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Controlling the shape and size dispersivity and crystallinity of nanoparticles

(NPs) has been a challenge in identifying these parameters’ role in the physical

and chemical properties of NPs. The need for reliable quantitative tools for

analyzing the dispersivity and crystallinity of NPs is a considerable problem in

optimizing scalable synthesis routes capable of controlling NP properties. The

most common tools are electron microscopy (EM) and X-ray scattering tech-

niques. However, each technique has different susceptibility to these para-

meters, implying that more than one technique is necessary to characterize NP

systems with maximum reliability. Wide-angle X-ray scattering (WAXS) is

mandatory to access information on crystallinity. In contrast, EM or small-angle

X-ray scattering (SAXS) is required to access information on whole NP sizes.

EM provides average values on relatively small ensembles in contrast to the

bulk values accessed by X-ray techniques. Besides the fact that the SAXS and

WAXS techniques have different susceptibilities to size distributions, SAXS is

easily affected by NP–NP interaction distances. Because of all the variables

involved, there have yet to be proposed methodologies for cross-analyzing data

from two techniques that can provide reliable quantitative results of dispersivity

and crystallinity. In this work, a SAXS/WAXS-based methodology is proposed

for simultaneously quantifying size distribution and degree of crystallinity of

NPs. The most reliable easy-to-access size result for each technique is demon-

strated by computer simulation. Strategies on how to compare these results and

how to identify NP–NP interaction effects underneath the SAXS intensity curve

are presented. Experimental results are shown for cubic-like CeO2 NPs. WAXS

size results from two analytical procedures are compared, line-profile fitting of

individual diffraction peaks in opposition to whole pattern fitting. The impact of

shape dispersivity is also evaluated. Extension of the proposed methodology for

cross-analyzing EM and WAXS data is possible.

1. Introduction

Metal and metal-oxide crystalline nanoparticles (NPs) have

potential applications in many research areas due to unique

physical and chemical properties related to their high surface-

to-volume ratio (Grassian, 2008; Ramos-Guivar et al., 2021;

Canchanya-Huaman et al., 2021). Accessing size distribution

in NP systems is fundamental for understanding structure-

dependent functionalities, morphology and other structural

variables (Zhang et al., 2004; Borchert et al., 2005; Frenkel et

al., 2005; Keshari & Pandey, 2008; Schwung et al., 2014;

Schmidt et al., 2016; Clarke et al., 2018; Freitas Cabral et al.,

2020; Kabir et al., 2022). In the case of ceria (CeO2) NPs, the

reversible Ce4+/Ce3+ redox cycle is associated with the

formation of oxygen vacancies in the crystalline structure,
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having a high capacity to store and release oxygen with

excellent stability (Yang et al., 2021; Xu et al., 2021; Schilling et

al., 2018; Ziemba et al., 2021). These properties make CeO2

one of the most promising catalysts in many reactions (Smith

et al., 2021b; Sun et al., 2016; Trovarelli & Llorca, 2017). By

adjusting NP size and morphology, the performance of cata-

lysts can improve significantly. The CeO2 NP morphology is

tunable by controlling critical parameters such as pH, pressure

and temperature in hydrothermal synthesis techniques (Smith

et al., 2021b; Sun et al., 2016; Mai et al., 2005; Dong et al., 2020;

Chavhan et al., 2020; Sreekanth et al., 2019; Trindade et al.,

2022). Despite previous studies, the role of size dispersivity in

catalytic performance requires further analysis, as the tool to

quantify NP size dispersivity still needs to be improved. It is a

general issue when analyzing nanopowders as the lack of

reliable characterization techniques for determination of size

distributions makes the stated NP properties questionable

(Jensen et al., 2006).

Small-angle X-ray scattering (SAXS) and X-ray diffraction

(XRD) are tools widely used to access NP systems’ size

information (Guinier, 1994; Zemb & Lindner, 2002; Sivia,

2011; Leoni, 2019). These are bulk techniques because X-rays

interact with the illuminated sample volume, providing

average values over large ensembles of NPs. Both techniques

measure the angle-dependent distribution of the radiation

scattered by atomic electrons in the sample. The difference is

that SAXS techniques examine scattering angles below a few

degrees, probing the average size and shape of NPs regardless

of crystalline perfection, whereas XRD techniques examine

wide angles where scattering is measurable at Bragg angles

due to the periodicity of crystalline materials. Consequently,

SAXS is susceptible to the entire volume of an NP, whereas

XRD accesses only the crystallized portion of the NP’s

volume. Using both SAXS and XRD techniques, or in more

general terms, evaluating the X-ray scattering from small to

wide angles, allows, in principle, the optimization of synthe-

sizing processes aimed at controlling the size, size dispersion

and crystallinity of the NPs.

Methodologies are available to access size-distribution

information, whether for SAXS or XRD techniques [see, for

instance, Bergeret & Gallezot (2008)]. Fitting the intensity

curve by modeling particle shape, size distribution and inter-

particle interactions is currently the most common approach

in analyzing SAXS data from polydisperse NPs (Glatter, 1980;

Beaucage et al., 2004; Jensen et al., 2006; Borchert et al., 2005;

Garcia et al., 2019). At wide angles, line-broadening analysis of

diffraction peaks stands as the general approach to address

size distribution. There is a very long discussion that can be

traced back to the early decades of the 20th century about the

actual role of size distribution in the line profile of the

diffraction peaks (Jones, 1938; Bertaut, 1950; Le Bail & Louër,

1978; Langford & Louër, 1982; Langford et al., 2000; Leonardi

et al., 2022). As particle dispersivity in powder samples has

been seen more as a consequence of their preparation history

than a physical property, most traditional methods of line-

profile analysis are primarily concerned with effects arising

from crystalline imperfections and instrumentation (Cheary &

Coelho, 1992; Kril & Birringer, 1998; Snyder et al., 1999;

Coelho, 2000). Available methodologies for accessing size-

distribution information consist of a secondary analysis of

the peak profile (Warren & Averbach, 1950; Leoni, 2019) or

the use of a more elaborate approach to account for size-

distribution parameters when modeling diffraction patterns

(Scardi & Leoni, 2001, 2002; Cervellino et al., 2005; Scardi,

2020). Despite many developments in X-ray techniques to

resolve size distribution, methodologies for combining results

from SAXS and XRD techniques into systematic procedures,

along with reliability criteria, to quantify the size dispersivity

and crystallinity of NPs are still lacking.

In practice, attesting the accuracy and reliability of such

methodologies is complicated because retrieving size-distribution

parameters from X-ray patterns is ambiguous due to the

countless size distributions capable of providing similar scat-

tering intensity curves. Validation of methodologies by

comparing size-distribution results from different techniques,

such as XRD and electron microscopy (EM), is also tricky

(Leoni & Scardi, 2004). XRD is a bulk technique that exam-

ines the coherent length of periodic structures (Morelhão et

al., 2019), i.e. the crystalline domain size, over a large

ensemble of NPs. EM examines shape and size distributions

over a much smaller ensemble (Williams & Carter, 2009). Both

size distributions are compatible in systems of fully crystalline

NPs with narrow size dispersion where a small ensemble is

representative of the volume sampled by XRD (Scardi &

Gelisio, 2016). Discrepancies with the size results obtained

with SAXS, another bulk technique, can arise due to NP

crystalline domains being smaller than their sizes, such as in

typical core/shell NPs with a crystalline core and an amor-

phous shell (Ichikawa et al., 2018). On top of this, the two

techniques weight the size distribution differently, and this

difference in weighting brings extra information capable of

resolving the size dispersivity and crystallinity of the NPs

(Morelhão & Kycia, 2022).

This work investigates the direct implications of size

distribution in SAXS and XRD techniques through virtual

systems of polydisperse NPs. In such well controlled systems,

free of instrumental and crystalline imperfection effects,

SAXS and XRD measurements demonstrate the most acces-

sible and reliable quantitative pieces of information available

about the size distribution. Initially, computed pair distance

distribution functions (PDDFs) (Glatter, 1977; Liu & Zwart,

2012) for virtual NPs with sizes ranging from 1 to 90 nm lead

to X-ray scattering patterns encompassing the entire angular

range accessed by the SAXS and XRD techniques. After

verifying that size information is available in the simulated

patterns, we compute size-distribution effects by weighting the

simulated patterns for monodisperse sizes with a lognormal

size-distribution probability function. This provides a com-

putational demonstration that the scattering curve width

around the direct beam and the Bragg peak widths are

dictated by the medians of the size distribution’s sixth- and

fourth-momentum integrals, respectively. On the basis of these

quantities, we propose a SAXS/wide-angle X-ray scattering

(WAXS) methodology for simultaneously quantifying size
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distribution and degree of crystallinity of NPs. Actual SAXS

and XRD measurements analyze real samples: a series of

powder samples of ceria NPs. The size-discrepant results from

these measurements are used as a test of the proposed

methodology, revealing additional sources of size discre-

pancies related to NP–NP interactions and possible strategies

for comparing SAXS and XRD results. EM results are used to

confirm the cubic-like morphology of the NPs and the exis-

tence of size dispersion in all samples. Detected changes in the

size and size dispersivity related to synthesis parameters

suggest analytical procedures to guide further optimization of

chemical routes to control these properties in crystalline

ceria NPs.

2. Theoretical basis

NP size and shape roles in SAXS and XRD techniques are

accurately computed by the well known Debye scattering

equation (Scardi & Gelisio, 2016), e.g. equation (1). This is

valid in the entire angular region, from ultra-small to wide

angles. The computational time cost is high for NPs with sizes

above a few tens of nanometres. However, as accurate quan-

tification is needed to illustrate the impact of size dispersivity

properly, the Debye scattering equation is used here as

follows.

2.1. Monodisperse systems

A system of N identical non-interacting NPs randomly

oriented in space scatters X-rays according to I(Q) =

NIThP(Q), where ITh is the Thomson intensity scattered by a

single electron accounting for polarization effects and

PðQÞ ¼
X

a

X

b

faðQÞf
�
b ðQÞ

sinðQrabÞ

Qrab

ð1Þ

is the NP scattering power (Debye, 1915; Guinier, 1994;

Gelisio et al., 2010; Morelhão, 2016; Scardi & Gelisio, 2016).

The term Q ¼ ð4�=�Þ sin � is the modulus of the scattering

vector for a 2� angle of scattering, fa,b(Q) is the atomic scat-

tering factor of atom a or b with resonant amplitudes for

X-rays of wavelength �, and rab = |ra � rb| are the distances

between any pair of atoms at the ra and rb frozen-in-time

positions; the indices a and b run over all the atoms in the NP.

The temporal coherence of X-ray beams is of the order of

1 fs. At this timescale, atomic thermal vibrations are relatively

slow. Actual scattering patterns acquired over long periods

correspond to the sum of the instantaneous intensities of

statistically equivalent structures with displaced atoms within

their vibration amplitudes. Powder samples of identical NPs

represent ensembles of such statistically equivalent structures.

Random uncorrelated displacements are commonly

accounted for in the Debye–Waller factors (Scardi & Gelisio,

2016), while collective vibrations – phonons – are responsible

for thermal diffuse scattering (Als-Nielsen & McMorrow,

2011). For this work, random displacements dr around the

average position hrai were considered for each atom, as in ra =

hrai + dr. The scattering power of a frozen NP with random

displacements is practically the same as the average scattering

power computed over the ensemble of statistically equivalent

structures; see a demonstration in Section S1 of the supporting

information.

At small scattering angles where the resolution is insuffi-

cient to resolve the shortest atomic distances inside the NP, the

scattering power

PðQÞ ¼ 4�

Z

cðuÞu2 sinðQuÞ

Qu
du ¼

Z

pðuÞ
sinðQuÞ

Qu
du ð2Þ

involves the electron–electron pair correlation function c(u) =

�s(r) � �s(� r) (Guinier, 1994), equivalent to the Patterson

function for crystals (Patterson, 1935). �s(r) is a spherically

symmetric electron-density function representing the NP in a

system of identical NPs randomly oriented in space

(Morelhão, 2016). In the case of WAXS, by comparing equa-

tions (1) and (2),

pðuÞ ¼
X

a

X

b

faðQÞf
�
b ðQÞ�ðu � rabÞ ð3Þ

can be calculated as atomic scattering factor weighted PDDFs,

where �() is the Dirac delta function. Each PDDF is a histo-

gram between chemical species for which the real part of

faðQÞf
�
b ðQÞ, < faðQÞf

�
b ðQÞ

� �
, is a common factor (Gelisio et al.,

2010). For computational time optimization, equation (3)

becomes

pðuÞ ¼
X

�

jf�ðQÞj
2H�ðuÞ þ 2

X

�

X

�

< f�ðQÞf
�
� ðQÞ

� �
H��ðuÞ;

ð4Þ

where � and � run over the number of chemical species in the

NP,

H�ðuÞ ¼ N��ðuÞ þ 2
XN�

a¼1

XN�

b>a

�ðu � rabÞ ð5Þ

is the histogram of distances between atoms a and b of the

same chemical species, and

H��ðuÞ ¼
XN�

a¼1

XN�

b¼1

�ðu � rabÞ ð6Þ

is the histogram of atomic distances where atoms a and b

belong to the sets of N� and N� atoms of the different chemical

species � and �, respectively.

For NPs of a given size and shape, simulated total scattering

patterns of monodisperse systems embracing both SAXS and

WAXS regions are obtained by the scattering power P(Q),

equation (2), after computing the above PDDFs in equations

(5) and (6) (Gelisio et al., 2010; Cervellino et al., 2015).

2.2. Polydisperse systems

In systems of non-identical monocrystalline NPs scattering

independently from each other, that is dilute systems where no

spatial correlation exists between the NPs (Zemb & Lindner,

2002) and secondary scattering processes are negligible

(Morelhão & Cardoso, 1991; Valério et al., 2020),
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IðQÞ ¼ ITh

Z

PkðQÞnðkÞ dk ð7Þ

describes the scattered X-ray intensities, where n(k)dk stands

for the number of NPs sharing a common property with value

in the range from k to k + dk. The scattering power Pk(Q) of

the NPs in this range follows from equation (2) as long as they

form a complete set of randomly oriented NPs. Here, the

variable k refers to the size of the NPs, implying the

assumption that they all have the same shape. For instance, k

stands for the edge length L in systems of cubic NPs or the

diameter D for spherical NPs.

According to the kinematical theory of X-ray scattering, all

atoms of a given system of particles are subjected to the same

incident wave, and the scattered waves thus produced suffer

no further interaction with the system (Warren, 1990; Guinier,

1994). Under this kinematical approach, the integrated

intensity Ik ¼
R

PkðQÞ dQ around each scattering peak in the

WAXS region, referred to as a Bragg or diffraction peak, is

proportional to the NP volume; that is Ik / k3. On the other

hand, while the peak area increases with the NP volume, the

peak widthWk gets narrower inversely with the NP size k; that

is Wk / k� 1. Consequently, the maximum peak height at the

Bragg position Q0 follows Pk(Q0) / k4. There is also the

scattering peak around the direct beam at Q = 0, the SAXS

peak. In this case, equation (1) provides the squared number

of scattering electrons or the squared volume (Guinier &

Fournet, 1955; Guinier, 1994). Hence, this scattering peak

maximum height follows Pk(0) / k6.

In samples with a particle-size-distribution (PSD) function

n(k), the resulting full width at half-maximum (FWHM), or

simply the peak width W, follows from equation (7) as

IðQ0 �W=2Þ ¼
1

2
ITh

Z

PkðQ0ÞnðkÞ dk ¼ ITh

ZeKm

0

PkðQ0ÞnðkÞ dk;

ð8Þ

clearly establishing thatW is related to the median value eKm

of the PSD function weighted by Pk(Q0). Hence, eKm is the

median value of the km-weighted PSD, that is

ZeKm

0

kmnðkÞ dk ¼
1

2

Z1

0

kmnðkÞ dk; ð9Þ

where m = 4 for all Bragg peaks and m = 6 for the SAXS peak.

In Q space, the widely known Scherrer equation (SE) is

kWk ¼ � in the case of monodisperse systems with X-ray

patterns, as given by Pk(Q), equation (2). The NPs’ shape

defines the exact value of the SE constant �, and it may differ

from one peak to another in the case of non-spherical NPs. It

is always slightly different for the SAXS peak, even for

spherical NPs. In the case of polydisperse systems with a

general PSD, the same SE constants apply (Leoni, 2019;

Morelhão & Kycia, 2022). A measure of the peak width W

leads to the median value

eKm ¼
�

W
¼

�

2�

�

cos �0W2�

ð10Þ

when estimating the NP size in the sample via the SE. Equa-

tion (10) also shows the most used form of the SE whereW2�

is the peak width as a function of the scattering angle 2�, given

that �0 ¼ arcsin ð�=4�ÞQ0½ � is the Bragg angle and is zero for

the SAXS peak. The �/2� ratio is commonly called the shape

factor of the SE, whose value is close to 1; that is � ’ 2�. In

this work, the � values will be extracted from the mono-

disperse X-ray patterns of virtual NPs, since their values

provide the size results from simulated patterns of poly-

disperse sizes. It is also a computational demonstration to

verify theoretical values in the literature (Zemb & Lindner,

2002; Langford & Wilson, 1978; Scardi & Leoni, 2001) in the

absence of samples of perfectly monodisperse sizes.

Before demonstrating that the SE leads to the medians of

the PSD’s mth moment integrals, as stated in equation (10),

the physical meaning of the SE in samples with PSD was

unclear (Jensen et al., 2006; Bergeret & Gallezot, 2008). What

has previously been demonstrated is that the volume-weighted

average size is obtained by taking the ratio of the total area

under the peak divided by the peak intensity at maximum, also

known as a measure of the integral breadth (Stokes & Wilson,

1942). After clarifying the meaning of the SE whether in the

SAXS or WAXS regimes, a methodology for simultaneously

evaluating dispersivity and crystallinity becomes feasible, as

detailed hereinafter.

3. Materials and methods

3.1. Virtual nanoparticles

Vibrational disorder was introduced in the virtual NPs

by adding [dx, dy, dz] = �r[�1, �2, �3] to the mean atomic

positions hrai = [Xa, Ya, Za] as computed for perfectly periodic

lattices. The random numbers �n are in the range [0, 1], and

the atomic disorder parameter �r produces a Gaussian

broadening of width �r in the histograms of pair distances,

corresponding to a nearly isotropic root mean square (RMS)

displacement hdrirms ¼ �r=½4 ln 2ð Þ1=2� ’ 0:3�r (Section S1).

For each virtual NP, the histograms in equations (5) and (6)

were calculated with a bin of width �u = 0.002 Å, as in HðuÞ ¼
P

a

P
b

R uþ�u

u
�ðu0 � rabÞ du0. Computer codes were written in

C++ for parallel-processing mode with 36 cores. The execution

environment was a virtual machine running a Debian-amd64

8.11 operating system (56 cores and 16 GB memory) hosted by

an HPE ProLiant DL360 Gen10 Server with Xen kernel, with

64 cores of an Intel Xeon Gold 5218 CPU @ 2.30 GHz/256 GB

memory. For an NP with Nat atoms of the same chemical

species, the observed time to compute H�(u) [equation (5)] is

� 50 N2:151
at ps. For instance, an NP with Nat = 19 � 106, having

Nat(Nat � 1) = 361 � 1012 pair distances, takes a processing

time of 63 h. The atomic scattering factors f(Q) = f0(Q) +

f 0(�) + if 00(�) in equation (4) were calculated by routines

asfQ.m and fpfpp.m, both available from Morelhão

(2016). The integral in equation (2) leads to the scattering

power of the NPs, as it becomes a discrete sum of the p(u)
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values on each histogram bin weighted by the corresponding

sinðQuÞ=ðQuÞ factor, that is PðQÞ ¼
P

n pðunÞ½sinðQunÞ=ðQunÞ�

where un+1 = un + �u.

3.2. Ceria nanocubes

CeO2 NPs were synthesized via a hydrothermal process by

adaptation of a well established protocol (Mai et al., 2005).

First, two concentrations of 6 M (a sample labeled B5) and

12 M (samples labeled B11 and C1) sodium hydroxide

(NaOH, P.A-A.C.S. 100%, Synth) were dissolved in 35 ml of

deionized water. Next, 0.1 M cerium nitrate [Ce(NO3)3·6H2O,

�99.9%, Sigma–Aldrich] precursor was dissolved in 10 ml of

deionized water and added to the NaOH solution with stirring.

For sample C1, 0.025 M urea (CH4N2O, P.A-A.C.S. 100%,

Synth) was added as a structure-directing agent. After being

stirred for 15 min, the slurry solution was transferred into a

100 ml stainless steel vessel autoclave, heated at 180�C in an

electric oven for 24 h and allowed to cool at room tempera-

ture. The final product was collected by centrifugation,

followed by washing in deionized water and ethanol five times

each. Finally, the precipitate was dried in an electric oven at

80�C for 12 h.

3.3. Electron microscopy analysis

Scanning electron microscopy (SEM) images were obtained

with JEOL microscopes operating at 5 kV. Samples were

prepared by drop-casting aqueous suspensions over double-

stick carbon tape, drying under ambient conditions and sput-

tering a 3 nm platinum coating to improve the signal–noise

ratio.

3.4. X-ray diffraction analysis

XRD on CeO2 powder samples was performed in a D8

Discover (Bruker) with a LYNXEYE XE-T detector. We used

Cu K� radiation (1.5418 Å), a Bragg–Brentano �–� gonio-

metry and step-scanning mode: step size of 0.015� and

counting time of 2 s per step. The sample spinning velocity was

15 r min� 1. A NIST corundum 676a standard (Cline et al.,

2011) at room temperature provides the peak widths

W ins ¼ ð0:378Q þ 1:62Þ � 10� 3 Å� 1 used to account for the

instrumental broadening of the diffractometer. Peak widths

W, without instrumental broadening, were obtained by using

both Gaussian–Gaussian (GG) and Gaussian–Lorentzian

(GL) deconvolution functions (Kielkopf, 1973; Olivero &

Longbothum, 1977), Wobs ¼ ðW
2 þW2

insÞ
1=2 and Wobs ¼

0:5346W þ ð0:2166W2 þW2
insÞ

1=2, respectively. Wobs stands

for the actual FWHM extracted by line-profile fitting with

pseudo-Voigt functions. Alternatively, Rietveld refinement for

crystallite-size analysis via the GSAS-II software (Toby & Von

Dreele, 2013) is also provided (Section S2).

3.4.1. SAXS analysis. SAXS data were acquired in a Xeuss

2.0 system (Xenocs, France) sourced by a microfocus

GeniX3D X-ray generator, Cr K� radiation (2.2923 Å), with a

FOX3D collimating mirror and ultra-high resolution mode

where the beam cross section is set to 0.4 � 0.4 mm2. A Pilatus

300 K (Dectris, Switzerland) area detector was placed at

6.46 m from the sample. The spectral line width of the char-

acteristic radiation limits the X-ray longitudinal coherence

length to �310 nm. In the transverse direction, the coherence

length is determined by X-ray collimation and estimated by

the equipment manufacturer to approach 500 nm. The total

acquisition time per sample was 1 h. The intensities scattered

on the detector area were converted into curves as a function

of Q by using the in-house software available at the Center of

Multi-User SAXS Equipment of the Institute of Physics,

University of São Paulo, Brazil, where the measurements were

carried out. Background scattering from Kapton films, holding

the powder samples in the vacuum chamber, has been

subtracted from the intensity curves, and no beam-stopper

shadow corrections were applied.

4. Computational results

Fig. 1 displays P(Q) curves of spherical and cubic silicon NPs

representing X-ray patterns of monodisperse systems. Single-

element NPs were considered to optimize computer time. The

two sets of simulated patterns with sizes covering the broadest

possible range serve three purposes: to verify values and

uncertainties of the SE constants for crystallites of nanoscale

sizes; to simulate size dispersion by composing weighted
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Figure 1
Scattering power P(Q), equation (2), obtained by PDDF calculation in
virtual NPs of silicon. (a) Spherical NPs of diameter D, ranging from 1 to
90 nm, and (b) cubic NPs of edge L, ranging from 1 to 70 nm. An RMS
displacement of 1.4 pm mimics vibrational disorder at all atomic sites in
the NPs. The insets show examples of spherical (D = 20 nm) and cubic (L
= 16 nm) virtual NPs with �200 000 atoms each.

http://doi.org/10.1107/S1600576724003108


patterns based on the monodisperse patterns; and to evaluate

at least two distinct NP shapes, in one of which the diffraction

peak widths are susceptible to the crystallographic orientation

of the NP facets. Weighted patterns and verified SE constants

are needed to quantify SAXS and XRD sizes from poly-

disperse systems of virtual NPs.

Fig. 2 compares the maximum heights of the scattering peak

P(0) and of one Bragg peak P(Q0 > 0) as a function of the cube

edge L, showing that they are proportional to L6 and L4,

respectively. Similar plots are obtained for spherical NPs as a

function of the diameter. According to equation (9), knowing

the exact behavior of peak height versus size is important

because it establishes the proper moment integral of the PSD

function.

For NPs smaller than 4 nm, Bragg peak overlapping is too

severe, as can be seen in Fig. 1 for D or L smaller than 4 nm.

Above this size, the peak widths were obtained by line-profile

fitting. Examples of peak fitting are given in Fig. 3 for spherical

NPs of diameter D, further confirming that Bragg peak

intensities scale up with D4 while peak width goes with D� 1.

Figs. 4(a) and 4(b) summarize the mean � values obtained by

fitting the first 15 Bragg peaks of the P(Q) curves, while Fig.

4(c) indicates the intervals of fitting considered for each peak.

For spherical and cubic NPs, the obtained SE constants are

�D = 6.84 � 0.05 and �L = 5.4 � 0.2, implying diffraction-

based size determination through the SE with uncertainties of

�1% and 4%, respectively. These are the minimum uncer-

tainties, as measuring peak widths also contributes to some

inaccuracy. The error bar of �0.2 in �L considers all varia-

tions in peak width due to the crystallographic orientation of

NP facets, which is applicable to size estimation of cubic NPs

without concern for the facet planes.

The SE constant �0 for the SAXS peak differs from the SE

constants for the diffraction peaks. However, its value is more

accurate (uncertainty below 0.1%) than the diffraction ones

since no nearby peak-overlapping effects compromise the

evaluation. The term �0D = 7.260 for spheres and the term

�0L = 5.643 for cubes, as shown in Fig. 4(d), where the

computed P(Q) curves of the NPs at low Q are compared with

line-profile functions of half widths �0D/2D and �0L/2L. Both

line-profile functions have the general form

�ðxÞ ¼
½sinðxÞ � x cosðxÞ�

2

x6
; ð11Þ

where x ¼ 1
2

QD for spheres of diameter D (Guinier &

Fournet, 1955) and x ¼ 1
2

�0D=�0Lð ÞQL for cubes of edge L.

Spheres and cubes have the same volume when D/L = 1.241, a

close value to the obtained ratio �0D/�0L = 1.286. Table 1

displays the SE constants for SAXS and XRD size analysis.
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Figure 2
SAXS (squares) and WAXS (circles) peak maximum heights as a function
of NP cube edge length L, as obtained from the P(Q) curves in Fig. 1(b)
for Q = 0 and Q0 = 3.2723 Å� 1, respectively. Expected behavior (solid
lines) of the maxima according to the X-ray kinematical theory, that is
P(0) = C 0L6 and P(Q0) = C 0 0L4, is also shown; the proportionality
constant adjusted values are C 0 = 1003 and C 0 0 = 12.77.

Figure 3
Nearby Bragg peaks of monodisperse NPs with two distinct diameters: (a)
D = 40 nm and (b) D = 4 nm. They include simulated peaks (black open
circles), line-profile fitting (red lines) with two pseudo-Voigt functions
(blue dashed lines) and residue analysis (blue line). A factor of 10 in
diameter ratio leads to factors of 10� 1 in width and 104 in height of the
peaks.

Table 1
SE constants for SAXS (�0) and XRD (�) size analysis as determined
from the monodisperse X-ray patterns in Fig. 1.

XRD theoretical (theo.) SE constants are also shown.

NP shape SAXS XRD Theo.

Sphere �0D = 7.260 � 0.002 �D = 6.84 � 0.05 6.7525
Cube �0L = 5.643 � 0.002 �L = 5.4 � 0.2 5.53 � 0.14†

† Mean value and standard deviation for 52 main reflections in a cubic crystallite

(Langford & Wilson, 1978).



X-ray patterns of polydisperse samples carry distinct

information about the size distribution. As SAXS and XRD

intensity maxima have heights proportional to the NP sizes

raised to different powers, 6 and 4, respectively, peak-width

measurements provide the medians of the PSD’s sixth- and

fourth-moment integrals, as indicated in equation (9).

Computational demonstration of these direct correlations

between peak width and median values takes the mono-

disperse patterns, Fig. 1, weighted by a chosen PSD function as

a way to simulate the size-dispersivity effect.

For example, Fig. 5(a) presents the simulated pattern of a

polydisperse system of spheres with a discrete lognormal PSD

function of 1 nm size increment in the range from 1 to 90 nm.

The corresponding diameter median values for the PSD

moment integrals are eD6 ¼ 66:1 nm and eD4 ¼ 49:4 nm, Fig.

5(a) (inset). Both values are much larger than the 10 nm value

of the PSD mode. Figs. 5(b) and 5(c) show the SAXS and

XRD analysis of the simulated pattern, respectively. The

SAXS peak of half-width Wsaxs=2 ¼ �0D=2Dsaxs ¼ 5:643 �

10� 3 Å
� 1

provides the SAXS size result of Dsaxs = 64.3 nm,

while the Bragg peak of width Wxrd ¼ �D=Dxrd ¼ 1:410 �

10� 2 Å
� 1

provides the XRD size result of Dxrd = 48.5 nm.

Within the 1 nm accuracy of this numerical demonstration, the

obtained size results perfectly agree with the corresponding

median values of the PSD moment integrals. Table 2 shows

median values and size results for narrower PSDs from the

simulated patterns. Besides the excellent agreement between

these values, Table 2 (last column) also reports that the

Gaussian fraction x in the pseudo-Voigt line profile decreases

as the size dispersion increases. The larger the size dispersion,

the more Lorentzian-like the XRD peaks. Despite changes in

the line-profile aspect, the SE constants for monodisperse

systems work for polydisperse sizes, emphasizing the rela-

tionship between peak widths and median values of the

weighted PSDs.

Another difference between SAXS and XRD with respect

to size distribution is the much higher susceptibility of the

SAXS fringes when compared with the smooth ripples around

the diffraction peaks in the WAXS region, as shown in Fig. 6.

In cases where the size results from median values are prac-

tically the same, as in Table 2 (first and second rows), SAXS

fringes can easily grade size distributions with lognormal

standard deviations narrower than � = 0.2. However, even for
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Figure 4
(a), (b) SE constant � as obtained from the monodisperse patterns in Fig. 1 for (a) spherical and (b) cubic NPs with (001) facets. Vertical bars are the
standard-deviation values computed for NPs with sizes varying from 3 to 90 nm. (c) Monodisperse pattern for NPs of edge L = 10 nm, showing numerical
identifiers and intervals of fitting (shaded areas of different colors) of the XRD peaks used to determine the SE constants. The Bragg reflection family
indices are indicated between the (a) and (b) panels. (d) SAXS curves of a few NP sizes (symbols) plotted against QD or QL and compared with the line-
profile functions (solid lines) for SAXS intensity curves, equation (11). The half-height (dashed lines) for spheres and cubes occurs at QD = 3.630 and QL
= 2.822, respectively.

Table 2
Median values eD6 and eD4, with size results Dsaxs and Dxrd, as a function of
�, the PSD size-dispersion parameter in simulated X-ray patterns.

The numerical values, accurate to within 0.5 nm, are based on polydisperse
patterns for spheres, e.g. Fig. 5(a). The PSDs are discrete 1 nm bin lognormal
functions of standard deviation �, 10 nm mode, with 90 nm as the maximum

size. Parameter x stands for the Gaussian fraction in the pseudo-Voigt line
profile of the XRD/Bragg peaks.

� eD6 (nm) Dsaxs (nm) eD4 (nm) Dxrd (nm) x

0.1 10.3 10.8 10.1 10.6 0.93
0.2 12.8 13.4 11.7 12.2 0.84
0.4 30.1 31.8 21.8 22.6 0.69
0.6 66.1 64.3 49.4 48.6 0.25



highly monodisperse NPs, as shown by the SAXS fringes, the

question of how to quantify the degree of crystallinity still

remains. An approach to address this issue is presented later in

this work.

5. Experimental results

Fig. 7 shows XRD patterns and SEM images of the CeO2

powder samples. According to the images, all samples have

cubic-like NPs with sizes ranging from about ten to hundreds

of nanometres, Figs. 7(b)–7(d). The apparent size distributions

highly depend on the ensemble of NPs in each image. On the

other hand, the XRD patterns reveal differences in the

median values of particle sizes from one sample to another.

This is seen qualitatively by the greater or lesser overlap of the

K� radiation doublet peaks at higher angles, as in peaks 12 to

14 in Fig. 7(a). See also the zooms of peak 9 in Figs. 8(b)–8(d),

indicating that the largest crystalline NPs or crystallites are

present in sample C1 and the smallest ones are present in

sample B11. Quantitative results of peak widths are shown in

Fig. 8(a), where the peak widths differ little from one reflec-

tion to another but the differences between samples are
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Table 3
Size results Lxrd and Lsaxs, as determined by XRD and SAXS experiments in the C1, B11 and B5 powder samples, lognormal size-distribution parameters
� and L0 from equation (12) or by SAXS data fitting via equation (14), and median eLm ¼ L0 exp½ðmþ 1Þ�2� as the expected XRD (m = 4) and SAXS
(m = 6) size results from the SAXS perspective only.

The last-digit uncertainties are in parentheses.

From equation (12) From equation (14)

Sample Lxrd (nm) Lsaxs (nm) �L/L � L0 (nm) � L0 (nm) eL4 (nm) eL6 (nm)

C1 99 (8) 160 (4) 0.38 0.46 (8) 34 (9) 0.623 (4) 10.0 (2) 70 (3) 151 (6)

B5 66 (7) 345 (13) 0.81 0.93 (4) 0.9 (3) 0.788 (6) 4.7 (2) 105 (6) 364 (27)
B11 43 (4) 272 (6) 0.84 0.95 (4) 0.5 (1) 0.768 (3) 4.3 (1) 82 (3) 267 (10)

Figure 5
(a) Simulated X-ray pattern (dots with line) of polydisperse spheres given in number of scattering electrons, that is I(Q) in equation (7) with ITh = 1. The
inset shows a weighting function for the monodisperse patterns in Fig. 1(a) taken as a PSD function with diameter median values eD4 and eD6. Shaded
areas and arrows indicate intervals in Q for SAXS and XRD size analysis. (b) SAXS peak of the weighted pattern (dots) and corresponding curve fitting
(solid red line) based on the analytical expression of the SAXS intensity curve for spheres, equation (11). (c) Bragg peak of the weighted pattern (dots)
and line-profile fitting (solid red line) based on the pseudo-Voigt function. Heights at half maximum of the scattering and diffraction peaks are indicated
(horizontal blue lines). Peak widths (FWHM): Wsaxs ¼ 11:3� 10� 3 Å

� 1
and Wxrd ¼ 14:1� 10� 3 Å

� 1
.



evident. The average widths after GG deconvolution,Wxrd ¼

5:45 � 0:37� 10� 3 Å
� 1

(sample C1), 8.25 � 0.78 � 10� 3 Å� 1

(sample B5) and 12.5 � 1.2 � 10� 3 Å� 1 (sample B11), are

used for size measurements with standard deviations as the

uncertainty. The SE constant for cubic NPs, �L = 5.4 � 0.2,

leads to the XRD size results, Lxrd ¼ �L=Wxrd, in Table 3

(column 2). The NPs were considered strain free as the peak

widths show no systematic variation as a function of Q.

Fig. 9 shows the SAXS measurements of samples C1, B11

and B5, as well as the best-fit curves of the data. As the

intensity at Q = 0 is inaccessible in the used SAXS equipment,

the SAXS peak half-widths Wsaxs=2 ¼ �0L=2Lsaxs ¼ 1:77 �

0:04� 10� 3 Å
� 1

(sample C1), 1.04 � 0.02 � 10� 3 Å� 1 (sam-

ple B11) and 0.82 � 0.03 � 10� 3 Å� 1 (sample B5) were esti-

mated by extrapolating the fitted curves to Q = 0 (inset of Fig.

9). The uncertainties were estimated by repeating the fitting

procedure several times after adding extra statistical noise to

the data. The SE constant for cubic NPs, �0L = 5.64, leads to

the SAXS size results, Lsaxs ¼ �0L=Wsaxs, in Table 3

(column 3).

6. Discussion

To interpret as adequately as possible the discrepant XRD and

SAXS size results, such as Lxrd and Lsaxs in Table 3, it is

necessary first to evaluate possible discrepancies for actual

size distributions as if there is no interaction between NPs and
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Figure 6
Simulated X-ray patterns of polydisperse cubes given in number of
scattering electrons, that is I(Q) in equation (7) with ITh = 1. The patterns
cover the SAXS region and the first diffraction peak in the WAXS region.
Lognormal functions of 10 nm mode and standard deviations of � � 0.2
were used for weighting the monodisperse patterns in Fig. 1(b).

Figure 7
(a) XRD patterns of powder samples C1, B5 and B11 of CeO2 NPs with Cu K� radiation. A simulated pattern (L30) for a monodisperse system of cubic
NPs of edge L = 30 nm is also shown as a reference, Cu K�1 only, and hdrirms = 1.4 pm in the virtual NP is used to compute the Ce–Ce, Ce–O and O–O
PDDFs in equations (5) and (6). (b), (c) SEM images and histograms (insets) of apparent size distribution for each powder sample as indicated.



their sizes have exactly the coherent lengths of their crystal

lattices, that is considering a dilute system of perfect crystal-

line NPs. This evaluation requires choosing an appropriate

PSD function. In the particular case of one of the most

common probability functions for size distribution, which is

the lognormal function (Kril & Birringer, 1998; Kiss et al.,

1999; Jensen et al., 2006), the mth moment integral has

analytical solution eLm ¼ L0 exp½ðm þ 1Þ�2� for its median

value given in terms of the most probable size (mode) L0 and

standard deviation � (Section S3). By taking the medians eL4

and eL6 as the XRD and SAXS size results, respectively, the

corresponding size-distribution parameters follow from

�2 ¼ � 1
2 ln Lxrd=Lsaxsð Þ and

L0 ¼ Lxrd expð� 5�2Þ ¼ Lsaxs expð� 7�2Þ: ð12Þ

This shows that the discrepancy �L=L ¼ 1 � Lxrd=Lsaxs ¼

1 � expð� 2�2Þ in size results arises as an exclusive conse-

quence of the size-dispersion parameter � under the idealized

conditions mentioned above. The contribution of partial

crystallization to the size discrepancy is taken into account

here within the assumption that the volume fraction � between

the crystalline domain and the whole NP volume is nearly

constant concerning the NP size. Then, the size discrepancy

accounting for both effects becomes

�L=L ¼ 1 � Lxrd=Lsaxs ¼ 1 � �1=3 expð� 2�2Þ: ð13Þ

In samples with narrow size distributions and crystalline NPs,

as represented by simulated patterns with � � 0.2 in Table 2
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Figure 8
(a) Experimental peak width W (open circles connected by lines) from XRD line-profile analysis in CeO2 cubic NPs, samples B11, B5 and C1, as
obtained after the GG deconvolution of the measured FWHM values (dashed lines). Vertical error bars represent the statistical fluctuation of the fitting
procedure. Peak widths after the GL deconvolution (dotted lines) are also shown. (b)–(d) Examples of line-profile fitting (solid red lines) of one doublet
peak (scattered black dots) with pseudo-Voigt functions (dashed blue lines); see Section S2 for the other peaks as well as for the Rietveld analysis.

Figure 9
SAXS intensity curves, experimental (open circles) and adjusted (solid
lines), from CeO2 cubic NPs, powder samples B5, B11 and C1. I/I0 stands
for normalized intensity. Adjusted curves were obtained by the Y(Q)-
fitting function in equation (14). Ultra-small Q regions are highlighted in
the inset, where the height at half-maximum of each adjusted curve is
indicated (horizontal solid lines).

http://doi.org/10.1107/S1600576724003108
http://doi.org/10.1107/S1600576724003108


(first and second rows), no detectable discrepancy is intro-

duced as long as the error bars in the XRD and SAXS size

values are more significant than 5%. In other words, compa-

tible size results, �L/L < 0.08 [from equation (13) with � = 1

and � = 0.2], only occur for systems of crystalline NPs with

narrow size distributions. For example, SAXS curves

displaying well defined fringes are typical signatures of

monodisperse sizes (Zemb & Lindner, 2002; Wu et al., 2018).

In such cases, measuring Lxrd ’ Lsaxs proves that the NPs are

also highly crystalline, � > 0.78 [from equation (13) with

�L/L < 0.08 and � = 0].

Equation (12) imposes no upper limit on the dispersion

parameter �. However, lognormal functions with � > 0.8

represent distributions with a broad size dispersion ranging

from a few nanometres to near a micrometre. By stipulating

this � value as the upper limit of physically acceptable size

dispersivity when synthesizing NPs, discrepancies where

�L/L > 0.72 are strong evidence that other effects contribute

to the observed discrepancy value. According to this criterion,

only sample C1 shows a discrepancy (�L/L = 0.38) small

enough to be totally explained in terms of size distribution.

When this is the case, the parameters � and L0 of the distri-

bution can be directly obtained from equation (12), as

presented in Table 3 (columns 5 and 6). However, the �L/L �

0.81 size discrepancy for samples B5 and B11 is enormous,

suggesting that SAXS has measured NP sizes significantly

larger than their crystal lattices.

From the SAXS perspective, the size-distribution para-

meters were already determined when fitting the SAXS

curves. The analytical expression in equation (11) adapted for

cubes of edge L, weighted by L6 and by a lognormal function

n(L), led to a parametric SAXS fitting function of

YðQÞ ¼ a

Z

L6�ðQ;LÞnðLÞ dLþ b; ð14Þ

with four adjustable parameters: normalization factor a,

constant background intensity b, and the lognormal para-

meters L0 and �. The data-fitting quality relies on a genetic

algorithm that minimizes the mean-squared error of the log-

transformed data (Wormington et al., 1999). The best fits of

the SAXS data are those shown in Fig. 9, while the L0 and �

values characterizing the size distributions from the SAXS

perspective are given in Table 3 (columns 7 and 8). The

median valueseL6 of these distributions match the Lsaxs values

of the half-width measurements. Without XRD measurements,

all available information about the samples’ size dispersivity

has to rely on the fitting procedures of the SAXS curves in Fig.

9. As the fitting quality is very good for the analyzed samples,

there is no room to question the reliability of the SAXS results

or the methodology used based on polydisperse sizes of non-

interacting cubic NPs. The scenario is entirely different when

results from another bulk technique, such as XRD, are

introduced. For comparison purposes, the � and L0 size-

distribution parameters from fitting the SAXS curves allow us

to calculate the expected XRD size results, eL4 (Table 3,

column 9).

For sample C1, eL4 is smaller than Lxrd, showing that the

dispersion parameter � = 0.623 optimized by curve fitting

leads to the physical inconsistency of the NP crystalline

domains being larger than the NPs themselves. This result

illustrates the relevance of combining XRD and SAXS size

results to evaluate the reliability of methodologies based on a

single bulk technique. A possible cause of this inconsistency is

an intensity reduction centered at Q = 0 [see Fig. 10(a)],

characteristic of highly packed systems of NPs with similar

sizes where the scattering becomes susceptible to the NP–NP

exclusion distance (NP impenetrability) (Zemb & Lindner,

2002; Morelhão, 2016).

For samples B5 and B11, eL4 is larger than Lxrd, indicating a

physically feasible situation where SAXS probes NP sizes

larger than their crystalline domains. In ideally dilute systems

where the NP–NP distances are longer than the coherence

length of the incident X-rays (Materials and Methods), the

possible explanation goes towards NPs of partial crystal-

lization. When that is the case, estimating the crystalline

volume fraction � ¼ ðLxrd=eL4Þ
3 is possible within the

assumptions leading to equation (13). Then, the volume

fractions of crystalline material in the NPs of samples B5 and

B11 are 24� 8% and 15� 5%, respectively. However, powder

samples are generally far from dilute systems. For example, the

NPs appear very clustered in the SEM images in Figs. 7(c) and

7(d). This allows us to consider other effects, such as samples

with a broad size dispersion of crystalline NPs where many

small particles wrap around the larger ones, blurring particle

interfaces from the SAXS perspective and producing an

apparent size effect of much larger particles [Fig. 10(b), inset].

Particle-interface properties are known to affect the SAXS

curve asymptotic behavior, as in Porod’s law (Ciccariello et al.,

1988). The cause of eL4 >Lxrd is the difference in asymptotic

behavior [Figs. 10(b) and 10(c)], supporting the hypothesis

that SAXS is seeing NP aggregates instead of individual NPs.

Proper interpretation of the XRD size result is a crucial

point when comparing results from the two techniques, and it

can be highlighted here by taking the results for sample B11 as

an example. The Lxrd value accessed via XRD peak width

through the SE, equation (10), is the median value eL4 of the

actual L4-weighted size distribution. Although the median
eL3 ¼ L0 expð4�2Þ of the volume-weighted size distribution can

be much closer to the actual XRD size result, its comparison

with Lxrd leads to a misleading analysis for the following

reasons. Sample B11 has eL3 ¼ 46 nm according to the SAXS

results in Table 3 (columns 7 and 8), a value that perfectly

matches the XRD size result of this sample, Lxrd = 43 � 4 nm.

This shows that, by misinterpreting the XRD size as eL3, size

dispersion alone can explain the XRD and SAXS size

discrepancy, leaving no room to question the SAXS fitting

procedure, NP–NP interaction effects and NP crystallinity. In

other words, the size discrepancy leads to a narrower size

dispersion, and the sample appears more dilute and crystalline

when Lxrd is mistaken for eL3.

Concurrently with interpreting XRD size results correctly,

there is also the need to establish the reliability of the

obtained size values. Here two approaches have been
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considered. One approach was the line-profile fitting to the

individual peaks with local background corrections rather

than the whole pattern fitting to the diffraction data, widely

known as Rietveld refinement. The former is feasible for small

unit-cell materials like CeO2 and can lead to more accurate

FWHM values as the fitting optimization is independent for

each peak, as opposed to the fitting optimization for the whole

pattern. The best fittings achieved by the two approaches are

compared in Section S2. Fig. 8(a) shows the original FWHM

values from individual fittings as well as the resulting peak

widths after GG and GL deconvolutions. The most significant

difference between these two deconvolutions, of�20% in size,

is observed for sample C1: 99 � 8 nm (GG) against

118 � 9 nm (GL). The GL deconvolution is suitable when

instrumental and size broadenings have previously been

deconvolved from the standard-sample FWHMs, resulting in a

smaller instrumental broadening to be deconvolved from the

NP samples’ FWHMs. As the standard-sample FWHMs, that is

the W insðQÞ function, without previous deconvolution were

considered for instrumental-broadening correction, the Lxrd

sizes in Table 3 were obtained by using the GG deconvolution.

These size values are in very good agreement with those

obtained via Rietveld refinement (see Section S2, Table S1 of

the supporting information).

By comparing chemical routes from the cerium nitrate

precursor towards the synthesized samples B5 (NaOH 6 M),

B11 (NaOH 12 M) and C1 (NaOH 12 M + CH4N2O 0.025 M),

it is evident that sodium hydroxide acts as a nucleation agent

while urea slows down nucleation and favors crystal growth.

This eventually narrows the size distribution around larger

sizes, as seen for sample C1. The relatively small size discre-

pancy (�L/L = 0.38) reported for this sample suggests highly

crystalline NPs. In synthesizing samples B5 and B11, the

higher the concentration of sodium hydroxide, the smaller the

XRD size result, indicating its action mainly as a nucleation

agent. Assertions about the actual size dispersivity and crys-

tallinity of CeO2 NPs are compromised by the spontaneous

self-aggregation observed in the series of samples analyzed

here, making the preparation of dilute samples for proper

SAXS measurements unfeasible. Reliable analytical proce-

dures for further controlling size, size dispersivity and crys-

tallinity are possible by comparing SAXS and XRD results in

light of how these bulk techniques weight the size distribution.

However, the feasibility of preparing dilute samples has to be

also a concern when synthesizing the NPs. Besides dilute

systems, it is also relevant to emphasize that ultra-SAXS

instrumental configurations capable of actually measuring the

scattering peak around the direct beam, like those config-

urations based on analyzer crystals (Chapman et al., 1997;

Pagot et al., 2003; Antunes et al., 2006; Rigon et al., 2007;

Morelhão et al., 2010), improve the reliability of SAXS size

results, as the peak maximum height and therefore its width

are available measures irrespective of curve-fitting approa-

ches. To evaluate size dispersivity and crystallinity of NPs in

advanced X-ray instruments capable of accessing SAXS and

WAXS simultaneously (Ilavsky et al., 2018; Smith et al., 2021a;

Shih et al., 2022), the challenge is to prepare samples that are

dilute enough for SAXS while sufficiently compact for Bragg

peak signal analysis in the WAXS region.

In monodisperse systems, size information known as the

radius of gyration is often obtained from the SAXS curve

slope near Q = 0, above the half intensity and within the

Guinier region (Guinier & Fournet, 1955). In polydisperse

systems, the emphasis here was the behavior of the scattering

peak FWHM as a function of NP size dispersion, as

summarized by FWHM� 1 / eL6. However, going into a

detailed discussion about the radius-of-gyration behavior with

the size dispersion is beyond the scope of this work as it can be

different from theeL6 behavior (Morelhão & Kycia, 2022). The

most intense part of the SAXS peak, including its FWHM, is

susceptible most to the volume of the NPs, and hence to size

dispersivity instead of shape dispersivity. For cubic-like NPs,

this is demonstrated in Fig. 11(a), where the widths of the

SAXS curves exhibit only negligible variations as a function of
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Figure 10
SAXS curves simulated for polydisperse systems of non-interacting cubic NPs with lognormal size-distribution parameters � and L0 from Table 3, as
indicated. In each panel, the curves have close values of Lsaxs andeL6, but significantly different values of Lxrd andeL4 (Table 3). (a) Curves with different
intensity maxima at Q = 0 and similar asymptotes, as caused by the NP–NP exclusion distance effect (inset). (b), (c) Curves with different asymptotes and
similar intensities around Q = 0, as caused by an interface blurring effect due to very small particles (inset).
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the rectangular-shape ratio, as given by height/base-edge

length. Even for a significant deviation from the cubic shape,

as for the NP with 0.35 ratio, there is only a relative variation

of 14% in the curve FWHM value, which is very small in

comparison with the size discrepancies reported in Table 3

(columns 2 and 3). The SAXS curve width provides the most

reliable size information in general polydisperse systems.

Simulation of WAXS in systems of virtual NPs is a more

appropriate approach to address shape dispersivity, as

demonstrated in Fig. 11(b) where NPs with rectangular (100)

facets have {200} and {400} Bragg peaks narrower than the

others. This implies that the observation of {200} and {400}

Bragg peaks with systematically narrower-than-average

widths [peak numbers 2 and 6 in Fig. 8(a)] is consistent with

the presence of a few NPs with pronounced rectangular shape,

as seen in the SEM images in Figs. 7(b)–7(d). This observation

also confirms that the peak-by-peak analysis of the X-ray

patterns performed in this work has enough resolution to

detect Bragg peak width variations related to deviation from

the perfect cubic shape. Moreover, beyond the basic illus-

trative demonstrations in this work of the correlations

between median values and peak widths, the role of poly-

dispersity in X-ray scattering can be further investigated via

simulation in virtual NPs as a relatively simple procedure. In

general, theoretical approaches that have been deduced

primarily on the basis of monodisperse systems, such as the

asymptotic behavior of the SAXS curve as a function of Q

(Guinier & Fournet, 1955; Pedersen, 1997; Zemb & Lindner,

2002; Li, 2013), can be tested in well controlled polydisperse

systems instead of real systems where dispersivity properties

are challenging to control.

7. Conclusions

Comparing SAXS and XRD size results creates possible

procedures for attesting the reliability of both bulk techniques

in accessing size-distribution parameters. In particular, in this

work, SAXS intensity curves of ceria powders were precisely

reproduced by fitting functions based on polydisperse sizes of

non-interacting NPs. After introducing XRD size results, there

was new information to question the reliability of the SAXS

curve fitting. It revealed that NP–NP interaction effects in the

SAXS curves compromise the assertive assessment of the NPs’

properties. Consequently, being able to prepare dilute samples

for SAXS measurements is a preliminary requirement for

analyzing the size dispersivity and crystallinity of NPs via the

combined SAXS/WAXS methodology proposed here. The

apparent crystallite size from the SE has to be compared with

the median of the size distribution’s fourth-moment integral,

where the size distribution here was obtained from SAXS

curve fitting. In principle, it can also be obtained from other

techniques, such as EM. Measurements of the SAXS curve

width in sufficiently dilute samples lead to the median of the

size distribution’s sixth-moment integral as the apparent size

result. Discrepancy in apparent XRD and SAXS size results

implies a relatively broad size distribution, one with lognormal

standard deviation � ’ 0.2. Narrower size distributions (� <

0.2) are shown by the SAXS fringes, while 80% is the highest

detectable fraction of crystallized volume in the NPs when

comparing apparent size results. The relationship provided in

this work to correlate discrepancies of apparent sizes was

based on a lognormal probability distribution function, valid

for both particle and crystalline domain sizes. It is the first step

towards more general situations that can be exploited by

cross-analyzing SAXS and WAXS data.

8. Related literature

The following references are only cited in the supporting

information for this article: Andrews (1997) and Glaisher

(1871).
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J. Appl. Cryst. (2024). 57, 793–807 Adriana Valério et al. � Implications of size dispersion on scattering of nanoparticles 805

Figure 11
(a) SAXS curves for cubic-like NPs with rectangular shapes as given by
the ratio of height/base-edge length (inset). FWHM values (vertical bars)
are in units of 10� 3 Å� 1. (b) Bragg peak widths in monodisperse systems
of CeO2 virtual NPs [inset, (a)]. All NPs have the same volume as a 30 nm
cube. Peak numbers 2 and 6 stand for reflection families {200} and {400},
respectively. SAXS and WAXS simulation is done via equation (2). Peak
widths were obtained by pseudo-Voigt line-profile fitting. NPs with
hdrirms = 1.4 pm were used for computing the Ce–Ce, Ce–O and O–O
PDDFs [equations (5) and (6)].
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Staedler, D., Passemard, S., Jüstel, T., Badie, L., Galez, C., Wolf, J.
P., Volkov, Y., Prina-Mello, A., Gerber-Lemaire, S., Rytz, D.,
Mugnier, Y., Bonacina, L. & Le Dantec, R. (2014). J. Appl. Phys.
116, 114306.

Shih, O., Liao, K.-F., Yeh, Y.-Q., Su, C.-J., Wang, C.-A., Chang, J.-W.,
Wu, W.-R., Liang, C.-C., Lin, C.-Y., Lee, T.-H., Chang, C.-H.,
Chiang, L.-C., Chang, C.-F., Liu, D.-G., Lee, M.-H., Liu, C.-Y., Hsu,
T.-W., Mansel, B., Ho, M.-C., Shu, C.-Y., Lee, F., Yen, E., Lin, T.-C.
& Jeng, U. (2022). J. Appl. Cryst. 55, 340–352.

Sivia, D. S. (2011). Elementary Scattering Theory: For X-ray and
Neutron Users. Oxford University Press.

Smith, A. J., Alcock, S. G., Davidson, L. S., Emmins, J. H., Hiller
Bardsley, J. C., Holloway, P., Malfois, M., Marshall, A. R., Pizzey, C.
L., Rogers, S. E., Shebanova, O., Snow, T., Sutter, J. P., Williams, E.
P. & Terrill, N. J. (2021a). J. Synchrotron Rad. 28, 939–947.

Smith, L. R., Sainna, M. A., Douthwaite, M., Davies, T. E., Dummer,
N. F., Willock, D. J., Knight, D. W., Catlow, C. R. A., Taylor, S. H. &
Hutchings, G. J. (2021b). ACS Catal. 11, 4893–4907.

Snyder, R., Fiala, J., Bunge, H. & Bunge, H. (1999). Defect and
Microstructure Analysis by Diffraction, IUCr Monographs on
Crystallography. Oxford University Press.

Sreekanth, T. V. M., Nagajyothi, P. C., Reddy, G. R., Shim, J. & Yoo,
K. (2019). Sci. Rep. 9, 14477.

Stokes, A. R. & Wilson, A. J. C. (1942). Math. Proc. Camb. Phil. Soc.
38, 313–322.

Sun, Y., Shen, Y., Song, J., Ba, R., Huang, S., Zhao, Y., Zhang, J., Sun,
Y. & Zhu, Y. (2016). j Nanosci. Nanotechnol. 16, 4692–4700.

Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544–549.

Trindade, F. J., Damasceno, S., Otubo, L., Felez, M. R., de Florio, D.
Z., Fonseca, F. C. & Ferlauto, A. S. (2022). ACS Appl. Nano Mater.
5, 8859–8867.

Trovarelli, A. & Llorca, J. (2017). ACS Catal. 7, 4716–4735.
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