera (Pettersen et al., 2004) for the corresponding 3D models. The
white scale bars shown in the two bottom rows correspond to 5 nm.

Figure 6
Absolute values of the rotational invariants jBnðq1; q2Þj and jBlðq1; q2Þj
of orders n, l = 2, 4, 6 and 8, determined for model A in the 2D case (right)
and 3D case (left). The invariants Bnðq1; q2Þ show features in the form of
straight lines, which is a direct consequence of the fact that each Bn is a
matrix of rank 1. The invariants Blðq1; q2Þ display more complex features
since the respective matrix Bl can have a rank higher than 1 (see Section
2.3).

https://xframe-fxs.readthedocs.io
https://xframe-fxs.readthedocs.io


Qmax = 0.32 Å� 1 for model A, and up to Qmax = 0.42 Å� 1 for

models B and C. The diffraction patterns were then used to

determine the averaged CCF (16), and subsequently the

invariants Bn and Bl.

We first consider the reconstruction results for the single-

particle case (Np = 1), where the input set of diffraction

patterns was simulated from single particles in random

orientations in two or three dimensions. For instance, the

invariants extracted [by solving equation (23)] from the 2D

and 3D FXS data sets simulated for a single pentagonal cluster

of spheres (model A) are shown in Fig. 6.

The complete iterative phasing process in xFrame is divided

into the main and refinement stages, where the electron

density with the lowest error metric obtained during the main

phasing stage is further optimized in the refinement stage.

xFrame allows one to separately set up the number, sequence

and parameters of ER, HIO and SW procedures (see Section

3.3.1) in the main and refinement stages. For the 3D recon-

structions shown in Fig. 7 the main stage consisted of blocks of

60� HIO, followed by 1� SW and 40� ER steps. The number

of used iteration blocks varied from five in the case of model A

to 30 for model B and model C. The 3D refinement part

consisted of a single block of 1� SW followed by 200� ER

steps for all considered models.

The obtained 2D reconstructions [Figs. 7(d), 7(h) and 7(l)]

were produced using ten main stage iteration blocks consisting

of 500� HIO followed by 1� SW and 200� ER steps, while

the refinement part consisted of 1� SW step followed by 200�

ER iterations. The HIO parameter � was determined in the ith

iteration as �(i) = a exp(bi) + c, with parameters a, b and c

chosen in such a way that �(i) was exponentially decreasing

during the reconstruction process from 0.5 down to 0.14 for

the 3D reconstructions, and from 0.1 down to 0.01 for the 2D

reconstructions. The SW threshold value � [equation (25)] was

set to 0.11, and the standard deviation � was linearly

decreasing from 2 nm to 1.5 nm during the reconstruction for
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Figure 7
Averaged 2D and 3D reconstructions obtained using xFrame for three
different model structures shown in Fig. 5. The two upper rows show two
distinct views of the reconstructed 3D structures, and the third row
displays 2D slices through the centers of the respective 3D reconstruc-
tions. The bottom row displays averaged 2D reconstructions, which
correspond to the 2D projections shown in the bottom row in Fig. 5. The
first two rows show isosurfaces at 15% of the maximal reconstructed
electron-density value, and the last two rows display density values higher
than 15% of the maximal density value. The 2D slices in (c), (g) and (k)
are taken at approximately the same regions of the electron density as
given for the model structures in (c), (g) and (k) of Fig. 5, respectively.
The white scale bars shown in the two bottom rows correspond to 5 nm.

Figure 8
Normalized histograms of the final error metric values Ereal [equation
(41b)] shown for all individual 2D and 3D reconstructions listed in Table
2. For most of the models the reconstructions cluster into two groups
separated by at least half an order of magnitude in their final error value,
which allows one to identify converged reconstructions by introducing a
threshold. The thresholds for each model are signified by the dashed
green lines, placed at 10� 5 for the 2D model B, and at 10� 3 for all other
models. Thus, the parts of the histograms shown in light-blue and orange
colors correspond to converged and not converged reconstructions,
respectively. For the 2D model A all computed reconstructions have
approximately similar values of Ereal and were considered to be
converged. The 3D model A has a total of three reconstructions with
error values around 10� 2 that did not converge.



all models. The density value projection [equations (26)] was

parameterized as Vmin
Re ¼ 0, Vmax

Re ¼ 1, Vmin
Im ¼ � 2 and

Vmax
Im ¼ 2. We empirically found that allowing small nonzero

values of Vmin
Im and Vmax

Im results in improved convergence rates

of reconstructions. The Fourier transform stabilization has

been applied as described in Section 3.3.4. The presented 3D

reconstructions were obtained considering spherical harmonic

expansion orders up to lmax ¼ 127, while the 2D reconstruc-

tions used circular harmonic orders up to nmax ¼ 255. The

reciprocal projection used invariants Bn and Bl up to the same

maximal orders while setting all odd-order invariants to 0. The

considered number of radial steps was N = 256 for all models,

and the angular sampling was chosen such that the maximal

harmonic order could be resolved (see Appendix A). To

follow the reconstruction progress we used the error metric

Ereal defined in equation (41b).

Individual reconstructions were classified as ‘converged’ or

‘not converged’ according to the histograms of the final values

of the error metric Ereal (see Fig. 8 and Table 2). Note the

different convergence rates for different structures in Table 2.

The reconstructed structures shown in Fig. 7 were obtained by

aligning and averaging 100 converged reconstructions for each

model using xframe fxs average. The corresponding

PRTF curves [equation (46)] computed for the single-particle

reconstructions are shown in Fig. 9, indicating that the reso-

lution is Fourier limited, i.e. limited by the extent of the

simulated FXS data in reciprocal space. The impact of the

maximum considered spherical harmonic expansion order lmax

on the resolution of the obtained 3D reconstructions is illu-

strated in Fig. S4 of the supporting information.

The ability to perform X-ray scattering measurements

from just individual particles (Np = 1) in solution at near-

physiological conditions represents an ideal scenario for FXS

analysis, although it might be challenging to achieve in prac-

tice for weakly scattering bioparticles. The invariant-based

FXS approach offers the possibility to perform reconstruc-

tions based on multiparticle (Np > 1) X-ray scattering (see

Sections 2.1 and 2.2), in which the total scattering from

bioparticles is enhanced compared with single-particle

measurements. According to equations (6) and (11), a scaled

version of the single-particle invariants can be extracted from

such multiparticle FXS data. Under the assumption that Np is

known, the invariants extracted from the multiparticle scat-

tering data can be normalized, i.e. the zero harmonic order by

N2
p and all higher orders by Np, and used to perform single-

particle structure recovery as described above. Reconstruction

results for the multiparticle scattering case (Np = 10)

presented in Fig. S5 of the supporting information look very

similar to those obtained in the single-particle case (Fig. 7).

The sensitivity of the reconstruction results to the accuracy of

the determined scaling factors Np is demonstrated in Fig. S6 of

the supporting information.

6. Summary and conclusions

In this work, we presented a workflow for single-particle

structure determination from FXS measurements. The work-

flow consists of several steps, including calculation of the

average two-point CCF from a set of diffraction patterns,

extraction of rotational invariants from the CCF, iterative

phasing of rotational invariants using the MTIP algorithm, and

selection, alignment and averaging of individual reconstruc-

tions. We proposed a new method for extracting rotational

invariants from the angular Fourier spectra of the CCF (see

Section 3.2). We also introduced several modifications to the

original version of the MTIP algorithm published by Donatelli

et al. (2015), including discrete versions of the Hankel trans-

form (Section 3.3.3) and additional measures to improve

phasing stability (Sections 3.3.4 and 3.4).

We considered different approximations of the Hankel

transform (see Appendix B) using orthogonal basis expan-

sions, including formulations based on the cosine/sine series

expansion (Appendix B2) and Zernike polynomial expansion

(Appendix B3), as well as direct approximation of Hankel

integrals with Riemann sums using the midpoint rule
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Table 2
Reconstruction statistics using xFrame.

Model
Reconstructions
performed

Reconstructions
converged (% of total)

3D model A 113 110 (97)
3D model B 168 111 (66)
3D model C 340 116 (34)
2D model A 120 120 (100)
2D model B 120 113 (94)
2D model C 120 103 (86)

Figure 9
PRTF curves determined for the averaged 2D (bottom) and 3D (top)
reconstructions shown in Fig. 7. The red lines define a cutoff value of 1/e,
used to estimate the reconstruction resolution by PRTF. Since all PRTF
curves are above this threshold, the resolution of the reconstructed
structures is limited by the momentum transfer cutoffs in the respective
input data, which are 0.32 Å� 1 for model A and 0.42 Å� 1 for models B
and C.



(Appendix B4). As a byproduct, we derived a closed-form

expression for the Hankel transform of the radial part of the

3D Zernike polynomials (Appendix B5). Our results show

that the Hankel transform, defined via orthogonal basis

expansion of density, produces results that converge to the

results of direct approximation of the continuous Hankel

integral with a Riemann sum (Appendix B1).

The proposed workflow has been implemented in the open-

source software suite xFrame. xFrame features a multi-

processing scheme that allows for parallel reconstruction runs

on a multi-core CPU while at the same time enabling GPU

acceleration of time-consuming steps within each of the

parallel reconstructions (see Section S1 in the supporting

information). Successful reconstructions can be identified

using distinct error metrics (Section 3.3.5), and subsequently

aligned and averaged (Section 3.4). In the 2D case, the

alignment routine is partially incorporated into the MTIP loop

and completed a posteriori (see Section 3.4 and Section S2 of

the supporting information). We demonstrated the function-

ality of xFrame by performing 2D and 3D reconstructions

from simulated single-particle scattering data for several

structures (Section 5). The results show successful ab initio

recovery of the particle shapes and internal density distribu-

tion without the need to apply symmetry constraints. Recon-

structions from multiparticle scattering data are also possible,

while the feasibility of such reconstructions relies on accurate

knowledge of the number of particles Np contributing to X-ray

snapshots (see Section S3 of the supporting information).

FXS was originally proposed for single-particle structure

determination from multiparticle solution X-ray scattering;

thus, it complements traditional SAXS and SPI techniques.

The inverse problem in FXS is solved using iterative phase

retrieval, in which two phase problems are tackled simulta-

neously. The first involves finding unknown unitary matrices to

determine the single-particle scattered intensity, which is

equivalent to solving the orientation determination problem

in conventional SPI. The second is related to finding optimal

phases of the single-particle scattering amplitudes, similar to

conventional iterative phase retrieval used in SPI or CXDI. At

the same time, FXS may naturally expand the information

content of traditional solution SAXS experiments if X-ray

scattering measurements are performed on timescales faster

than the rotation diffusion time of particles in solution. Such

multiparticle measurements, however, require very precise

detector corrections to be able to detect weak intensity fluc-

tuations about orientationally averaged SAXS (see Section S4

of the supporting information for a brief summary of chal-

lenges related to experimental measurements and data

processing). If such requirements can be fulfilled, FXS may

potentially close the gap between conventional SPI, SAXS

and crystallographic structure determination, particularly in

time-resolved studies with an XFEL (Kurta et al., 2023).

Although the single-particle structure reconstruction

workflow is presented here in the context of biological

applications, it may also serve as an alternative way for 2D and

3D structure determination of arbitrary molecules, nano-

particles, engineered nanostructures etc., provided that FXS

data of sufficient quality can be measured. We hope that the

presented open-source software xFrame can facilitate efforts

in this direction.

APPENDIX A

Discrete polar and spherical grids

In practical applications data acquisition and processing are

realized on a finite discrete grid, and hence our reconstruction

workflow is implemented on a discrete polar/spherical grid.

We define the extent and sampling of the radial coordinates in

real and reciprocal space as

rp ¼ ðpþ
1
2
ÞRmax=N; qk ¼ ðkþ

1
2
ÞQmax=N;

p; k ¼ 0; . . . ;N � 1;
ð47Þ

where the sets rp and qk of N radial points sample real and

reciprocal space (in spherical or polar coordinates) up to a

maximum extent Rmax and Qmax, respectively. In practice,

Qmax is usually determined by the maximum extent of the

measured scattered intensity on a detector (or quality of the

CCF), while the real-space cutoff Rmax can be justified by the

finite dimensions of the particle, so that the particle density

centered at the origin of the coordinate system satisfies the

condition �(Rmax) = 0. The chosen discretization is compatible

with the midpoint rule applied in this work for approximating

integrals with Riemann sums (Hughes-Hallett et al., 2012). We

use the reciprocity relation RmaxQmax = �N in computations of

the discrete Fourier transforms.

As for the angular coordinates, in the 2D polar grid we

consider the angle � to be uniformly sampled from 0 to 2�. In

the case of the 3D spherical grid, this also applies to the

azimuthal angle �, while the polar angle � is sampled from 0 to

� on Gauss–Legendre nodes, i.e. cosð�L
i Þ ¼ xL

i , where xL
i is the

ith zero of the Legendre polynomial of the order L ¼ lmax, and

lmax is the maximal spherical harmonic order considered in the

expansion (8a).

APPENDIX B

Hankel transform approximations

In this appendix we consider different methods for approx-

imating the continuous Hankel transforms in equations (36)

and (37).

B1. Expansion via orthogonal polynomials

One of the approaches to derive a discrete version of the

Hankel transforms in equations (36) and (37) is to expand

�m(r) or �l
mðrÞ using an orthogonal basis �i(r) of all square

integrable functions on the interval [0, Rmax], e.g. in the 2D

case

�m;i ¼
RRmax

0

�mðrÞ�
�
i ðrÞ dr; ð48aÞ

�mðrÞ ¼
P1

i¼0

�m;i�iðrÞ; ð48bÞ
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where �m,i are the expansion coefficients. This allows one to

shift the Hankel integration from �m(r) to the expansion

functions �i(r), i.e. using equation (48b) in (36a) we get

b�mðqÞ ¼ ð� iÞ
m P
1

i¼0

�m;i

RRmax

0

�iðrÞ JmðqrÞr dr: ð49Þ

The integral in equation (49) can be precomputed once

independently of the considered function �m(r), and then used

for all subsequent Hankel transform computations. The

remaining integral in (48a) in the determination of the

expansion coefficients �m,i can then be approximated by using

one of the available methods, e.g. the trapezoidal rule

(Donatelli et al., 2015) or midpoint rule (present work), to

derive a discrete form of equations (36) and (37). In the

present case, equation (49) can be approximated in the

following general form,

b�mðqkÞ ’ Am

P

p

�mðrpÞ!mðk; pÞ; ð50Þ

where Am are constants, !m(k, q) are quadrature weights

defined by the integral in equation (49), and rp and qk are

discrete coordinates in real and reciprocal space [see equation

(47)]. Such an approach has been implemented by Donatelli et

al. (2015) using a cosine/sine series expansion. An example of

the cosine/sine approach, using the midpoint rule to approx-

imate the expansion coefficients, is presented in Appendix B2.

In this work we also developed an approximation of the

Hankel transforms by employing Zernike polynomials as the

orthogonal basis functions �i(r). The advantage of the

obtained expressions is that, in this case, the integral in (49)

can be evaluated analytically (see Appendix B3) and thus does

not require numerical approximation as in the case of a cosine/

sine series expansion (see Appendix B2).

At the same time, analysis of expression (49) defined in

terms of an arbitrary orthogonal basis �i(r) reveals further

aspects of such an expansion. By applying the midpoint rule to

approximate the integral in (48b) on a discrete grid defined in

Appendix A, and substituting the result into (49), we obtain

b�mðqÞ ’ ð� iÞ
m
X1

i¼0

Rmax

N

XN� 1

p¼0

�mðrpÞ�
�
i ðrpÞ

ZRmax

0

eJmðqrÞ�iðrÞ dr;

ð51Þ

where eJmðqrÞ ¼ JmðqrÞr. Considering that eJmðqrÞ is a real

function, the integral in (51) defines, in fact, the complex

conjugated coefficients eJ�m;iðqÞ of expansion of eJmðqrÞ in the

basis �i(r), that is [see equation (48a)]

eJ�m;iðqÞ ¼
RRmax

0

eJmðqrÞ��i ðrÞ dr

� ��

: ð52Þ

Using the latter result in (51) and rearranging the terms we get

b�mðqÞ ’ ð� iÞ
m Rmax

N

XN� 1

p¼0

�mðrpÞ
X1

i¼0

eJm;iðqÞ�iðrpÞ

" #�

: ð53Þ

One may recognize that the expression in square brackets is

exactly the series expansion ofeJmðqrpÞ in terms of �i(rp) [see

equation (48b)]. In the limit of infinite expansion orders (i!

1) such an approximation scheme is, therefore, independent

of the chosen orthogonal basis �i and results in the following

expression:

b�mðqkÞ ’ ð� iÞ
m Rmax

N

XN� 1

p¼0

�mðrpÞ JmðqkrpÞrp: ð54Þ

Note that equation (54) corresponds exactly to simple numeric

evaluation of the continuous Hankel transform using a

Riemann sum in the integration bounds [0, Rmax] [see equa-

tion (69) in Appendix B4]. Similar derivations can be

performed for the inverse Hankel transform, and also in the

3D case. This conclusion is supported numerically for the 3D

case in Fig. S7 of the supporting information, where it is shown

that the Zernike [equation (68)] and cosine/sine [equations

(56)] weights approach the weights obtained by directly

approximating the Hankel integrals using the midpoint rule

[equation (39c)]. In our reconstruction workflow, we therefore

employ the quadrature weights from the midpoint formulation

(see Appendix B4) as a default option, while the Zernike

approximation is available for testing.

B2. Cosine/sine series expansion approximation

The quadrature weights given by Donatelli et al. (2015) are

determined by employing a cosine/sine series expansion of

�m(r) or �l
mðrÞ, and their reciprocal-space counterparts. Using

the definitions in Appendix A and applying the midpoint rule

for approximating the integrals, the weights for the 2D case

take the following form for odd orders m,

!mðp; kÞ ¼ 2�2N
Xsmax

s¼0

sin
�sð1þ 2pÞ

2N

� �

�

Z1

0

sin ð�sxÞ Jm

�ð1þ 2kÞ

2
x

� �

x dx; ð55aÞ

and for even orders m,

!mðp; kÞ ¼ 2�2N
Xsmax

s¼0

cs cos
�sð1þ 2pÞ

2N

� �

�

Z1

0

cos ð�sxÞ Jm

�ð1þ 2kÞ

2
x

� �

x dx; ð55bÞ

where smax defines the maximum expansion order in the

cosine/sine series, cs = 1/2 for s = 0, and cs = 1 otherwise.

In the 3D case the weights for odd orders l are

!lðp; kÞ ¼ 2
ffiffiffi
2
p
�2

ffiffiffi
�
p

N2
Xsmax

s¼0

sin
�sð1þ 2pÞ

2N

� �

�

Z1

0

sin ð�sxÞjl

�ð1þ 2kÞ

2
x

� �

x2 dx; ð56aÞ

and for even orders l,
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!lðp; kÞ ¼ 2
ffiffiffi
2
p
�2

ffiffiffi
�
p

N2
Xsmax

s¼0

cs cos
�sð1þ 2pÞ

2N

� �

�

Z1

0

cos ð�sxÞjl

�ð1þ 2kÞ

2
x

� �

x2 dx: ð56bÞ

The quadrature weights (55) and (56) can be directly used in

forward transforms (38a) and (39a), respectively, while for the

inverse transforms (38b) and (39b) the corresponding weight

functions should be transposed with respect to p and k.

B3. Zernike polynomial expansion approximation

Here we derive the quadrature weights !m(p, k) and

!l(p, k) by employing the radial parts of the Zernike poly-

nomials (Zernike, 1934; Born & Wolf, 2019) as the basis

functions �i(r) in the expansion (48).

The radial parts Rh
D;sðrÞ of the D-dimensional Zernike

polynomials (Zernike & Brinkman, 1935) can be defined using

Jacobi polynomials Pð�;�Þn ðxÞ as

Rh
D;sðrÞ ¼ ð� 1Þ

ðs� hÞ=2
rh Pð�;�Þn 1 � 2r2

� �
;

� ¼ hþ
D

2
� 1; � ¼ 0; n ¼

s � h

2

ð57Þ

for even s � h, and Rh
D;sðrÞ ¼ 0 otherwise, where s and h are

non-negative integers.

The radial polynomials Rh
D;sðrÞ form a set of orthogonal

polynomials on the interval [0, 1], with the orthogonality

condition given for an arbitrary h by

Z1

0

Rh
D;sðrÞR

h
D;s0 ðrÞr

D� 1 dr ¼
�s;s0

2sþD
: ð58Þ

This implies that any sufficiently smooth function f(r) that is

defined on a finite interval [0, Rmax] has a series expansion in

the polynomials Rh
D;sðrÞ, i.e.

f ðrÞ ¼
X1

s¼0

fs Rh
D;s

r

Rmax

� �

; ð59aÞ

fs ¼
2sþD

RD
max

ZRmax

0

f ðrÞRh
D;s

r

Rmax

� �

rD� 1 dr: ð59bÞ

The advantage of Zernike expansions is that the Hankel

transform of Rh
D;s can be evaluated exactly. In the 2D case

(D = 2) for h = m one finds

Z1

0

Rm
2;sðrÞ JmðqrÞr dr ¼ ð� 1Þ

ðs� mÞ=2 Jsþ1ðqÞ

q
; ð60Þ

whereas in the 3D case (D = 3) for h = l we have

Z1

0

Rl
3;sðrÞjlðqrÞr2 dr ¼ ð� 1Þ

ðs� lÞ=2 jsþ1ðqÞ

q
; ð61Þ

for q 6¼ 0. A proof of equation (60) can be found in Appendix

VII of Born & Wolf (2019), and equation (61) is derived in this

work in Appendix B5. Since we are interested in approx-

imating the Hankel transforms of a function defined on a finite

interval [0, Rmax], for an arbitrary positive Rmax, we use scaled

versions of the integrals (60) and (61),

ZRmax

0

Rm
2;s

r

Rmax

� �

JmðqrÞr dr ¼ ð� 1Þ
ðs� mÞ=2 Jsþ1ðqRmaxÞ

q
Rmax

ð62Þ

and

ZRmax

0

Rl
3;s

r

Rmax

� �

jlðqrÞr2 dr ¼ ð� 1Þ
ðs� lÞ=2 jsþ1ðqRmaxÞ

q
R2

max: ð63Þ

Let us now consider the Hankel transform for the 2D case,

as specified in equation (49), and obtain its discrete version in

the form of equation (50). By considering the expansion (59)

of f(r) = �m(r) up to the maximum order s = smax, with each

expansion coefficient �m,s approximated using the midpoint

rule, we can write

b�mðqÞ ¼ ð� iÞ
m

ZRmax

0

X1

s¼0

�m;sR
m
2;s

r

Rmax

� �

JmðqrÞr dr

’ ð� iÞ
m
Xsmax

s¼0

2sþ 2

NRmax

XN� 1

p¼0

�mðrpÞR
m
2;s

rp

Rmax

� �

rp

�

ZRmax

0

Rm
2;s

r

Rmax

� �

JmðqrÞr dr: ð64Þ

Since �m(r) is finitely supported, the integration range reduces

from [0,1) to [0, Rmax]. Note that equation (64) is already

represented as a weighted sum with weights that are inde-

pendent of the function �m(r). Using the integral relation from

equation (62), we arrive at (for q 6¼ 0)

b�mðqÞ ’
ð� iÞ

m

N

XN� 1

p¼0

�mðrpÞ
rp

q

Xsmax

s¼0

ð� 1Þ
ðs� mÞ=2

ð2sþ 2Þ

� Rm
2;s

rp

Rmax

� �

Jsþ1ðqRmaxÞ: ð65Þ

Considering the definitions in equation (47), we finally obtain

the discrete version of the Hankel transform in the 2D case in

the form of (50),

b�mðqkÞ ’
ð� iÞ

m

Q2
max

XN� 1

p¼0

�mðrpÞ!mðp; kÞ; ð66Þ

with the quadrature weights determined as

!mðp; kÞ ¼
�ð1þ 2pÞ

ð1þ 2kÞ

Xsmax

s¼0

ð� 1Þ
ðs� mÞ=2

ð2sþ 2Þ

� Rm
2;s

1þ 2p

2N

� �

Jsþ1

�ð1þ 2kÞ

2

� �

: ð67Þ
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Following a similar procedure, the Zernike weights for the 3D

case can be specified as

!lðp; kÞ ¼
�

ffiffiffiffiffiffi
2�
p

2

ð1þ 2pÞ
2

ð1þ 2kÞ

Xsmax

s¼0

ð� 1Þ
ðs� lÞ=2
ð2sþ 3Þ

� Rl
3;s

1þ 2p

2N

� �

jsþ1

�ð1þ 2kÞ

2

� �

: ð68Þ

The quadrature weights (67) and (68) can be directly used in

the forward transforms (38a) and (39a), respectively, while for

the inverse transforms (38b) and (39b) the corresponding

weights are obtained by transposing !m(p, k) and !l(p, k) with

respect to p and k.

B4. Direct approximation of the Hankel integrals using the

midpoint rule

Here we consider direct approximations of the Hankel

transforms given in equations (36) and (37) with Riemann

sums.

In the 2D case the integral in (36a) can be approximated

using the midpoint rule as

b�mðqkÞ ’ ð� iÞ
m Rmax

N

XN� 1

p¼0

�mðrpÞ JmðqkrpÞrp: ð69Þ

Using the definitions in Appendix A, we can present equation

(69) in the form

b�mðqkÞ ’ Am

PN� 1

p¼0

�mðrpÞ!mðp; kÞ; ð70Þ

where Am ¼ ð� iÞm=Q2
max and the quadrature weights

!m(p, k) are given in equation (38c).

Similarly, in the 3D case the integral in (37a) can be

approximated as

b�lðqkÞ ’ Al

PN� 1

p¼0

�lðrpÞ!lðp; kÞ; ð71Þ

where Al ¼ ð� iÞl=Q3
max and the quadrature weights !l(p, k)

are given in equation (39c). Approximations for the inverse

Hankel transforms (36b) and (37b) can be obtained in a

similar way, producing the discrete forward and inverse

Hankel transforms given in equations (38) and (39), respec-

tively.

B5. Hankel transform of the radial part of the 3D Zernike

polynomial

Here we provide a proof of equation (61) for the 3D

Zernike polynomials, which closely follows the derivation of

equation (60) given by Born & Wolf (2019). We shall need the

Rodrigues’ formula for Jacobi polynomials Pð�;�Þn ðzÞ and the

series expansion of spherical Bessel functions jl(r), which can

be obtained from 10.2.2, 10.47.3 and 18.5(ii) of NIST (2023):

jlðzÞ ¼

ffiffiffiffiffi
�

2z

r
X1

p¼0

ð� 1Þ
p

p!� pþ l þ 3
2

� �
z

2

� �2pþlþ1=2

; ð72Þ

Pð�;�Þn ðzÞ ¼
ð� 1Þ

n

2nn!
ð1 � zÞ

� �
ð1þ zÞ

� �

�
d

dz

� �n

ð1 � zÞ
�þn
ð1þ zÞ

�þn
; ð73Þ

where � denotes the gamma function and n! is the factorial of

a non-negative integer number n.

By substituting z = 1 � 2r2 in equation (73) and considering

in equation (57) Jacobi polynomials for � = 0, the radial part of

the Zernike polynomials for D = 3 yields

Rl
3;sðrÞ ¼

ð� 1Þ
n

n!
r� ½�þð1=2Þ� d

dðr2Þ

� �n

ðr2Þ
�þn
ð1 � r2Þ

n
; ð74Þ

with � = l + 1/2 and n = (s � l)/2. By expressing the spherical

Bessel function in equation (72) in terms of the argument z =

qr, and using equations (72) and (74) in the left-hand side of

equation (61), we find the following expansion for the integral:

Z1

0

Rl
3;sðrÞjlðqrÞr2 dr ¼

ffiffiffiffiffi
�

16

r
ð� 1Þ

n

n!

X1

p¼0

ð� 1Þ
p

p!� pþ �þ 1ð Þ

�
q

2

� �2pþ�� 1=2

f ðp; �; nÞ; ð75Þ

with

f ðp; �; nÞ ¼ 2

Z1

0

ðr2Þ
pþ1=2 d

dðr2Þ

� �n

ðr2Þ
�þn
ð1 � r2Þ

n
dr: ð76Þ

The integral in (76) can be reformulated by introducing the

variable u = r2, which yields

f ðp; �; nÞ ¼

Z1

0

up d

du

� �n

u�þnð1 � uÞ
n

du: ð77Þ

We shall now perform integration by parts in equation (77) for

two cases, p � n and p < n. Notice that a single application of

integration by parts results in

f ðp; �; nÞ ¼ up d

du

� �n� 1

u�þnð1 � uÞ
n

" #�
�
�
�
�

1

0

� p

Z1

0

up� 1 du
d

du

� �n� 1

u�þnð1 � uÞ
n

¼ � p

Z1

0

up� 1 du
d

du

� �n� 1

u�þnð1 � uÞ
n
; ð78Þ

taking into account that n � 1 < n and � > 0.

For p � n we can then perform integration by parts n times

in (77), which results in

f ðp; �; nÞ ¼ ð� 1Þ
n p!

ðp � nÞ!

Z1

0

upþ�ð1 � uÞ
n

du: ð79Þ

One may recognize the remaining integral as the beta function

[see 5.12.1 in NIST (2023)], which finally yields for p � n

research papers

340 Tim B. Berberich et al. � A workflow for single-particle structure determination J. Appl. Cryst. (2024). 57, 324–343



f ðp; �; nÞ ¼ ð� 1Þ
n p!

ðp � nÞ!

� ðpþ �þ 1Þ� ðnþ 1Þ

� ðpþ nþ �þ 2Þ
: ð80Þ

In the case of p < n, it is possible to perform integration by

parts only p times in (77), which gives

f ðp; �; nÞ ¼ ð� 1Þ
p
p!

d

du

� �n� p� 1

u�þnð1 � uÞ
n

" #�
�
�
�
�

1

0

¼ 0: ð81Þ

Using equations (80) and (81) in (75), the latter can be

rewritten as

Z1

0

Rl
3;sðrÞjlðqrÞr2 dr ¼ ð� 1Þ

n 1

q

ffiffiffiffiffi
�

2q

r

�
X1

p¼n

ð� 1Þ
p� n

ðp � nÞ!� ðp � nþ 2nþ �þ 2Þ

q

2

� �2ðp� nÞþ2nþ�þ1

¼ ð� 1Þ
n 1

q

ffiffiffiffiffi
�

2q

r X1

k¼0

ð� 1Þ
k

k!� ½kþ ðsþ 1Þ þ 3
2
�

q

2

� �2kþðsþ1Þþ1=2

;

ð82Þ

where in the last step we considered that 2nþ � ¼ sþ 1
2

and

introduced a variable k = p � n. Note that the sum in equation

(82), including the prefactor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð2qÞ

p
, is precisely the series

expansion of a spherical Bessel function js+1(q) of the order

s + 1 [see equation (72)]. This finally yields

Z1

0

Rl
3;sðrÞjlðqrÞr2 dr ¼ ð� 1Þ

n jsþ1ðqÞ

q
¼ ð� 1Þ

ðs� lÞ=2 jsþ1ðqÞ

q
; ð83Þ

which completes the proof of equation (61).
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Bott, M., Schmidt, K. E., Wang, X. I., Grotjohann, I., Holton, J. M.,
Barends, T. R. M., Neutze, R., Marchesini, S., Fromme, R., Schorb,
S., Rupp, D., Adolph, M., Gorkhover, T., Andersson, I., Hirsemann,
H., Potdevin, G., Graafsma, H., Nilsson, B. & Spence, J. C. H.
(2011). Nature, 470, 73–77.
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Krasniqi, F., Bott, M., Schorb, S., Rupp, D., Adolph, M., Gorkhover,
T., Hirsemann, H., Potdevin, G., Graafsma, H., Nilsson, B.,
Chapman, H. N. & Hajdu, J. (2011). Nature, 470, 78–81.

Solem, J. & Baldwin, G. (1982). Science, 218, 229–235.
Starodub, D., Aquila, A., Bajt, S., Barthelmess, M., Barty, A., Bostedt,

C., Bozek, J. D., Coppola, N., Doak, R. B., Epp, S. W., Erk, B.,
Foucar, L., Gumprecht, L., Hampton, C. Y., Hartmann, A., Hart-
mann, R., Holl, P., Kassemeyer, S. N., Kimmel, N., Laksmono, H.,
Liang, M., Loh, N. D., Lomb, L., Martin, A. V., Nass, K., Reich, C.,
Rolles, D., Rudek, B., Rudenko, A., Schulz, J., Shoeman, R. L.,
Sierra, R. G., Soltau, H., Steinbrener, J., Stellato, F., Stern, S.,
Weidenspointner, G., Frank, M., Ullrich, J., Strüder, L., Schlichting,
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