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Understanding the symmetries described by subperiodic groups – frieze, rod and

layer groups – has been instrumental in predicting various properties (band

structures, optical absorption, Raman spectra, diffraction patterns, topological

properties etc.) of ‘low-dimensional’ crystals. This knowledge is crucial in the

tailored design of materials for specific applications across electronics, photonics

and materials engineering. However, there are materials that have the property

of being periodic only in one direction and whose symmetry cannot be described

by the subperiodic rod groups. Describing the symmetry of these materials

necessitates the application of line group theory. This paper gives an overview of

subperiodic groups while briefly introducing line groups in order to acquaint the

crystallographic community with these symmetries and direct them to pertinent

literature. Since line groups are generally not subperiodic, they have thus far

remained outside the realm of symmetries traditionally considered in crystal-

lography, although there are numerous ‘one-dimensional’ crystals (i.e. mono-

periodic structures) possessing line group symmetry.

1. Introduction

In the same way in which three-dimensional space groups are

used to describe the atomic structure of three-dimensional

crystals, subperiodic groups are used to describe the atomic

structure of other crystalline structures, such as liquid crystals,

domain interfaces, twins, thin films, layered materials, poly-

mers, materials with pronounced rod arrangements, nanotubes

and nanowires. The interest in materials with subperiodic

symmetry is constantly growing due to their scientific and

technological relevance. There are 80 layer groups (three-

dimensional groups with two-dimensional translations) which,

together with the 75 rod groups (three-dimensional groups

with one-dimensional translations) and the seven frieze

groups (two-dimensional groups with one-dimensional trans-

lations), constitute the subperiodic groups. The crystal-

lographic data for subperiodic groups are compiled in

International Tables for Crystallography, Vol. E, Subperiodic

Groups (Kopský & Litvin, 2010; henceforth abbreviated as

IT E), and also freely available online in the section of the

Bilbao Crystallographic Server (https://www.cryst.ehu.es/)

(Aroyo et al., 2011; Tasci et al., 2012) dedicated to the

subperiodic groups.

In crystallography, two-dimensional sections of crystal

structures are fundamental in bicrystallography, for the study

of bicrystals. The terms bicrystallography and bicrystals were

first introduced by Pond & Bollmann (1979) in the study of

grain domains. In general, a bicrystal is defined as two crystals,

usually with the same structure but different orientation with a

common boundary or interface. The identification of the layer
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group of a section is very useful in bicrystals to describe both

the bicrystal itself and the symmetry of the boundary plane. In

the case of domain walls and twin boundaries, which can be

considered a special case of bicrystals, there are crystallo-

graphic restrictions on their orientations. The layer symme-

tries of the sections of the 230 space groups are collected in the

‘scanning tables’ in IT E. In addition, it is possible to calculate

the layer symmetry of a periodic section using the program

SECTIONS in the Bilbao Crystallographic Server. Layer

groups are useful to describe the symmetry of layered mate-

rials with scientific and technological relevance such as

graphene, black phosphorus, hexagonal boron nitride and

transition metal dichalcogenides. The symmetry of domain

twins and domain walls, as well as the symmetry of woven

textiles (Hammond, 2009; De Las Peñas et al., 2024), can also

be described by layer groups. Rod groups, on the other hand,

can be used to study crystals with pronounced rod arrange-

ments, such as benitoite (BaTiSi3O9), garnet or catapleite

(Na2ZrSi3O9·2H2O). The identification of the rod symmetry of

a straight line penetrating the crystal, called the penetration

rod group, is also very useful to study systems with periodicity

in a single direction such as line dislocations or intersections of

boundaries. The penetration rod groups of space groups are

not compiled in IT E; to the best of our knowledge this

information can only be calculated using the program RODS

in the Bilbao Crystallographic Server.

There are other three-dimensional systems with periodicity

in a single direction which cannot be described by any of the

75 rod groups tabulated in IT E. This is the case of the mono-

periodic compounds that are invariant under the rotations of

noncrystallographic order. Their full symmetry is given by line

groups (Damnjanović & Milošević, 2010). Examples include

certain polymers like DNA double helix (Milošević et al.,

1996), carbon (Damnjanović et al., 1999) and transition metal

dichalcogenide nanotubes (Milošević et al., 2000), ZnO

nanosprings (Milošević et al., 2006), structural analogs of

single-wall carbon nanotubes (De Las Peñas et al., 2014;

Loyola et al., 2012) etc. Line groups also describe the

symmetry of systems having only helical periodicity: the vast

majority of multi-wall (Damnjanović et al., 2003) and helically

coiled carbon nanotubes (Milošević et al., 2012), extended

metal atom chains (Ou & Jin, 2018), nanohelicenes (Domnin

et al., 2023), polytwistanes (Domnin et al., 2022), helical

polyacetylenes (Porsev & Evarestov, 2022), and incommen-

surately modulated crystals (Mészáros et al., 2020).

The use of line groups is essential for efficient computation

of the physical properties of quasi-one-dimensional (hereafter

referred to as quasi-1D) systems and for achieving a complete

and clear interpretation of the obtained results. A seminal

paper on the full symmetry of carbon nanotubes (Damnja-

nović et al., 1999) revealed that their symmetry was described

by nonsymmorphic line groups, aiding comprehension and

correct interpretation of carbon nanotube (CNT) Raman

spectra (Reich et al., 2004). In addition, it highlighted the

minimal interaction between the walls in multi-wall CNTs and,

on the basis of the symmetry arguments only, deduced the

presence of the Goldstone-mode-like super-slippery sliding of

the incommensurate walls of multi-wall CNTs (Damnjanović

et al., 2002).

Generally, a wide range of applications employing line-

group-symmetry-based methods emerged in the investigation

of quasi-1D systems (Damnjanović et al., 2005). The quantum-

mechanical methods based on line group and layer group

symmetry are implemented in the program POLSym

(Damnjanović & Milošević, 2015), a platform for numerical

computation which enables one to estimate the stability of

low-dimensional structures, to calculate dispersion relations

for electrons, phonons and magnons, to generate diffraction

patterns and optical and Raman spectra, etc. Furthermore,

POLSym has recently been upgraded to incorporate the

tools for topological characterization of nonmagnetic low-

dimensional matter by means of elementary band (co)-

representations for single and double (gray) line groups

(Milošević et al., 2020; Dmitrović et al., 2022).

The main aim of this paper is to indicate the primary

differences between subperiodic and line groups, and intro-

duce the line groups and their applications in crystallography

for describing systems that cannot be described by subperiodic

crystallographic groups, the rod groups.

2. Subperiodic groups: frieze, rod and layer groups

The crystallographic subperiodic groups are classified into

frieze, rod and layer groups. Layer and rod groups are three-

dimensional groups with, respectively, two- and one-dimen-

sional translations, and frieze groups are two-dimensional

groups with one-dimensional translations. This classification

underlines the existing relationship between subperiodic and

space groups, i.e. a group–subgroup relation exists between

the subperiodic groups S and the space groups G. Each layer

and rod group corresponds to a three-dimensional space

group, while each frieze group is associated with a two-

dimensional space group (called the plane groups). These

relationships have been considered in detail in the literature

[see e.g. Wood (1964), IT E and references herein]. The space

group G to which a subperiodic group S is related can be

expressed as a semi-direct product of S with a one- or two-

dimensional translation group T(i) of additional translations,

such as G ¼ TðiÞ ^ S, where T(i) is a normal subgroup of G.

This means that each subperiodic group S is isomorphic to the

factor group G/T(i) (Litvin & Kopsky, 1987, 2000). For

example, the layer group pmmm (No. 37) is a subgroup of the

three-dimensional space group Pmmm (No. 47); this means

that the layer group pmmm is isomorphic to the factor group

Pmmm/T(3), where T(3) is the translational subgroup of all

translations along the third (z) direction. The layer group

pmmm is the symmetry of the plane, transecting a crystal of

three-dimensional space group symmetry Pmmm, perpendi-

cular to the z axis, at z = 0.

The isomorphism between S and the factor group G/T(i)

results in a close relationship between the Wyckoff positions,

maximal subgroups, minimal supergroups, Brillouin zones and

irreducible representations (irreps) of S and G. One can show,

for example, that the set of Wyckoff positions of a layer group
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can be directly derived from those of the related space group,

i.e. the set of Wyckoff positions of a layer group is contained in

the set of Wyckoff positions of the related space group (cf.

Evarestov & Smirnov, 1993). The restrictions imposed by the

loss of periodicity in the third (z) direction result in the

following restrictions on the special-position coordinates of

layer groups: only the special positions of G whose z coordi-

nate does not involve a fraction of the unit-cell parameter are

possible special positions of the layer group, i.e. special posi-

tions of the space group with z coordinates (z, � z or 0). In that

way, to each Wyckoff position of the layer group there

corresponds exactly one Wyckoff position of the corre-

sponding space group, specified by exactly the same site-

symmetry group and multiplicity, and by the same set of

coordinate triplets of equivalent positions. In accordance with

the conventions adopted in IT E, the labeling of the Wyckoff

position letter of layer groups is done independently of that of

space groups. This means that the Wyckoff letters of the

corresponding space and layer group Wyckoff positions might

not coincide, in general. On the other hand, the irreps of layer

groups, established and derived by Litvin & Wike (1991) and

Milošević et al. (1998), can also be derived from those of the

corresponding space group due to the existing isomorphism

between S and G/T(i). Note that all the irreps of a layer group

are contained in the irreps of the related space group G, and

every irrep of S is related to a specific irrep of G (Evarestov &

Smirnov, 1993; Smirnov & Tronc, 2006). Similarly, the Bril-

louin zones of layer groups were derived from those of space

groups by de la Flor et al. (2021).

As a practical example of the use of subperiodic groups, the

symmetry of layered and rod materials is analyzed.

2.1. Materials with layer symmetry: WS2 and MoS2

The arrangement of atoms in a layer cannot be adequately

characterized by any of the 17 two-dimensional or any of the

230 three-dimensional space groups. These atom arrange-

ments are characterized by a two-dimensional translational

periodicity and a finite thickness in the third dimension. This

thickness allows possible three-dimensional reflections, glide

planes and twofold screw axes not included in two-dimen-

sional space group symmetry. Therefore, the symmetry group

of such an arrangement of atoms has to be described with one

of the 80 layer groups and not with a plane group. Note that

the absence of periodicity in the third dimension within layer

groups results in the exclusion of specific symmetry elements:

(i) screw axes normal to the plane of periodicity; (ii) glide

planes with glide directions out of this plane; and (iii) n-fold

axes not normal to this plane, with n > 2.

In layered crystals the interaction between nearest layers is

usually weaker than that between nearest atoms in the same

layer plane. Depending on the interaction between the layer

and the bulk, these sorts of materials with layer symmetry can

be classified into five different types: (i) pure layered systems

like free-standing films; (ii) single layers in layered crystals

which can be separated from the bulk due to a weak van der

Waals interlayer interaction; (iii) artificial nanolayers grown

on substrates or between two bulk materials where the

interaction between the nanolayer and surrounding bulk

materials is neglected; (iv) layers (or slabs) which model

atomically clean crystal surfaces where the slab interaction

with the rest of the semi-infinite crystal is neglected; (v)

interfaces between different crystals, including domain walls

approximated by atomically clean crystal surfaces.

As an example, let us consider the transition metal dichal-

cogenides WS2 and MoS2. In layered and multilayered mate-

rials, the symmetry of the bulk is described by a space group,

while the symmetry of the layers is described by layer groups.

The space group of the WS2 and MoS2 bulk crystals is P63/

mmc (No. 194). In the bulk crystal, the metal atoms occupy the

2c (1/3; 2/3; 1/4) position and the sulfur atoms occupy the 4f

(1/3; 2/3; z) position (Lee et al., 2014). The layer group of a

single layer is p�6m2 (No. 78) and is isomorphic with the factor

group G/T(3), where G is the space group P�6m2 (No. 187) and

T(3) is the one-dimensional translation group along the third

(z) direction, i.e. p�6m2 is a subgroup of P�6m2. The crystal

structure of a single layer is shown in Fig. 1. Atoms in the

primitive unit cell of the layer occupy the following Wyckoff

positions: W(Mo) 1c (2/3; 1/3; 0) and S 2e (1/3; 2/3; z). Note

that the layer group of a single layer is also a subgroup of the

space group of the bulk crystal.

2.2. Materials with rod symmetry: a-Se (or a-Te) and SnIP

As an example of materials with rod symmetry, the struc-

tures of �-Se and �-Te (see Fig. 2) and SnIP (see Fig. 3) were

chosen. These are three-dimensional structures constituted of

infinite chains parallel to a certain direction. In such materials,

the symmetry of the bulk is described by a space group, while

the symmetry of the individual chains, in certain cases, can be

characterized by one of the 75 crystallographic rod groups,

although this is not always the case.
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Figure 1
(a) The projection of the crystal structure of WS2 (MoS2) along [001], and
(b) the crystal structure of a single layer of WS2 (MoS2).



The stable form at atmospheric pressure of �-Se and �-Te

crystallizes in the trigonal space group P3121 (No. 152)

occupying the Wyckoff position 3a (x, 0, 1/3). McCann & Cartz

(1972) and Bradley (1924) reported x = 0.227 and x = 0.269 for

Se and Te atoms, respectively. A characteristic of these

structures is the infinite helical chains aligned parallel to the c

axis, i.e. the atoms of Se (or Te) are arranged in infinite spiral

chains along the c axis of the structure (see Fig. 2). The atoms

along the chain form covalent bonds while metallic and van

der Waals forces hold the chain together. In this particular

case, the symmetry of the spiral chain of Se or Te atoms can be

described by one crystallographic rod group, i.e. the rod group

p3121 (No. 47).

On the other hand, the structure of SnIP crystallizes in the

monoclinic space group P2/c (No. 13) (Pfister et al., 2016). The

structure of this compound is constituted by two substructures,

(i) a helical chain of P atoms and (ii) a second helical chain of

Sn and I atoms, which form double helices parallel to the [100]

direction (see Fig. 3). The symmetry of these helical chains

cannot be described with one of the 75 crystallographic rod

groups, since the helix has a 74 screw axis, if the helix is right

handed, or 73, if it is left handed. In the literature, depending

on whether the helix is right or left handed, the symmetry of

the helical chain is described by the noncrystallographic rod

group p7421 or p7321 (following the Hermann–Mauguin nota-

tion). The symmetry of the helical chain can also be described

by the line groups L742 and L732, respectively.

3. Line groups

In general, systems that exhibit periodicity in only one

direction can be described by line groups (hereafter referred

to as LGs). The structure of these groups can be understood as

a combination of the intrinsic symmetry of individual building

blocks, monomers, and a group of generalized translations.

These translations arrange the monomers along a single

direction of periodicity (the z axis, by convention). The LG L

represents the geometrical symmetries of a polymer (e.g.

molecular chains, nanotubes, nanosprings) and includes an

infinite cyclic subgroup of generalized translations Z gener-

ated by an element z = {R j f }, where f is an elementary

(fractional) translation along the z axis and R is an orthogonal

transformation which preserves the orientation of the z axis,

i.e. a rotation around the z axis or a reflection �v containing

the z axis. In the former case, the helical or screw-axis group

TQ( f) is generated by a rotation of 2�/Q around the z axis

(where Q can be any real number), followed by a fractional

translation f along it, while in the latter case, the glide-plane

group T0 is generated by the reflection �v followed by the

translation f ¼ 1
2

a, where a is the lattice parameter. It should

be noted that the pure translational group is a special case of

the helical group: in this case the orthogonal transformation R

is the identity operation, i.e. Q = 1 and f = a. The individual

monomer has its own symmetry group, referred to as P, which

belongs to one of the following axial point group families: Cn,

S2n, Cnh, Dn, Cnv, Dnd, Dnh, with n = 1, 2, 3, . . . . If n =1, the

corresponding LGs describe the symmetry of linear (strictly

one-dimensional) systems. As P should preserve the z axis, but

not necessarily its orientation, it is in many cases only a

subgroup of the full symmetry group of the monomer.

The elements of LGs are combinations or products of the

symmetries resulting from the arrangement of the monomers,

described by an infinite Abelian group Z, and the internal

symmetries of the monomer itself, described by an axial point

group P. Therefore, the structural factorization of LGs can be

expressed as L = PZ (direct or semi-direct product). There are

infinitely many LGs which can be classified into 13 LG

families, each having an infinite number of members. The

factorization of LGs into a weak direct product of cyclic

groups (Damnjanović & Vujičić, 1982) played a crucial role in

proving the Jahn–Teller theorem for polymers and other

quasi-1D crystals (Milošević & Damnjanović, 1993). It was

used to find all conformation classes (orbit types) of the LG

action, and further to determine the minimal sets of orbits that

are sufficient to obtain a particular group of symmetry.

LGs also include symmetries of incommensurate structures,

with helical periodicity only. Since they are not subgroups of

the space groups like rod groups (see IT E), LGs have, thus

far, been beyond the scope of classical crystallography.
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Figure 3
The projection of the crystal structure of SnIP along [100]; the spiral
chains are along this direction.

Figure 2
(a) The projection of the crystal structure of �-Se (�-Te) along [001], and
(b) the spiral chains along the c direction of the crystal structure of �-Se
(�-Te).



Specifically, due to the mono-periodicity, the crystallographic

restrictions on the order q of the rotational axis imposed on

the space (and layer) groups do not apply to the LGs.

Therefore only 75 LGs are subgroups of the space groups. The

order of the principal axis of rotation of the isogonal point

group P of rod groups takes one of the crystallographic values

q = 1, 2, 3, 4, 6 (or q = 1, 2, 3 for the groups with roto-

reflections).

For some physical processes, Raman scattering for instance,

the translational symmetry is irrelevant and only the ortho-

gonal parts of the LG elements affect the process. Such

orthogonal transformations form the isogonal (point) group

PI. The axial point group P is a subgroup of PI. This means

that the elements of PI that are not the elements of P are not

the symmetries of the considered system. Note that if an LG is

incommensurate its isogonal group is infinite. In the case of

the commensurate LGs, the translational group T is an

invariant (normal) subgroup of L, and the isogonal point

group is the factor group PI = L/T. This means that the LG can

be decomposed into the cosets L = T + (R2 j f2)T + � � �. If Z = T

all the coset representatives are found from P (all the frac-

tional translations fi vanish), and PI = P. Such LGs are

symmorphic. On the other hand, when P is a nontrivial

subgroup of PI, L is a nonsymmorphic group.

The parameter Q of the helical group TQ( f) can be any real

number, but it is only for the rational values Q = q/r (where q

and r are positive co-prime integers; by convention r � q) that

there exists an index-q translational subgroup with the period

a = qf. Such LGs and the corresponding configurations are

called commensurate. In the case of incommensurate LGs, the

parameter Q takes an irrational value, and such groups

describe quasi-1D systems with helical periodicity only

(without any translational symmetry).

For commensurate systems, together with monomers

(minimal building blocks arranged by generalized translations

Z), a unit cell can be introduced (an elementary cell related to

the pure translations T). Furthermore, for both incommen-

surate and commensurate systems, it is of both technical and

fundamental importance to introduce the concept of a

symmetry cell, referred to as a symmcell (Damnjanović &

Milošević, 2015). The symmcell is composed of a set of orbit

representatives, and the entire system is derived from it

through application of the full LG symmetry.

Whenever there is a helical symmetry, apart from linear

quantum numbers of quasi-momentum k, taking values from

the linear Brillouin zone (� �/a, �/a], and quasi-angular

momentum m, taking integer values from the interval (� n/2,

n/2] (also referred to as roto-translational quantum numbers),

it is convenient to use helical quantum numbers ~k and ~m,

which are canonically conjugated to the helix (instead of to the

translational direction). For instance, in the case of helical

group TQ( f), ~m ¼ 1, as there are no pure rotations, while

helical quasi-momentum ~k takes the values from the helical

Brillouin zone (� �/f, �/f ] which is (in the case of commen-

surate systems) q = a/f times enlarged relative to the linear

Brillouin zone. On the other hand, in the case of incommen-

surate systems only the helical Brillouin zone is well defined.

Irreps of LGs can be induced starting from the one-

dimensional irreps of the Abelian cyclic group Z using any of

the two sets of quantum numbers, and by means of the tran-

sition rules (Damnjanović & Milošević, 2010) one can easily

switch between the two representations. In the case of LGs

with nontrivial helical symmetry only helical quantum

numbers are conserved, while selection rules expressed in

terms of the linear quantum numbers have nontrivial form. As

stems from the LG factorization (Damnjanović & Vujičić,

1982), possible dimensions of LG irreps are 1, 2 and 4.

Historically, the significance of commensurate LGs for poly-

mers was recognized by Vainshtein (1959), who referred to

them as ‘spiral groups’, and gave a comprehensive overview of

crystallographic symmetry (Vainshtein, 1971) [see also

Vainshtein (1994)]. Subsequently, LGs were constructed as

extensions of one-dimensional translations by point groups

(Vujičić, 1977), incorporating irrep induction through linear

quantum numbers (Božović et al., 1978).

Symmetries of chiral quasi-1D systems existing in two

conformations which map to each other by spatial inversion

(e.g. polymers exhibiting dichroism) are described by chiral

LGs. These groups necessarily include a nontrivial helical axis,

while spatial inversion cannot be their element. To enable a

symmetry-based study of the optical activity of polymers and

nanotubes, general matrix forms of the second-rank tensors

for LGs have been derived (Milošević, 1995), and it has been

shown that the materials invariant under infinite subsets of

LGs have physical property tensors of the same form (Litvin,

2014).
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Figure 4
LG symmetry of a chiral single-wall CNT (6,3): L(6,3) = T42/23 D3. The
group generators: (i) 24�/21 rotation (around the nanotube axis)
followed by a fractional translation f = 0.80 Å (along the nanotube axis),
highlighted in blue; (ii) pure rotation (around the nanotube axis) for 2�/3,
highlighted in red; (iii) � rotation around the (twofold) horizontal axis
(perpendicular to the nanotube axis), highlighted in green. By succes-
sively applying the generators to an arbitrarily chosen carbon atom, the
orbit representative C0, with cylindrical coordinates (3.11 Å, �/7, 0.23 Å),
the entire nanotube is constructed (i.e. the symmcell consists of a single
atom). On a different note, the (6,3) CNT is commensurate, with trans-
lational period a = 11.28 Å, and its unit cell comprises 84 atoms, while the
monomer from which the nanotube can be constructed by the action of
generalized translations Z = T42/23 (helical group) consists of six atoms.
As L(6,3) is a nonsymmorphic group, the isogonal point group PI = D42 is
not its subgroup and differs from the point factor P = D3.



3.1. Example: nanotubes

Various properties of LGs can be illustrated on CNTs.

Although single-wall CNTs appear in a myriad of different

chiralities, all of them are single-orbital systems, and atoms of

single-wall CNTs bijectively correspond to the elements of the

LG which describes their symmetry. This means that by the

LG action on an arbitrarily chosen carbon atom (the orbit

representative C0 producing the unit element of the group) the

entire single-wall CNT is built (Fig. 4).

Single-wall CNTs of nontrivial chiralities (n1, n2) and

(n2, n1), where n1 6¼ n2, are enantiomers, and their symmetry is

described by helical groups of the fifth LG family, the groups

lacking spatial inversion.

The vast majority of double-wall CNTs and other multi-wall

CNTs do not have any translational symmetry, but do have a

helical ordering, and the only possibility of applying the

(generalized) Bloch theorem and all the underlying solid-state

theory is based on the incommensurate LGs.

Moreover, there are structures like helically coiled CNTs

(Popović et al., 2014) for which, even when they have trans-

lational symmetry, application of the Bloch theorem does not

lead to effective simplification and reduction of the calcula-

tions as the number of atoms in a unit cell is too large (Fig. 5).

Therefore, in such cases it is essential to use the symmcell

(rather than the unit cell) and to apply the generalized Bloch

theorem which relies on the full LG (instead of on its trans-

lational subgroup).

In practical settings, LG symmetry has played a pivotal role

in understanding and elucidating the qualitative change in

conducting properties of CNTs when placed on a substrate

(Petrov & Rotkin, 2003), and has contributed to under-

standing the modulation of the CNT electronic band structure

in an external field (Li et al., 2003), as well as enabling the

design of an electromechanical switch based on pentaheptite

nanotubes (Milošević et al., 2007).

Finally, LGs are the symmetry groups of all the possible

types of (either existing or hypothetical) nanotubes, rolled up

from arbitrary two-dimensional lattices along an arbitrary

chiral vector (Damnjanović et al., 2007).

4. Conclusions

As demonstrated in this paper, numerous one-dimensional

crystals cannot be described by either space or subperiodic

groups (frieze, rod and layer groups), thus requiring the

application of line groups. Currently, the use of these groups is

not very common in crystallography, but they are essential to

describe these types of systems. The diversity of line groups far

exceeds that of space groups and stands out as a defining

feature, emphasizing the broad spectrum of properties show-

cased by quasi-1D crystals. There are cases in which these

crystals can be described by one of the 75 crystallographic rod

groups, which are also line groups. The correct characteriza-

tion of the symmetry of these one-dimensional crystals is

necessary for the study of these materials which, due to their

unique properties, hold significant importance in various fields

like nanotechnology and nanomedicine, biotechnology, and

pharmacy. Because of the constrained structure, small size,

high aspect ratio and unique surface properties, applications

of quasi-1D compounds offer tailored solutions to various

challenges in these fields, by enabling precise control and

manipulation at a cellular or molecular level.
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Božović, I., Vujičić, M. & Herbut, F. (1978). J. Phys. A Math. Gen. 11,
2133–2147.

Bradley, A. J. (1924). London Edinb. Dubl. Philos. Mag. J. Sci. 48,
477–496.
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628 de la Flor and Milošević � Subperiodic and line groups J. Appl. Cryst. (2024). 57, 623–629

Figure 5
LG symmetry of helically coiled CNT (3,3,0,0,((1,0),(0,5))): LHCCNT =
T19/4 D1, generated by (i) 8�/19 rotation followed by a fractional trans-
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Litvin, D. B. & Kopský, V. (2000). Acta Cryst. A56, 370–374.
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