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Three-dimensional cryo electron microscopy reconstructions are obtained by

extracting information from a large number of projections of the object. These

projections correspond to different ‘views’ or ‘orientations’, i.e. directions in

which these projections show the reconstructed object. Uneven distribution of

these views and the presence of dominating preferred orientations may distort

the reconstructed spatial images. This work describes the program VUE (views

on uniform grids for cryo electron microscopy), designed to study such distri-

butions. Its algorithms, based on uniform virtual grids on a sphere, allow an easy

calculation and accurate quantitative analysis of the frequency distribution of

the views. The key computational element is the Lambert azimuthal equal-area

projection of a spherical uniform grid onto a disc. This projection keeps the

surface area constant and represents the frequency distribution with no visual

bias. Since it has multiple tunable parameters, the program is easily adaptable to

individual needs, and to the features of a particular project or of the figure to be

produced. It can help identify problems related to an uneven distribution of

views. Optionally, it can modify the list of projections, distributing the views

more uniformly. The program can also be used as a teaching tool.

1. Introduction

In cryo electron microscopy (cryo-EM), three-dimensional

(3D) reconstructions are obtained from two-dimensional (2D)

projections of the object. There are two priors to achieve

correct results:

(i) The object is unique and structurally homogeneous,

otherwise classifications and structure sorting are required.

(ii) The orientations of the object corresponding to the

projections are evenly distributed in space, otherwise the

frequency of occurrence of the same or close orientations

should be considered.

Each 2D projection allows recovery of a section of the

Fourier space [concerning Fourier sampling see, for example,

Baldwin & Lyumkis (2021)]. In practice, projection values are

available on a regular grid of some virtual unit cell. Therefore,

the discrete Fourier transform (DFT) of these values allows

the reconstruction of the plane crossing the origin (the central

section) of the respective Fourier coefficients of the electro-

static scattering potential of the sample. Stated more accu-

rately, the DFT provides a discrete finite set of approximations

to these coefficients.

It is understandable theoretically, and has been observed in

practice, that both under- and over-represented projections

distort the reconstructed 3D image [see e.g. Tan et al. (2017)
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and Baldwin & Lyumkis (2020)]. The negative effects of

different kinds of systematically missed Fourier coefficients

have previously been practically demonstrated for crystal-

lographic maps [see e.g. Lunin (1988), Lunin & Skovoroda

(1991) and Urzhumtsev (1991)] and the respective software

reported (Urzhumtseva & Urzhumtsev, 2011). According to

Sorzano et al. (2021), ‘The presence of preferred orientations in

single-particle analysis (SPA) by cryo-electron microscopy is

currently one of the hurdles preventing many structural

analyses from yielding high-resolution structures.’ Dealing with

this problem requires answering several related questions:

(i) How to calculate the frequency of different projections,

also known as orientations.

(ii) How to express this information, in particular that about

over- and under-represented orientations, accurately and in an

efficient way.

(iii) How to use this information to analyse possible

deformations of the 3D reconstruction and eventually to

improve the latter.

In this work, we address the two first questions. A practical

answer to the third question is a separate project for which the

tools discussed in this article can be used.

Historically, and most frequently, projections are char-

acterized by various choices of Euler angles, e.g. the approa-

ches used by van Heel & Keegstra (1981) and Heymann et al.

(2005). Alternatively, they are defined by the rotation opera-

tors (Frank et al., 1981), quaternions (Heymann, 2001) or

Rodrigues coordinates (Punjani et al., 2017). For the goals

mentioned above, it is more convenient to characterize them

by the straight line orthogonal to each projection, i.e. its

direction or view. Each view can be identified by the respective

values of the spherical angles or by the point of its intersection

with the unit sphere, i.e. by the respective unit vector. A

uniform distribution of such points on the spherical surface,

with no missed regions, means that the respective Fourier

coefficients, especially the higher-resolution ones, are deter-

mined everywhere in the Fourier space and with a similar

accuracy, considering possible measurement errors, errors in

the estimates of the projection direction etc. Information

about the Fourier coefficients (obviously, except their indices)

is independent of the rotation about the projection line. Also,

two opposite views correspond to two mirror projections and

contain the same information.

The frequency of views can be expressed numerically in

several different ways:

(i) Calculate how much each particular view is separated

from other views.

(ii) Calculate how many different views are close to each

other and how close.

(iii) Calculate how often a given or similar view is repre-

sented in the list of views.

A procedure following the first way has been suggested by

Orlov et al. (2006). An example of the second approach using

distance graphs for the points on a sphere is described by Fan

& Zhao (2019). The third approach can be addressed by

calculating histograms on a sphere using bins of an equal or

near-equal surface area, e.g. as reported by Scheres (2012).

Both numeric and visual expressions of the frequency of

views help to understand the eventual existence of dominating

views, also known as preferred orientations. Different types of

visualization can be suggested. BKPR (Orlov et al., 2006) re-

presents individual views by points in a geographic Mollweide

projection of a sphere. A combination of the software Relion

(Scheres, 2012) with Chimera (Pettersen et al., 2004) uses bars

on the surface of a sphere, with the bar length proportional to

the view frequency. cryoSPARC (Punjani et al., 2017) represents

a distribution by a colour map with two Euler angles as the

Cartesian coordinates, and cisTEM (Grant et al., 2018) uses the

equidistant (by spherical angles) projection of the top hemisphere.

The methods and algorithms of both frequency calculation

and its mapping as realized in the different programs are

documented rather poorly, probably being considered as

auxiliary and technical. Another common weak point is that,

when printing maps of distributions calculated as described

above or drawing a non-interactive 2D projection of the

presentation as bars on the spherical surface, these images

represent information rather qualitatively, distorting the

relative area of the spherical surface regions.

Addressing these problems, we identified several appro-

priate computational tools largely used in other research

fields. The first tool we are interested in is a projection of a

hemisphere to a plane conserving, or approximately conser-

ving with a high accuracy, the surface area. Several such

projections are known, for example, the Lambert azimuthal

equal-area projection, the dymaxion mapping (‘dynamic

maximum tension’) and the Snyder equal-area projection

(Snyder, 1992). The first of these was proposed as early as

1772, and its comprehensive presentation including proofs can

be found, for example, in the work of Roşca (2010). The

dymaxion mapping, also known as Fuller’s projection, was

developed in the 1940s and 1950s, and some of its formal

considerations can be found in articles by Gray (1995) and

Crider (2008). More projections are described by Snyder

(1993) and by Grafarend & Krumm (2006).

Our second computing tool is the construction of a regular

grid on a spherical surface, also known as sphere pixellation.

Given a projection conserving surface area, this geometric

problem becomes equivalent to the construction of a regular

grid on a plane. Several such algorithms are known, for

example those by Roşca (2010), Cox & Flikkema (2010) and

Masset (Masset et al., 2011; Jacques et al., 2015), and in

particular HEALPix by Górski et al. (2005) used previously in

Relion (Scheres, 2012); see also references therein.

Selecting appropriate algorithms among these multiple

options, we have developed the program VUE to calculate the

frequencies of views (of 2D projections), to quantify and

visualize their distributions by a plane image, and eventually

to produce a new set of views distributed more uniformly.

Working on this project, we addressed several goals:

(i) Develop a stand-alone tool which can provide various

types of information about the distribution of projections, in

both numeric and graphical forms.

(ii) Make the graphical representation quantitatively

correct, i.e. such that the area of the 2D regions in the plane
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image is proportional to the area that they cover on the

spherical surface.

(iii) Describe explicitly and in detail the methods and algo-

rithms used for the computations, making them reproducible if

required.

(iv) Propose multiple choices of options for different steps

of the procedure, allowing the user to produce images adapted

to their personal taste in terms of details, colours etc. and to

analyse the role of different parameters.

(v) Make this program composed of small modules,

allowing one to routinely add other options if required.

(vi) Prepare a tool to analyse, in a separate project, the role

of weighting schemes optimizing the 3D reconstruction.

In particular, this program may be considered not only as a

research and illustrative tool but also as a methodological and

training one.

2. Methods and algorithms

2.1. Geometric tools

2.1.1. Coordinate systems, rotations and views. The

description of the projections, rotations and orientations is

one of the confusing points in cryo-EM due to the different

choices of parameters used by different programs. Frequently,

these choices are documented incompletely. Let us suppose

that the sample contains a single type of molecule or complex,

all in exactly the same conformation (the first prior mentioned

in the Introduction). Each original cryo-EM image contains a

large number of orthogonal projections of the object oriented

differently with respect to the beamline and to the plane

orthogonal to it. Figs. 1(a) and 1(b) give schematic illustra-

tions, with a highly asymmetric model, of the structure of

eubacterial translation initiation factor 2 (IF2) (Simonetti et

al., 2013). The plane of projection and the beam direction

define the global fixed basis OXYZ of the Cartesian coordi-

nate system with the axis OZ against the beam direction. A

molecule in one of its orientations is chosen as a reference for

which the 3D map of the scattering electrostatic potential is

calculated. All other orientations are defined by the rotation

operator applied to this molecule, keeping the basis OXYZ.

While such an operator is defined unambiguously by the

matrixRo-p in OXYZ according to the standard mathematical

rules, independent parameters describing such a rotation can

be chosen differently. The cryo-EM convention (Heymann et
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Figure 1
Schematic projections of an IF2 molecule. (a) The molecule in three different orientations projected along the OZ direction chosen as opposite to the
beam direction. (b) Several projections of the IF2 molecule. The numbers on each projection are its respective Euler angles in the standard convention.
Seven projections, marked by white frames and corresponding to different Euler angles, are actually the same or equivalent. This is an example of an
over-represented view. The three projections inside the red frame correspond to the projections in panel (a); the respective models are shown above. (c)
The reference model corresponding to Euler angles (0, 0, 0) is at the origin. The magenta arrow indicates the view along OZ, as in panel (a). The red
arrow indicates the view along OX and corresponding to the molecule rotated by (0, 90, 0) in panels (a) and (b). The green arrow corresponds to a view
along some arbitrary direction with the spherical angles � (with OZ) and ’ (azimuthal angle). (d) A plane representation of the views from panel (c) with
the position of the green point to be defined. The coordinates of the coloured points, representing the views, depend on the method of representation.
The program PyMOL (Schrödinger LLC & DeLano, 2020) was used to produce the IF2 models.



al., 2005) describes a rotation by the Euler angles in the mobile

basis associated with the reference molecule and coinciding

initially with OXYZ. It is known that several different

combinations of Euler angles may result in the same projec-

tion [Fig. 1(b)]; this is one reason why some software

programs use alternative rotation descriptions, as mentioned

in the Introduction. Possible rotation descriptions and their

interrelations are discussed by Urzhumtseva & Urzhumtsev

(2019).

For the 3D reconstruction, it is convenient to consider each

projection of the rotated molecule along OZ differently, as a

projection of the initial fixed molecule but along the respec-

tively modified direction or view. For example, a projection

along OZ of the molecule described by Euler angles (0, 90, 0)

according to the cryo-EM convention (which results in the

clockwise rotation of the molecule by 90� about axis OY, from

OX to OZ, a direction opposite to the trigonometric one) is

equivalent to the view of the non-rotated molecule along OX

[Fig. 1(c)]. Each direction is characterized by a vector, initially

coinciding with OZ and being rotated by the inverse rotation

operator. The unit vector along this direction, the view, is the

third column of the inverse matrixR� 1
o-p, whatever the rotation

parameterization is. For this reason, the procedure described

below first of all converts each set of 2D projection parameters

into the respective rotation matrix and extracts the unit view

vector.

The task is to produce, in a plane, a representative spatial

distribution of such view vectors, for example to show the

ensemble of the points of intersection of such vectors with a

unit sphere [points in Fig. 1(d)].

2.1.2. Lambert projection. There exist a large number of

mappings from a sphere to a plane possessing different

geometric properties. Our principal requirement is conserva-

tion of the surface area. Among several such methods, that of

our choice should be simple by itself and give the simplest

possible projection, the easiest to manipulate. For this reason,

we selected the Lambert azimuthal equal-area projection, also

known as the Lambert zenithal equal-area projection, which

we refer to herein as the Lambert projection and which we

provide a reminder of below. Since the projection following

the vector � r gives just the mirror view with no extra infor-

mation compared with the projection following r, we deal with

a projection of a hemisphere (we arbitrarily choose the upper

one, z � 0) selecting which one of r or � r belongs to it.

Let a point AS = (x, y, z) be defined by its Cartesian coor-

dinates on the top unit hemisphere, x2 þ y2 þ z2 ¼ 1, z � 0,

and let 0 � � � �=2 and 0 � ’< 2� be the respective sphe-

rical angles [Fig. 2(a)]. These angles should not be confused

with the Euler angles if the latter are notated similarly. The

Lambert projection of a point AS onto the plane Z � 1 is the

point AL = (X, Y) with the same azimuthal angle ’ and with

the same distance from the north pole N: |NAL| = |NAS|

[Fig. 2(b)]. The coordinates of AS are

X ¼ x
2

zþ 1

� �1=2

; Y ¼ y
2

zþ 1

� �1=2

: ð1Þ

Thus, the hemisphere is projected onto a disc, the north pole is

projected onto the centre of this disc and the points ES on the

sphere’s equator are projected onto an outer circle of radiusffiffiffi
2
p

: |NEL| = |NES| =
ffiffiffi
2
p

[Fig. 2(b)]. Arcs � = const on the

sphere are projected onto arcs of concentric circles of radius

R ¼ 2 sinð�=2Þ, while arcs ’ = const on the sphere are

projected onto straight radial lines [Figs. 2(c) and 2(d)]. For

the Lambert projection, the circles corresponding to � taken

with a given step are compressed to the periphery compared

with the circles obtained by projections with a fixed step by the

spherical angle � (the ‘angular-equidistant’ projections), for

which the radius is R ¼ ð2
ffiffiffi
2
p
Þ �=� [Fig. 2(c)]. Here, the

coefficient in parentheses is chosen to conserve the total

spherical surface area of the hemisphere. In particular, the

angular-equidistant projection shrinks by 1.18 times the area

inside the circle for � ¼ �=4 compared with the area of the

respective circle in the Lambert projection; this value is 1.13

for a circle with � ¼ �=3. Using a relatively fine grid for the

frequency analysis, e.g. that with a default value of M = 90 (see

Section 2.2 below), shifts the position of the bin for a view with

� ’ �=4 by five to six grid cells between these two types of

projection.
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Figure 2
An illustration of the Lambert projection of the top unit hemisphere. The
indices S, L and E indicate, respectively, points on the sphere, in the
Lambert projection and in the ‘standard’ angular-equidistant projection
for which the distance of the point from the centre is proportional to the
spherical angle. (a) A three-dimensional illustration of some points on the
unit sphere shown, in projection, in the other images. Points EP and LP
illustrate the back projections onto the hemisphere of the point P in the
plane with Rn =

ffiffiffi
2
p
=2 and ’ = �/3 shown in panel (d). (b) The Lambert

projection conserves the distance from the north pole N. Red arrows
indicate, for comparison, the angular-equidistant projection, with Rn =
n
ffiffiffi
2
p
=6, of the points with � = n�/12, n = 0, 1, . . . , 6. (c) The distance R

from the centre for the angular-equidistant projection, in red, and for the
Lambert projection, in blue, as a function of �, quantifying the informa-
tion in panel (b). (d) The angular-equidistant projection, in red, and the
Lambert projection, in blue, of the arcs shown in panel (a).



The inverse projection, that of the disc onto the unit top

hemisphere, converts a point with coordinates (X, Y), such

that R2 ¼ X2 þ Y2 � 2, to a point with coordinates

x ¼ X 1 �
R2

4

� �1=2

; y ¼ Y 1 �
R2

4

� �1=2

; z ¼ 1 �
R2

2
:

ð2Þ

While the direct Lambert projection is important to plot the

calculated frequency map, the inverse projection is crucial to

transfer a uniform grid inside a disc (Section 2.2) onto a grid

on the unit sphere.

2.2. Uniform grids

A uniform grid on a sphere is a grid such that all its cells

have equal, or near equal, surface area. Because the Lambert

projection conserves the surface area, it is possible to build

first a uniform grid on a disc, which is a simpler task, and then

to project it onto the sphere. The current version of the

program can use two uniform grids described below. Both of

them are constructed starting from concentric circles on a disc

and are easy to manipulate.

Masset et al. (2011) constructed M concentric equidistanced

circles inside a disc of radius
ffiffiffi
2
p

. The first layer, m ¼ 1, i.e. the

internal disc, is divided into N equal sectors where N is a

parameter. Each subsequent circular layer m is divided into

Nð2m � 1Þ equal parts following the polar angle ’ [Fig. 3(a)].

Roşca (2010) also started from constructing M concentric

equidistanced circles inside a disc of radius
ffiffiffi
2
p

. Each circle

1 � m � M is divided into 8m equal arcs with their bounds

indexed by 0 � k � 8m. For polar angles ’ < 45�, i.e. for k<m,

the near-straight lines k = const form two opposite sides of a

grid cell, the two other sides of which are formed by the

respective circles [Fig. 3(b)]. The grid in other sectors, ’ > 45�,

is built by mirror symmetry about the coordinate axes and the

diagonals; the diagonals themselves are not cell borders.

Appendix A describes this in more detail, mentioning also the

computational advantages and disadvantages of these grids.

For both types of grid, it is convenient to identify each cell

by the largest values of the integer indices (m; k) over all four

vertices (Appendix A). The cells on the spherical surface have

the same indices as their disc projections. For further calcu-

lations, we denote by rmk ¼ xmk; ymk; zmkð Þ the centre of the

cell mk on the sphere, that with the indices (m; k). We also

denote by �mk the frequency of the projections corresponding

to this cell, the values of which are to be calculated as

described below.

2.3. Calculation of the views’ frequencies

2.3.1. Point representation of a view. The input cryo-EM

data used for the 3D reconstruction, in addition to the images

themselves, include rotation parameters which explain how

the object should be rotated in order to correspond to a given

projection or, inversely, how a given projection should be

rotated to correspond to the respective object image. For

example, a file in the star format produced by the program

Relion (Scheres, 2012) describes this by three parameters phi,

psi and tilt which correspond to the Euler angles according to

the convention defined by Heymann et al. (2005, 2006).

Whatever the parameterization is, the program first

converts the rotation parameters into the projection direction,

the view. Each view n is characterized by the coordinates

ðxn; yn; znÞ of the respective point rn on the unit sphere as

described above. If the point rn belongs to the bottom hemi-

sphere, zn < 0, the point for the equivalent mirror view

ð� xn; � yn; � znÞ belongs to the top hemisphere and is used

instead of ðxn; yn; znÞ.

2.3.2. Symmetries. For symmetric objects, a statistical

analysis may be distorted in two opposing ways. On one hand,

the presence of views covering only a part of the sphere may

allow a full representation of all views and recovery of all

Fourier coefficients equally well. However, a statistical

analysis of the formally present views will indicate a highly

uneven distribution with large empty regions. On the other

hand, the available views may result in a non-uniform covering

of the sphere if considering all their symmetry-related copies.

For this reason, before starting the statistical analysis of the

views, the program may expand their set over symmetries of

the selected spatial point group; the default group is C1. The

directions of the two principal axes of the point group, i.e. that

aligned with the principal rotation axis (Oz0) and that in the

orthogonal plane (Ox0), do not necessarily coincide with those

of the Lambert projection and can be modified by the user.

2.3.3. Histogram calculation. Given a uniform spherical

grid, one can calculate the frequency �mk of views similarly to

computer programs
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Figure 3
Examples of uniform grids on a disc. Grids according to (a) Masset et al.
(2011) with N = 4 and (b)–(d) Roşca (2010). M is equal to 5 in panels (a)
and (b), 9 in panel (c) and 18 in panel (d).



the calculation of the usual one-dimensional histograms. An

optimal choice of the grid size [see e.g. Sturges (1926) and

Freedman & Diaconis (1981)] is important since an overly

coarse grid does not catch the details of the distribution,

merging into a single bin close but different events. Inversely,

an overly fine grid may make the calculated distribution too

fluctuating and with a statistically unconfident bin content,

especially when the number of contributions is of the same

order as the number of bins.

To assure representative, accurate and robust results, the

program VUE uses the approach referred to as the kernel

density estimation. A kernel is a smooth non-negative valued

function which decreases monotonically from the origin,

extends over several bins and has a unit integral value. A

normalized Gaussian function is an example. Schematically,

when calculating a conventional integer-valued histogram, a

unit value is added to the bin to which the given event belongs.

Instead, when working with a kernel, it is first centred at the

point where the event has occurred. A real value equal to the

integral of this kernel over each bin is then calculated and

added to this bin’s counter. With such a mode of calculation,

the resulting real-valued histogram is more robust with respect

to the grid size, to the number of contributions and to inex-

actitude in the event’s position (orientation of the 2D

projections). Previously, such an approach has been used

efficiently in macromolecular crystallography (Lunin, 1988;

Afonine et al., 2015).

Following this approach and ignoring bins with negligibly

small integral values, every view rn ¼ ðxn; yn; znÞ adds its

contribution to a few cells mk of the uniform grid. This

contribution is calculated according to the value of the

distance d from the point rn to the centre rmk of the respective

2D bin on the sphere within the given distance limit, d � dmax.

Since the view contribution is local, the distance limit dmax is

taken to be small.

For two points rn and rmk on the surface of a unit sphere and

close to each other, the distance d between them is close to the

spherical distance, i.e. to the length of the great circle joining

these points. In turn, this length is numerically equal to the

angle �, in radians, between the respective unit vectors rn and

rmk, making d ’ �. For small angle values, � ’ 0:1 or smaller,

this gives the relation

xmkxn þ ymkyn þ zmkzn ¼ rmk � rn ¼ cos � ’ 1 � �2=2

’ 1 � d2=2: ð3Þ

Overall, with (3), the contribution �mk;n of a view n to the

cell mk is calculated as the 2D Gaussian function of the

distance d using the Cartesian coordinates of the points rn and

rmk at the unit sphere,

�mk;n ¼ 2��2
� �� 1

exp � d2=2�2
� �

’ 2��2
� �� 1

exp rmk � rn � 1ð Þ=�2
� �

: ð4Þ

The parameter � is taken such that at the limit distance dmax

the function value is " times smaller than that at the centre of

the Gaussian; dmax and " are parameters of the procedure.

Using the ‘blurred’ contribution (4) implicitly reflects uncer-

tainties in the values of the projection’s direction.

Actually, two views at a distance d, i.e. mutually disoriented

by a respective small angle �, may contribute to different

higher-resolution Fourier coefficients but to the same low-

resolution ones. In that sense, parameter dmax is more than a

computational ‘handle’. Calculating the views’ frequency with

larger values of dmax illustrates over- and under-representation

influencing low-resolution Fourier coefficients, those defining

the shape of the reconstructed object. Inversely, using smaller

dmax values shows a misrepresentation of the higher-resolution

coefficients responsible for specific details and their accuracy

and correctness. In our tests, with the grid number M = 90, we

varied dmax in the limits 1–3�.

In order to compare the total contribution

�mk ¼
XN

n¼1

�mk;n ð5Þ

of all views to the cells mk with that for the uniform distri-

bution, the values �mk are normalized, being multiplied by the

single-cell area which depends on the type of the chosen

uniform grid and its parameters (Appendix A), as all the views

are uniformly distributed over the surface.

2.3.4. Frequencies of individual views. Once the 2D histo-

gram of the views’ distribution on the spherical surface has

been calculated, the frequencies of the individual views can be

defined from it by various approaches. For a view n, the

simplest way to assign its frequency �n is taking it equal to that

of the grid cell to which this view belongs, i.e. �n ¼ �mk nð Þ.

Obviously, different kinds of interpolation from neighbouring

cells are possible.

After calculating the frequencies �n of all N individual

views, these values are scaled by N=ð
PN

n¼1 �nÞ, making their

sum equal to N. With such a scale, for a uniform distribution

each view would have a frequency equal to one. The calcu-

lated normalized frequencies �n can be illustrated by a

diagram, saved in an output file and/or used for different goals,

e.g. to down-weight or filter preferred orientations.

2.4. Weighting of views

To reduce artefacts caused by a non-uniform distribution of

views, their normalized frequencies �n can be used to filter or

weight misrepresented views during 3D image reconstruction

[see e.g. Scheres (2012), Sorzano et al. (2021), and references

therein]. The simplest weights are the values inverse to the

normalized frequencies. The VUE program uses a more

general weighting scheme with the parameters 0 � �� � 1 and

�cut > 0,

wn ¼
�cut

�n

�� log2

�n

�cut

� �

þ 1

� �

for �n � �cut;

otherwise wn ¼ 1: ð6Þ

This includes the previous scheme as a particular case when

�� ¼ 0 and �cut ¼ 1. The default parameter values can be

modified by the user; �cut should be above the minimum �n

computer programs
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value, but it is automatically corrected otherwise. Scheme (6)

is based on the observation that the amount of information

increases logarithmically with the amount of cryo-EM data

(Stagg et al., 2014), similar to what occurs in X-ray crystal-

lography (Urzhumtsev et al., 2009). For this goal, the factor in

square brackets in (6) increases the weight for highly repre-

sented views, reflecting also more confident orientation

parameters.

Other weighting schemes can be implemented routinely.

2.5. Updating of views

As an example of using the calculated frequencies, the

program can reduce the number of over-represented views,

those above a defined threshold level. This is done by selecting

and randomly removing the views according to the weights

calculated above. A more advanced option allows the

program, after removing some over-represented views, to

complete the under-represented views with the goal of

approximately conserving the total number of projections in

the input file. For each under-represented view, extra records

are generated referring to the same experimental 2D projec-

tion, with their number calculated according to the previously

calculated weight. The orientation parameters of each such

artificially generated ‘daughter view’ differ from those of the

‘mother view’ by some small perturbation factor defined by

the user. Such an artificially extended data set explicitly

models uncertainties in the view’s orientation under the

hypothesis that the true signal will be conserved while the

random noise in slightly different views will cancel each other

after addition of their contributions. This modelling is in some

ways similar to a statistical weighting of crystallographic maps

[see e.g. Blow & Crick (1959) and Read (1986)]. Eventually,

this may slightly blur the map details while making the new

maps less noisy and more readily interpretable. These maps

are complementary to the maps calculated directly with the

initial non-uniform set of views and can be used together with

the latter.

The choice of correction mode and of its parameters

depends on the 3D reconstruction method. Comparison of the

weighting and view processing schemes based on frequency,

weights and eventually on other types of information will be

discussed elsewhere.

3. Results

3.1. Data used

Uniform grids make it routine to extract different types of

information, to calculate various kinds of statistics and to

express it in different forms. This includes both images and a

numeric output, as discussed below. To illustrate the options of

the program, several experimental data sets measured for the

human ribosome have been used.

The first two data sets, called Set1 and Set2, were obtained

using the latest-generation Titan Krios G4 (TFS) 300 kV

electron microscope, as described previously (Fréchin et al.,

2023). These data sets were composed of about 74 000 and

139 000 2D projections, respectively. The third data set, called

Set3 and composed of about 337 000 2D projections, was

measured using the in-house Titan Krios G4 cryo electron

microscope with a Falcon 4i camera (300 kV acceleration

voltage).

Fig. 4 shows typical diagrams prepared by the program VUE

and Sections 3.2–3.7 comment in detail on their content and

interpretation. The subsequent figures and sections give more

illustrations of different situations, options and parameter

values.

3.2. Frequency map

The map of view frequency represented by its Lambert

projection is the principal diagram produced by the program.

Fig. 4(a) shows such a map calculated for Set1. The size of

each region is proportional to the respective surface area on

the sphere. The cells of the uniform grid are shown in different

colours according to the associated grid frequency value. The

colour scale is a logarithmic one, similar, for example, to that

used in cryoSPARC plots (Punjani et al., 2017). The actual

scale is log2 �mk=�uniformð Þ, comparing the frequencies with the

average normalized value; increasing the scale value by one

corresponds to a two-times higher frequency. As expected

from the histogram for Set1 [Fig. 4(c)], there are low-

frequency views, and the map in Fig. 4(a) shows that they are
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Figure 4
VUE diagrams calculated for the human ribosome data set Set1 (�74 000
projections). The default jet colour scheme from MatPlotLib (Hunter,
2007) is used both for the maps and for individual views. The colour bar
and the histogram argument are given on the log2(�mk/�uniform) scale with
the zero value corresponding to the uniform distribution. (a) The
distribution map calculated with dmax = 3�. (b) Individual views. (c) A
histogram of the cell frequencies and (d) the respective cumulative
diagram, showing the frequency distributions for all cells (blue) and for
non-empty cells (red).



merged into a single large region around the centre of the

diagram.

By default, the axis of the Lambert projection coincides

with the beam direction. This can be reassigned by the user,

and the views will be recalculated and shown for the respective

hemisphere following the new chosen direction.

Fig. 4 illustrates the results obtained with the grid calculated

according to Roşca’s approach with M = 90 and with dmax = 3�.

As expected for such a relatively large M, the diagrams

obtained using the grid proposed by Masset et al. (2011) were

indistinguishable from the previous ones. Extra bilinear

interpolation applied when using the Roşca grid also made no

difference (results not shown).

3.3. Distribution of individual views

The distribution of individual views is represented by dots

in the Lambert projection of their respective positions rn on

the unit hemisphere. For Set1 [Fig. 4(b)], relatively isolated

dots are close to the centre of the diagram, i.e. corresponding

to the poorly represented directions nearly perpendicular to

the plane of the image. The (optional) superimposed reference

grid shows that, more precisely, this is the region about the

view characterized by the spherical angles � ’ 15� and ’ ’

340�.

A disadvantage of this type of plot is that the dots for close

views may superimpose, and slightly over-represented views

can be barely distinguished from severely over-represented

ones. A possible solution is to apply, by the user’s choice,

different colours for dots corresponding to views with

different frequencies, as is done in Fig. 4(b). In general, this

plot is appropriate for relatively small sets of views, as illu-

strated below.

3.4. Histograms

Conventional histograms of the values calculated for

spherical grid cells [Fig. 4(c)] and their cumulative function

[Fig. 4(d)] reflect the overall information about the distribu-

tion of views and indicate the eventual presence of dominating

or missed views, ignoring their spatial position. This is a kind

of fast preliminary step, giving quantitative information that is

easy to represent and to analyse before looking at a detailed

frequency map. We chose the bounds of the histogram bins on

a logarithmic scale, agreeing also with the observations by

Stagg et al. (2014). In the program VUE, the bins’ bounds are

taken as log2 �mk=�uniformð Þ, i.e. they each double with respect

to the previous one, with zero corresponding to the uniform

distribution.

The histogram calculated for Set1 [Fig. 4(c)] shows that

about 0.3 of the total number of cells have a frequency close to

20 = 1 (the highest bar in blue). Approximately 0.2 of the cells

have a frequency of about 21 = 2, and roughly the same

number have a frequency of about 2� 1 = 0.5 (the bars in blue

next on the right and the left). The histogram also tells us that

there are no cells with a high relative frequency, above 22 = 4

(i.e. there are no strongly dominant views; about 0.14 of the

total number of cells have frequencies from 2 to 4, as the right-

most bar shows). There are very few cells with frequencies of

the order of 2� 6 ’ 0.015 or lower (left-most bar) compared

with the mean value. The exact number of views in different

bins can be found in the file VUE.log.

In unfavourable situations (e.g. Section 3.6) some grid cells

may stay empty, with their frequency equal to zero. For this

reason, the program calculates and plots the histograms both

taking such cells into account (histogram in blue) and

excluding them (histogram in red). Figs. 4(c) and 4(d) show

that for Set1 these histograms fully coincide with each other;

this means that there are no totally empty grid cells.

3.5. Ribosome, extended data set

Fig. 5 illustrates the results of the program applied to a

larger data set, Set2, completed up to about 139 000 projec-

tions with the goal of filling the previously missed views.

Indeed, the previously empty region is covered quite well.

However, the diagrams show that most of the added views

correspond to two directions characterized by, respectively,

the spherical angles (� ’ 40�, ’ ’ 150�) and (� ’ 50�, ’ ’

250�). While the regions occupied by these views are relatively

small, the view frequency in these regions is about 23 = 8 larger

than the mean value. The presence of such dominant views

probably makes the respective 3D reconstruction suboptimal.

Fig. 5(c) also shows that the addition of these over-represented

views reduces the frequency for most of the cells from 1.0 to

0.5 compared with the mean value (the highest peak of the

histogram corresponds to 2� 1 = 0.5). Most important is that,

for this set, nearly all frequencies are above 2� 3 ’ 0.1
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Figure 5
VUE diagrams calculated for the human ribosome data set Set2
(�139 000 projections). The types of diagram and their parameters are
the same as in Fig. 4.



[Fig. 5(c)], showing that the goal of completing the data has

been achieved.

3.6. Ribosome, reduced set

Fig. 6 shows the diagrams for a very small subset of Set2

composed of only 80 projections calculated with the same

value dmax = 3�. Using the same colour scheme as above

produces a map mostly in dark blue (not shown). Instead, for

small sets it is more practical to use a MatPlotLib colour

scheme like Reds, with the intensity increasing with the

frequency value [Fig. 6(a)]. This time, since the views are

mostly separated in space [Fig. 6(b)], they may be displayed in

the same colour. For the same reason, the frequency map

[Fig. 6(a)] looks like the views themselves [Fig. 6(b)], just with

each ‘individual view’ being blurred around its position. A few

peaks are merged with each other, giving for some cells a

frequency of about 26 = 32 with respect to the average one [the

right-most bars in Fig. 6(c)].

A high peak at the left of the histogram calculated for all

cells [blue bars in Fig. 6(c)] indicates that about 80% of the

spherical surface is not covered at all. For this reason, the

histogram calculated for non-empty cells only (red bars) is

different from that in blue. The histogram, being calculated on

purpose within very large bounds, shows that about 10% of

non-empty cells (left-most red bar) have near-zero frequen-

cies; they are cells at the periphery of isolated views, i.e. of

practically every view. Except for these two highest bars, the

bars are hardly distinguishable in the histogram [Fig. 6(c)] and

the cumulative histogram [Fig. 6(d)] represents this informa-

tion more clearly.

3.7. Ribosome, data set Set3

Fig. 7 illustrates an application of the program to quite a

large data set, Set3, composed of more than 337 000 projec-

tions. A straightforward 3D reconstruction with Set3 resulted

in a deformed image (not shown; project in progress). This can

be explained, at least partially, by the fact that Set3 contains

four regions of extremely dominant views, and moreover, two

of them are close to each other at opposite ends of a diameter

of the projection [Fig. 7(a)]. It also shows that there are missed

views in the direction roughly orthogonal to that for the

preferred orientations. On the other hand, although Fig. 7(e)

prepared by cryoSPARC may make one believe that the views

with approximately 70� � � � 90� are represented much less

frequently than the other views (see the horizontal layer close

to �=2), this is not the case.
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Figure 7
VUE diagrams calculated for data set Set3 (about 337 000 projections).
The default jet colour scheme from MatPlotLib is used. The types of
diagram are the same as in Fig. 4, although the scale bar limits for the
frequencies in panels (a) and (b) are slightly different. (e) A repre-
sentation of the distribution of views prepared with cryoSPARC, for
comparison with panel (a).

Figure 6
VUE diagrams calculated for a small subset of Set2 (80 projections). The
map is shown with the Reds colour scheme, and individual views are
shown with a unique colour. The histograms are calculated within large
bounds. Other parameters are the same as in Fig. 4.



The histograms [Figs. 7(c) and 7(d)] indicate a huge differ-

ence in frequency of views corresponding to different regions

of the spherical surface, of the order of 213 ’ 104. The distri-

bution calculated with dmax = 3� results in practically no totally

empty grid cells (the histograms in red and blue are practically

the same; a tiny difference can be observed in the respective

VUE.log files), demonstrating that low-resolution Fourier

coefficients giving the overall shape can be recovered nearly

completely.

As expected, calculations repeated with dmax = 1� make the

distribution map [Fig. 8(a)] grainier. The histogram in blue

[Fig. 8(c)] now indicates that about 5% of grid cells are empty

and 45% are nearly empty; thus about half of the views are

missed or severely under-represented in total. However, these

cases are different. For nearly empty cells, some information is

present and can be amplified with an appropriate weighting,

e.g. as discussed above (work in progress). The totally missed

views may lead to missed respective Fourier coefficients,

especially medium- and higher-resolution ones. Ultimately,

one can try to restore them computationally. Such structure

factor reconstructions for missed cones and planes of reci-

procal space have been used in crystallography [see e.g. Lunin

(1988)], suggesting similar algorithms for cryo-EM density

modification (Terwilliger et al., 2020).

4. Software

4.1. Program overview

The algorithms discussed above have been realized in the

stand-alone program VUE (views on uniform grids for cryo

electron microscopy) written in Python3. The program

requires a file of parameters with the standard name

VUE.dat and a file with the parameters of the projections.

The name of this file is defined in VUE.dat and this is the

only mandatory parameter. A large list of optional parameters

allows the user to adjust the program routinely to their goals

and taste, and to the features of the data set and of the project.

The program creates up to four diagrams, a text file VUE.log

and, by request, an output file with the modified list of views.

4.2. Input file of projections

The format of the file of projection descriptions is either

identified by its extension or imposed by the input parameters.

The default format of the projections file is star. The

program VUE, being composed of small local modules, can be

easily adapted to read files in other formats. As a template, a

module for the binary hed files from the software Imagic (van

Heel et al., 1996) is included.

Introducing a new file format also requires providing a

convention used to describe the projection orientations, i.e.

how to express the rotation matrix using the given parameters.

The article by Urzhumtseva & Urzhumtsev (2019) and the

respective software may help.

4.3. Plotted maps and histograms

The program can plot both the view frequency distribution

on a hemisphere, presenting it as a map in the Lambert

projection, and the distribution of individual views, also in the

same projection. Both diagrams are optional and can be

selected by the input data of the program; these data can also

define the parameters of the diagrams. The direction of the

Lambert projection, which by default follows the OZ axis, can

be changed to any other defined by its spherical angles, e.g.

after being estimated using the superimposable coarse refer-

ence grid.

The histograms are also optional. As mentioned previously,

their argument values are taken on a logarithmic scale in base

two.

4.4. Numeric information

When running, the program traces its progress on the

command-line screen.

The output text file VUE.log mirrors the program para-

meters, especially their modified values and the values of the

view histogram, and contains principal statistical information

about the data.

If required, the program creates an output file in the same

format as the input file. The records of the input file,

describing the views, may be completed by the frequency of a

given view and the weight calculated according to the chosen

scheme. These records can also be either randomly removed,

in the case of their over-representation, or multiplied

according to the chosen scheme, so that the output file

contains the views distributed more uniformly than initially.

For test goals and a rapid check of the set of views by a

subsequent express 3D reconstruction, the program can
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Figure 8
VUE diagrams calculated for data set Set3 (about 337 000 projections).
The type of diagram and the parameter values are the same as in Fig. 4
except that dmax = 1�.



randomly and uniformly select a given part, as defined by the

user.

4.5. Program parameters

The program is highly adaptable to individual preferences,

both for calculation and for the results presentation. The full

list of optional parameters, with the default and allowed values

and comments, is given in the file VUE_example.dat. This

includes the choice of the type of diagrams to be prepared, the

grid type and its size, the frequency calculation parameters,

the weighting and colour schemes, the colour bar size, the dot

size for individual views, the symmetry operators, the para-

meters of the eventual view set correction, and many others.

Some auxiliary parameters, for example those defining the

position and size of labels on the plots, titles etc., cannot be

modified using keywords but are accessible and commented at

the top of the Python script and therefore can be modified

from there.

4.6. System and software requirements

The program uses the standard Python3 (Version 3.7.4 was

used to develop the program) with its libraries NumPy

(Version 1.18.4 or higher; Harris et al., 2020) and MatPlotLib

(Version 3.4.3 or higher; Hunter, 2007), while some older

versions may work as well (not tested).

Calculation and plotting of the frequency map with the

number of projections of the order of 105 to 106 and with the

grid number M = 90 recommended for accurate illustrations

takes about a minute or less on an ordinary laptop computer.

When the number of views approaches 106, drawing the map

of individual views becomes the most time-consuming step

(this time is independent of the grid size). However, as

discussed above, representing this distribution for so large a

number of views may not be a good choice.

The program, the file VUE_example.dat and some test

data are available on request from the authors or from the web

sites https://git.cbi.igbmc.fr/sacha/vue-cryo-em-software and

https://ibmc.cnrs.fr/en/laboratoire/arn-en/presentation/structures-

software-and-websites/.

5. Discussion

Uneven view distributions may deform reconstructed images

and therefore complicate their interpretation with atomic

models. A number of cases can be found in the literature [for

example Sorzano et al. (2021), and references therein]. This

makes analysis of the distribution of views in cryo-EM, and

the subsequent eventual correction of such sets, an important

issue. Several existing computer tools, previously used in other

research fields, can be successfully adapted to such analysis.

They include uniform grids on discs, the Lambert azimuthal

equal-area projection and the kernel density estimation.

The developed program VUE gives a practical example of

such frequency analysis using these tools. This program,

available as stand-alone Python-based software, can be easily

adapted to the features of different projects and data. It can be

routinely integrated into other packages as a whole or by its

components.

The output program information, in both numeric and

graphic formats, can be used for a qualitative analysis of the

data and indication of eventual problems, as well as for illus-

trations in publications. A more advanced goal is to use these

data to improve the image distortions and artefacts caused by

correcting the distribution of views. The program proposes

several options for such correction. Comparison of weighting

schemes and details of processes to correct the sets of views

are separate projects beyond this program description.

As a further development, the suggested method of fre-

quency calculation could be extended by choosing an indivi-

dual � value in (4) for each view and allowing consideration of

a different accuracy of the views. Also, different weighting and

view-correcting schemes can be suggested and implemented.

APPENDIX A

Technical details of uniform grids

Following Roşca (2010), one constructs M concentric equi-

distanced circles inside a disc of radius R, which in our case is

equal to
ffiffiffi
2
p

; the radius rm of a circle 1 � m � M is therefore

M� 1m
ffiffiffi
2
p

. The arc 0 � ’ � �=4 of each circle m is divided into

m equal parts with their bounds ’mk = �k=4m, 0 � k � m. The

lines connecting the points with indices ðm; kÞ are nearly

straight lines. With the circular arcs, they form ‘near quad-

rangles’ for k<m � 1. The grid in other sectors, ’>�=4, is

built by mirror symmetry about the coordinate axes and the

diagonals. The cells on the four diagonals are ‘sectors’ where

the diagonals themselves are internal points [Fig. 3(b)].

This uniform Roşca grid on a hemisphere contains 4M2 cells

in total. These grid cells have surface areas nearly equal to

each other and to M� 2�=2, with the difference reducing to

zero when M increases. We refer to a grid cell by the integer

indices (m � 1; k � 1) of its outer corner (largest values of m

and k over all its vertices). Thus, the cells around the origin,

with the outer circle m = 1, are denoted by (1; 1), (1; 2), (1; 3)

and (1; 4). The indices (M; 1) characterize the most distant cell

following the OX axis. Its three neighbours have indices (M �

1; 1), (M; 2) and (M; 8M). The neighbouring cell with respect

to the fourth side should have indices (M + 1; 1); however, this

cell belongs to the south hemisphere. Instead, we consider its

equivalent in the north hemisphere, i.e. the cell with the

indices (M; 4M + 1). The cells on the diagonal closest to the

OX axis, i.e. with 0 � X ¼ Y �
ffiffiffi
2
p

, have indices (m; m + 1)

and not (m; m), and similarly for the other diagonals.

This grid recalls a grid built in Cartesian axes with easy

identification of the neighbouring cells. Its disadvantage is a

particular treatment of the cells on diagonals.

The grids constructed according to Masset et al. (2011), with

the inner circle m = 1 divided into N equal parts (N is an extra

parameter), do not have singular cells, except those inside this

inner circle. Each next circular layer 2 � m � M contains

N(2m � 1) equal cells. Their total number is NM2 and their

surface area is 2�=ðNM2Þ, exactly the same for all of them. The

cells are indexed in the same way as described above, by
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ðm � 1; k � 1Þ. Calculating the indices of such cells is slightly

easier than for the Roşca grids. On the other hand, it is less

trivial to identify neighbouring cells. This step may be required

when calculating the distribution map and when identifying

the frequency of individual views.
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