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Recent developments in synchrotron radiation facilities have increased the

amount of data generated during acquisitions considerably, requiring fast and

efficient data processing techniques. Here, the application of dense neural

networks (DNNs) to data treatment of X-ray diffraction computed tomography

(XRD-CT) experiments is presented. Processing involves mapping the phases in

a tomographic slice by predicting the phase fraction in each individual pixel.

DNNs were trained on sets of calculated XRD patterns generated using a

Python algorithm developed in-house. An initial Rietveld refinement of the

tomographic slice sum pattern provides additional information (peak widths and

integrated intensities for each phase) to improve the generation of simulated

patterns and make them closer to real data. A grid search was used to optimize

the network architecture and demonstrated that a single fully connected dense

layer was sufficient to accurately determine phase proportions. This DNN was

used on the XRD-CT acquisition of a mock-up and a historical sample of highly

heterogeneous multi-layered decoration of a late medieval statue, called

‘applied brocade’. The phase maps predicted by the DNN were in good

agreement with other methods, such as non-negative matrix factorization and

serial Rietveld refinements performed with TOPAS, and outperformed them in

terms of speed and efficiency. The method was evaluated by regenerating

experimental patterns from predictions and using the R-weighted profile as the

agreement factor. This assessment allowed us to confirm the accuracy of the

results.

1. Introduction

Analysis of cultural heritage artifacts forces materials scien-

tists to constantly innovate. Owing to the valuable nature of

the objects, samples are usually difficult to obtain. Their

fragility and uniqueness require non-destructive analysis to

allow for further studies. In addition to these constraints,

samples from pictorial works (paintings, frescoes, statues) are

generally made up of multiple thin layers of pigments,

resulting in a highly heterogeneous composition. To under-

stand this stratigraphy in detail, high-resolution tomographic

techniques are often necessary, which produce large amounts

of data and require dedicated processing methods.

In light of these challenges, X-ray diffraction (XRD) is

widely used as it is a non-destructive non-invasive technique

that allows the user to identify and quantify crystalline

compounds such as inorganic pigments. The past decade has

seen the rise of high-resolution XRD computed tomography

(XRD-CT) owing to the improved brightness of synchrotron

radiation sources. This technique now allows us to identify and

localize the phases inside ‘virtual’ tomographic slices of the

sample at micrometre-size resolution without disrupting its

integrity (Bleuet et al., 2008). In XRD-CT, the sample is illu-

minated with a small X-ray beam, the beam size defining the
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resolution of the final tomographic reconstruction. The data

are recorded by translating the sample perpendicular to the

beam, and at each translation step, the sample is rotated along

an axis perpendicular to the beam. In general, the 2D

diffraction images are first integrated azimuthally to obtain 1D

XRD patterns, which are easier to handle for further data

processing such as phase identification or semi-quantification.

In the end, the data are stored as a 3D matrix or data-cube of

dimensions (Nt, Nr, z), where Nt is the number of translation

steps, Nr the number of rotation steps and z the recorded 1D

diffraction data. In order to obtain a sufficient spatial reso-

lution with convenient powder averaging, the beam size (or

the voxel dimension) is kept on the order of 10–20 mm. The

data-cube is then transformed using tomographic reconstruc-

tion algorithms to provide, for each voxel in the sample virtual

slice, an XRD pattern that can be analyzed to determine the

phase content. For a typical micro-sample of around a

hundred micrometres in size, a single tomographic slice

acquisition can easily reach thousands of 1D patterns (Nr �

Nt). Processing this huge amount of data is a challenge in

terms of time and complexity with conventional methods such

as serial Rietveld refinement (Coelho, 2018) and is hardly

feasible during the experiment.

One approach to dealing with such large amounts of XRD

data was developed in the XRDUA software (De Nolf et al.,

2014). It is based on the decomposition of individual patterns

into a sum of phases and batch fitting of the regions of interest

associated with the identified phases, providing map phase

distributions but not quantitative ones. Moreover, the

processing can be time consuming and therefore not suitable

for live data treatment. Over the years, machine-learning

(ML) algorithms such as k-nearest neighbor (Altman, 1992),

random forest (Tin Kam Ho, 1998) or support vector machine

(Cortes & Vapnik, 1995) have also been applied to XRD data,

achieving various analyses from crystal structure prediction

(Oliynyk et al., 2016) to phase identification (Bunn et al.,

2016). More recently, Bordet et al. (2021) managed to identify

and quantify the crystalline phases from XRD-CT tomo-

graphic slices using multivariate analysis. The authors showed

that non-negative matrix factorization (NMF) (Lee & Seung,

1999) is an efficient and fast tool to decompose the data-cube

into a small set of physically meaningful components from

which the voxel phase content can be determined.

Recent years have seen the rise of the application of

another branch of ML algorithms to XRD data: deep learning

(Omori et al., 2023) and namely its convolutional neural

networks (CNNs) (LeCun et al., 2015). This emerging tech-

nique has generated significant interest in the materials

science community for the processing of spectroscopic (Pouyet

et al., 2021) and/or scattering data (Choudhary et al., 2022).

For XRD applications, most studies have been limited to using

CNNs and most of them as a classification problem (Wang et

al., 2016, 2017; Yang et al., 2017; Park et al., 2017; Ke et al.,

2018; Chitturi et al., 2021; Purushottam Raj Purohit et al., 2022;

Assalauova et al., 2022). For example, Lee et al. (2020) tried a

multiple CNN architecture to perform phase identification on

a quaternary compositional system and linked the predictions

with three-step-phase-fraction quantification. Wang et al.

(2020) used a data-driven approach, augmenting theoretical

data to train a CNN for phase identification and demonstrated

its supremacy over common ML algorithms. Lee et al. (2021)

confirmed these results in another paper where their CNN for

phase identification was followed by a dense neural network

(DNN) for phase fraction prediction in regression mode.

However, the overall procedure implies training more than a

thousand DNNs for each case of a binary or ternary compo-

sition, making it system specific and time consuming. For

regression problems, Dong et al. (2021) showed outstanding

performance in predictions of scale factor, lattice parameter

and crystallite size on a complex five-phase mixture system.

Boulle & Debelle (2023) obtained promising results in the

extraction of spatial strain profiles from XRD data of disor-

dered irradiated materials.

In this work, we aim to establish a new method based on a

DNN for phase fraction determination in XRD-CT data that is

simple and fast enough for rapid and accurate data processing

leading to phase quantification in the reconstructed voxels of

the sample slice. For this purpose, we developed a data-driven

protocol starting from phase identification and the Rietveld

refinement of the sum pattern of the data-cube. This provides

the initial parameters (identification of the phases and their

microstructural properties), allowing a customized training of

the DNN. Knowing that one of the main challenges of DNNs is

to find enough training data similar to the real data, we built

an in-house parallel processing Python algorithm able to

generate hundreds of thousands of patterns within minutes.

This data generator offers real flexibility to adapt the pattern-

generation parameters to optimize the training dataset. A grid

search optimization shows that the most efficient architecture

of the DNN consists of a single hidden layer and thus its

training time is reduced to minutes. We assess the method by

regenerating patterns from predictions and comparing them

with the experimental ones using agreement factors such as

the R-weighted profile (Rwp). The results from the DNN were

also compared with serial Rietveld refinement using the

TOPAS (Coelho, 2018) software. Here, we apply the analysis

protocol to a mock-up and a historical sample of ‘applied

brocade’, a sophisticated relief decoration designed to mimic

the rich gold-embroidered fabrics worn by the nobility during

the late medieval period (Geelen & Steyaert, 2011). The

realization of such historical artifacts involved the super-

position of several layers of different materials (metal sheets,

beeswax, mineral pigments), which poses a real challenge in

terms of analysis, as the samples undergo considerable

degradation over time. The historical fragment has already

been discussed extensively in a previous article by Bordet et al.

(2021), allowing us to make a complementary evaluation of

our method.

2. Experimental

2.1. Sample and XRD-CT measurements

The historical sample was taken from a wooden Pietà from

the castle of Montrottier in Lovagny, France. Visual observations
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by a conservator were essential in identifying the presence of

applied brocades and to clearly understand the succession of

layers partially altered due to extensive overpaints. A preli-

minary in situ non-invasive study has been done using a

portable X-ray fluorescence/XRD instrument which allowed a

first stratigraphy of the decoration to be proposed (Martinetto

et al., 2021). The observed layer stacking is typical of an

applied brocade where one finds, successively, a preparation

layer, a priming paint layer, a filler material, a degraded tin

foil, gilding and overpainting on top (Geelen & Steyaert,

2011). On the basis of these considerations, we fabricated a set

of mock-ups on which the sequence of layers is well known in

order to better evaluate the performance of our method. The

historical sample used here is shown in Fig. 1 and has a roughly

triangular platelet shape of around 1 mm � 200 mm � 50 mm

(photographs of the mock-up can be found in Fig. S1 of the

supporting information). The virtual slice analyzed inside the

sample is shown in orange in Fig. 1.

The XRD-CT data were collected at the French CRG

beamline BM02 of the ESRF (Grenoble, France). The

experimental setup and the data preprocessing are detailed by

Bordet et al. (2021) and partially summarized in Fig. 1. The 2D

diffraction images were recorded with a 25� 25 mm beam size,

and then the contribution from a few single-crystal grains was

filtered out and the resulting 2D patterns were azimuthally

integrated using the PyFAI software (Ashiotis et al., 2015).

The shapes of our historical samples are often in the form of

irregular platelets instead of an ideal cylinder and with a

stratigraphy whose composition varies significantly from one

layer to the next. Heavy elements may also be present in

certain layers and, as we work at moderately high energies,

their absorption can be significant. As a result, the background

level and shape can fluctuate greatly during the tomographic

experiment and cannot be properly taken into account by the

DNN. A 1D rolling ball algorithm for background removal is

applied to all individual patterns using carefully optimized

parameters. Only the 2� range showing valuable information is

kept in order to reduce the volume of data (around 2000

observations per pattern). In the end, the data-cube contained

90 (Nr) � 82 (Nt) = 7380 1D patterns for the historical sample

and 360 (Nr) � 25 (Nt) = 9000 for the mock-up.

The first step involves identifying the phases present in the

sample virtual slice and characterizing their microstructure.

Following the pre-treatment and background subtraction on

the data-cube, we worked on the sum pattern (average of all

data-cube patterns) using the DIFFRAC.EVA software

(Version 5.2; Bruker AXS GmbH, Karlsruhe, Germany) and

the PDF-2 2003 database (Gates-Rector & Blanton, 2019). For

the mock-up, the three phases used in its manufacture were

easily retrieved: anhydrite CaSO4 imitating the preparation

layer; cinnabar, HgS, the priming paint layer; and romarchite,

SnO, the degraded tin foil. In the historical sample, eleven

phases were identified in the tomographic slice: beeswax,

(CH2)x; cassiterite, SnO2; cerussite, PbCO3; chlorargyrite,

AgCl; cinnabar; goethite, FeO(OH); gold, Au; gypsum,

CaSO4·2H2O; hydrocerussite, Pb3(CO3)2(OH)2; minium,
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Figure 1
Workflow: from the experiment to the preliminary analyses for starting dataset generation.
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Pb3O4; romarchite. A Rietveld refinement was then carried

out, keeping the atomic parameters fixed at their published

values. An overall atomic displacement parameter was fixed

for all the phases. The reflection profiles were described using

the Thomson–Cox–Hastings (Thompson et al., 1987) model

from the refinement of an LaB6 standard and the sample-

broadening effects for crystallite size. Only scale factors, unit

cell and particle size parameters were refined. For each phase,

a list of interplanar distances (d) and associated integrated

intensities (I) was extracted from this refinement.

The data-cubes were then treated with serial Rietveld

refinement performed using the TOPAS software (Coelho,

2018). The background was chosen to be constant and not

refined. The same refinement file from the refinement of the

sum pattern was used to refine all of the individual patterns

the same way. For each phase, the refined parameters were the

scale factors and the phase misplacement (particle size para-

meters were fixed at their values determined above).

2.2. Dataset generator and randomization strategies

It was clearly impossible to use experimental data as a

training dataset for the DNN. It should have been built on the

measurements of all identified phases mixed in different

proportions with the same experimental resolution and setup.

The phases should have a similar microstructure to that in the

sample. Also, phases that are not located on the sample

rotation axis yield a shift of the Bragg peak position in their

powder pattern which varies with sample rotation. All these

effects must be considered to accurately train the DNN to

predict phase fractions. Therefore, we chose to generate a

synthetic training dataset by calculating patterns, taking these

effects into account.

A Python suite using parallel processing for fast execution

was written to control the whole process from dataset creation

to training and optimization of the DNN shown in Fig. 2. In

the generation of the training dataset, each 1D XRD pattern

of a given phase is characterized by a list of Bragg peaks that

have several features, namely position, intensity, shape and

width. For each phase, the position and intensity come from

the Rietveld refinement of the sum pattern.

The quantitative analysis carried out in this study is based

on the relative intensity ratio method detailed by Hubbard et

al. (1976). It consists of calculating the proportions of each

phase (i) in a pattern from its Ii/Icor ratio. This value has been

defined as the ratio of the peak height of the strongest line of a

sample to the strongest line of corundum (hexagonal reflec-

tion 113) for a 1:1 mixture, by weight, of the two phases. Note

that we initially extracted Ii/Icor ratios directly from the

pattern diffraction files of the PDF-2 2003 database, but the

reported I values may be affected by differences in peak shape

due to microstructure effects. Indeed, the approximation of

intensity as the height of the strongest line and not its inte-

grated intensity causes several inconsistencies in the Ii/Icor

values within the PDF database. To avoid this problem, we

decided to simulate theoretical patterns of a 1:1 mixture with

corundum for each phase, using the list of I and d values

obtained from the Rietveld refinement. More importantly,

both phases were simulated using the same peak shape

parameters from the refinement of the sum pattern, and the

ratio was calculated using the integrated intensities.

The lists of interplanar distances and associated intensities,

together with the Ii/Icor ratios obtained from pre-processing

the sum pattern, provide the initial peak positions and

intensities. However, positions can be affected by sample

displacement when the corresponding phase does not lie on
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Figure 2
Dataset generation for training of the NN and architecture of the DNN.



the rotation axis. This problem, known as the parallax artifact,

is common in XRD-CT experiments and has been described

thoroughly in previous work (Scarlett et al., 2011; Rowles &

Buckley, 2017; Stock et al., 2019; Vamvakeros et al., 2020). It

results in a shift in �2� of the peaks along the 2� axis which we

describe as

�2� ¼
h cos �

R
ðin radiansÞ;

where R is the distance between the sample and the detector

(Klug & Alexander, 1974); h is the positional shift of the

phase, and will be a variable parameter of the dataset

generation, randomized between � 100 to +100 mm for our

samples of 200 mm maximum size.

The Bragg peak profiles were treated as pseudo-Voigt

functions. Regarding the peak widths, we used the Thomson–

Cox–Hastings model (Thompson et al., 1987) with indepen-

dent FWHMs for the Gaussian and Lorentzian components to

separate instrumental (Gaussian) and sample effects

(Lorentzian). We also assumed that the peak broadening from

the sample was only due to domain size effects and not strain.

This hypothesis was confirmed by the Rietveld refinement of

the sum pattern. Hence, the FWHMs HG and HL of a peak can

be written as a function of the Bragg angle using Cagliotti’s

law and Scherrer isotropic broadening:

H2
G ¼ U tan2 � þ V tan � þW;

HL ¼
Y

cos �
:

The values of U, V and W represent the instrument resolution

function and are obtained by Rietveld refinement of an LaB6

standard sample pattern as mentioned above. Considering an

isotropic model, the Scherrer equation allows us to relate the

size of the crystallites (Tc) to the broadening of a peak in a

diffraction pattern as follows:

Tc ¼
K�

Y
;

where K ’ 0.9 and � is the wavelength used for the experi-

ment (here � = 0.62 Å). For generation of the training dataset,

the Tc value of each phase was fixed at the value determined

by the Rietveld refinement of the sum data. Finally, the peak

profiles were calculated as a pseudo-Voigt, PV = �L +

(1 � �)G, of FWHM H and mixing parameter � calculated

from HG and HL using the Thomson–Cox–Hastings law

(Thompson et al., 1987).

On the basis of the above assumptions, the list of d and I

values, the values of Tc and h, and the U, V and W parameters,

one can construct the diffraction pattern for a single phase

corresponding to the actual measurement setup. To build the

training dataset, we now need to generate a large number of

patterns representing the possible distribution of the phase

fraction (x�) over the measured data-cube. To obtain a varied

training dataset close to the real data, we need to define a

randomization strategy to cover as many cases as possible.

Firstly, given our layered structure and beam size, we assume

that, in a single pattern, there can only be a maximum of three

phases in significant proportions, known as ‘major’ phases, the

rest being zero or considered ‘minor’ phases. For the historical

sample of eleven phases, we consider a first scenario in which

we generate patterns with three ‘major’ phases among the

eleven identified. They are generated in greater proportion

than the eight others which are then considered minor phases

and have much lower proportions [ 11
3

� �
¼ 165 possible

combinations]. We then repeat this scenario, this time

considering only two major phases and the nine others as

minor phases [ 11
2

� �
¼ 55 possible combinations] and then with

only one major phase [ 11
1

� �
¼ 11 possible combinations]. In

order to fill in the missing possibilities and provide a full range

of phase fractions for NN training, we consider a final scenario

in which all combinations of one to eleven phases are possible,

i.e.
P11

i¼1
11
i

� �
¼ 2047 combinations (here, the ‘minor’ phases

are equal to 0). For each scenario, we created around 100 000

XRD patterns by varying the values of h and x�, yielding a

dataset of 399350 patterns of 2150 points each (same step size

as the experimental ones). The whole dataset was generated in

around 25 min on 40 cores of the ESRF network. The training

2D array dataset stores the phase fractions, crystallite size and

sample displacement that generate each individual pattern

resulting in a total shape of (399350, 2150 observations + 11

phases � 3 parameters = 2183) and 6.5 Gb size. For the mock-

up, the same strategy can be adopted, but it can also be

reduced, as it is easier to obtain a variety of cases for a three-

phase system. A synthetic representation of the overall

method is shown in Fig. 2.

2.3. Neural network architecture and training setup

First, in order to optimize the NN, we performed a grid

search on a simple theoretical three-phase system similar to

our mock-up sample (anhydrite, cinnabar and romarchite)

with all hyperparameters variable: dropout, optimizer learning

rate, activation and output functions, batch size, and number

of epochs. For the network architecture, the number of layers

was limited to 1, 2 or 3 hidden layers with a number of neurons

that is a multiple of the number of observations in the input

patterns (here, 2150 observations). The three systems tested

were a network with one hidden layer of 2150 neurons; with

two hidden layers of 2150 neurons each; and with three hidden

layers with one layer at 2150, a second at 2 � 2150 = 4300

neurons and a final layer at 2150 neurons. Each network had

an input layer of 2150 neurons and an output layer of three

neurons corresponding to the three phase fractions to be

predicted. The measure for grid search was the negative mean

absolute error (NMAE), and the performance of each run was

fivefold cross-validated on a dataset of 400 000 patterns

normalized by their maximum intensity (80% training and

20% validation with no overlap between the two). This first

optimization allowed us to fix most of the hyperparameters.

Thus, a hyperbolic tangent was used as an activation function

for the hidden layers and a rectified linear unit (ReLU) was

used as the output function, with no dropout between layers,

as this did not improve overall performance. Note that the
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ReLU activation function for hidden layers performed almost

as well as the hyperbolic tangent. The loss function was the

mean absolute error (MAE) with the mean squared error

(MSE) as metric. Adam was used as an optimizer with a

learning rate of 0.001. The DNN was trained over 20 epochs

with a batch size of 256 patterns. Callbacks were implemented

to save the best model and to stop training when no significant

learning was observed on the loss function after 5 epochs.

Training results for different architectures can be found in

Figs. S2–S4 and Table S1 of the supporting information.

This first grid search showed that single-layer networks

seem to outperform the other two systems considered, and

that increasing the number of parameters (weights and biases)

to be learned, in addition to the considerable increase in

learning time, does not improve performance. To confirm this

result, a further grid search was carried out using the hyper-

parameters described above, with a focus on varying the

number of parameters to be learned consistently. Considering

the same three networks as before, we applied a ratio to the

number of neurons per hidden layer to check the evolution of

negative MAE versus the number of parameters (see Fig. S5).

The results show that the optimum is reached on the single

hidden layer system and when the number of neurons in the

network is equal to the number of observations. A similar

simple DNN architecture was used by Lee et al. (2021), who

employed a CNN for phase identification. The authors noted

that, as the DNN architecture became deeper, the model

performance deteriorated considerably due to the lack of

training data. In our case, even though the amount of training

data was less limited, deepening the architecture increased

training time without significantly improving performance,

and even sometimes deteriorating it. Fig. 2 shows the archi-

tecture that consists of a first layer of input neurons, where

each observation of the pattern is fully connected to the

hidden layer, the size of the input layer being the same as that

of the hidden layer. The size of the output layer depends on

the number of phases to be identified, with each neuron giving

the fraction of the corresponding phase. In the end, the total

time of training of this kind of network does not exceed 5 min

on a basic personal computer.

3. Results and discussion

3.1. Phase fraction determination and mapping

We decided to work on the experimental patterns before

tomographic reconstruction, as the algorithms used for

reconstruction can significantly affect the patterns and make

their processing inaccurate (examples and results on the

patterns from the reconstruction for the historical sample can

be found in Figs. S8 and S9). Like the patterns used for

training, the experimental patterns were normalized to their

maximum intensity before being processed by the network.

For the mock-up, the phase fractions of the whole data-cube of

9000 patterns are predicted in less than 1 s. The results of the

total semi-quantification are presented in Table 1 together

with the results of the sum pattern quantification and those

obtained from the serial Rietveld refinement of all individual

patterns. Note that the DNN results are consistent between

trainings with a mean standard deviation of 0.3% for five

distinct trainings. Overall, we find the same trends emerging

here between the three methods, i.e. a large majority of

anhydrite and the other two phases in smaller proportions.

The first two methods appear to agree on the anhydrite and

cinnabar fractions, whereas the romarchite fraction is identical

between the DNN and the Rietveld refinement of the sum

pattern.

As a result of the semi-quantification of the individual

patterns, we obtain a data-cube of Nr � Nt � 3, the third

dimension being the fractions of the three phases in each

pattern for the serial Rietveld refinement and the DNN. This

then allows us to map these phases to see their distribution in

the tomographic slice. For this purpose, the data-cube is

transformed into a reconstructed tomographic slice using the

iradon (inverse radon transform) function of the scikit-image

Python library (Van der Walt et al., 2014). Fig. 3 shows the

results for DNN and serial Rietveld refinement. The anhydrite

and romarchite maps appear to be in good agreement,

whereas the cinnabar map differs in certain areas in the middle

of the tomographic slice. As mentioned above and shown in

Table 1, the DNN appears to underestimate the amount of

cinnabar in some of the patterns, resulting in a mismatch in the

reconstructions.

Following these satisfying results, we applied the same

method for the historical sample and the results are shown in

Table 2. The same consistency in the DNN results is observed

here with a mean standard deviation of 0.08% for five distinct

trainings. Interestingly, the DNN and the serial refinement

appear to match each other better than they match with the

others (average absolute difference of 2.4% between fraction

phases versus 4.7% for sum and 6.9% for NMF), confirming

that an individual treatment of patterns differs from an

analysis of the sum pattern or global multivariate analysis as

used with NMF. One of the main differences lies in the

quantification of the beeswax, a problem already identified in

the previous study where accurate estimation seems difficult

to achieve as the phase presents only two observable Bragg

peaks in the diffraction pattern (Bordet et al., 2021). The

structure of the beeswax is not precisely known and is iden-

tified as ‘n-paraffin’ (PDF-49 1995) in the PDF database. The

method to include beeswax intensities measured using modern

samples in the reference intensity ratio quantification process

is described by Bordet et al. (2021). However, experimental

intensities can vary significantly from the reference due to the
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Table 1
Phase fractions (%) for the whole virtual sample slice of the mock-up of
the three phases obtained by Rietveld refinement of the sum pattern,
serial Rietveld refinement and the DNN.

For DNN predictions, the results are an average of five different trainings.

Phases Rietveld sum Serial Rietveld DNN

Anhydrite 86.8 85.4 93.3
Cinnabar 10.3 9.0 3.9
Romarchite 2.9 5.6 2.8

http://doi.org/10.1107/S1600576724003704


wax preparation (heating, spreading, cooling) or differences in

the nature of the beeswax used by the medieval craftsmen.

Moreover, the network had less ease in finding accurate

predictions for gypsum. A possible source of error may be the

distribution of phase fractions in the training dataset. In the

historical sample, beeswax and gypsum are often present alone

and not mixed with other phases, leading to experimental

patterns of almost pure gypsum or beeswax (i.e. their phase

fraction is around 1). The training dataset is probably devoid

of this type of pattern, and the network is therefore not

sufficiently trained for these cases. Finally, gypsum is present

mainly at the sample boundary, where the total pattern signal

can be affected. This makes background subtraction more

prone to inaccuracy and can therefore lead to poor prediction

of phase fractions.

Like for the mock-up, we can map the eleven-phase

distribution in order to go back to the layer sequence of the

applied brocade. Fig. 4 presents three tomographic phase

maps corresponding to the layers of applied brocades

described above. From left to right:

Layer (a) is the preparation layer applied to the statue

before the decorations are placed on it. It is made of gypsum

and a priming paint layer made of cinnabar.

Layer (b) corresponds to the filler material used to ease the

manipulation of the decorations and their application on the

object. In this case, it is made of a two-layer structure of

beeswax and goethite already observed during in situ analyses

(Martinetto et al., 2021).

Layer (c) corresponds to the surface of the applied brocade

and the statue where the decoration was visible. This is usually

gold applied with a layer of gilding on tin leaf. Here, the

amount of gold is too small to be represented (a map is

available in the supporting information). However, we were
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Figure 4
Summary of the phase fraction mapping of the main phases for each theoretical layer of an applied brocade: (a) preparation layer, (b) filler layer and (c)
tin foil. For each slice, only two phases are considered and, on each pixel, only the most abundant phase is represented. For clarity, the bottom of the scale
starts at 25% of the maximum value. The approximate shape of the sample is shown as a black line.

Figure 3
Phase fraction maps of the three phases of the mock-up predicted by (a)–(c) the DNN and (d)–( f ) serial Rietveld refinement. The scale is given in
arbitrary units for comparison between the two methods. The approximate shape of the sample is shown as a black line. Maps without normalization are
available in Fig. S6.

Table 2
Phase fractions (%) for the whole virtual sample slice of the historical
sample of the eleven phases obtained by Rietveld refinement of the sum
pattern (Bordet et al., 2021), NMF (Bordet et al., 2021), serial Rietveld
refinement and the DNN.

For DNN predictions, the results are an average of five different trainings.

Phases Rietveld sum NMF Serial Rietveld DNN

Beeswax 40.9 57.5 18 20.9
Cassiterite 14.6 10.9 8.6 9.7
Cerussite 0.9 0.5 1.8 0.7
Chlorargyrite 1.0 0.5 0.9 0.5
Cinnabar 7.8 1.3 11.9 9.4

Goethite 1.9 1.8 3 6.6
Gold 0.2 0.2 0.6 0.3
Gypsum 23.1 18.0 37 42.7
Hydrocerussite 1.3 1.6 4.6 1.3
Minium <0.01 0.1 1.4 <0.01
Romarchite 8.3 7.6 12.2 7.9

http://doi.org/10.1107/S1600576724003704


able to map the two tin oxides, romarchite and cassiterite,

which reveal the shape and location of the degraded tin foil. A

similar result for fully degraded tin was already observed on

other statues of the same corpus (Poline et al., 2023).

The results of the phase mapping are consistent with a

classic applied brocade structure (Geelen & Steyaert, 2011).

In particular, the DNN approach seems to achieve an accurate

representation of the stratigraphy, mainly for the distribution

of the two tin oxides and for the cinnabar of the priming paint

layer. Note that the cinnabar spots away from the gypsum in

Fig. 4(a) can be attributed to overpainting and are therefore

not part of the original stratigraphy. The cerussite and

hydrocerussite maps in Fig. S7 are superimposed on these

spots, confirming a lead white and vermilion-based over-

painting.

3.2. Method assessment

Compared with other methods used on the same sample,

the DNN results seem to be generally rather accurate with

regards to semi-quantification, both with global methods (sum

pattern, NMF) and with those which process individual

patterns (serial Rietveld refinement). The phase fraction maps

also reveal that the results obtained with DNN are consistent

with the sequence of layers expected for an applied brocade.

However, absolute evaluation of the method remains difficult.

A common evaluation method is to extract a few individual

patterns and observe the match between experimental and

calculated patterns.

Following this idea, we need to reconstruct the patterns

using the results of the DNN process in order to calculate their

agreement factor. In order to reconstruct the patterns, we can

use the values of the U, V and W parameters for the instru-

mental resolution, the list of [dhkl, I] and Tc for each phase,

and the phase fractions x� obtained by applying the DNN

discussed above. However, the values of the sample displace-

ments (h), although introduced as randomized parameters in

the training dataset, are not extracted from the DNN and thus

remain unknown. In order to obtain the values of h, we added

another DNN of similar hyperparameters and architecture

(except the learning rate of the optimizer is fixed at 0.01

instead of 0.001) to the process. This DNN operates inde-

pendently from the phase fraction one, as depicted in Fig. 5.

Note that Dong et al. (2021) used a similar method but on a

complex architecture CNN linked with three DNNs in

parallel: one for the prediction of the scale factor, one for the

crystallite size and one for the lattice parameter. However,

optimizing and training this type of network is quite time

consuming, whereas here, with a training session lasting less

than 5 min, we are not limited in the number of networks we

can use. Moreover, having two distinct networks simplifies the

DNNs’ learning and can improve their performance. The

performance of this second DNN to extract phase displace-

ments seems somewhat poorer compared with that for phase

fractions (plots available in Fig. S10), probably due to the

smaller effect of sample displacement on such complex

patterns. Nevertheless, the predictions obtained are sufficient

for us to rebuild the patterns. For the historical sample, 7380

reconstructed patterns are generated in around 3 min using

the same parallel processing function described above. In

order to compare the patterns (experimental and recon-

structed), we use Rwp defined as follows:
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Figure 5
Schematic representation of the pattern regeneration. Phase fraction and sample displacement predictions are performed on two separate DNNs of
similar architecture. The crystallite sizes are the same as those used in the dataset generation (extracted from the Rietveld refinement of the sum
pattern). A scaling factor is applied for comparison between the reconstructed and experimental patterns.



Rwp ¼

Pn

i¼1 wiðyi � yc;iÞ
2

Pn

i¼1 wiy
2
i

" #1=2

;

with yi being the experimental observation, yc,i the calculated

observation and wi the weight of each observation (here, in

Poisson statistics: wi = 1/yi). The Rwp histograms of the DNN

compared with the serial Rietveld refinement are displayed in

Fig. 6 and show good agreement between the two methods

with slightly better results for the serial Rietveld refinement

(Rwp histogram for the mock-up available in Fig. S11). Note

that the high values of Rwp are due to the background

subtraction which modifies the counting statistics and greatly

decreases the denominator value in the Rwp calculation.

Fig. 7 shows a comparison between experimental and

reconstructed patterns for selected Rwp values for both

methods. For the low-Rwp examples [Figs. 7(a)–7(d)], the

reconstructed pattern corresponds precisely to the experi-

mental pattern, supporting the conformity of the results from

the DNN method. Moreover, for the first two examples, even

though the Rwp values are comparable for the two methods, it

seems that the DNN predictions better match the experi-

mental data. With regards to the high-Rwp example for the

DNN [Fig. 7(e)], the integrated intensities of the rebuilt

pattern appear to be broadly in line with experimental

intensities. However, the mismatch is mainly due to the posi-

tion of the peaks and therefore to the poor prediction of the

phases’ displacement by the second DNN. In comparison, the

example from the serial Rietveld refinement [Fig. 7( f)] seems

to be in better agreement with the experimental pattern due to

better phase displacement determination. This result has been

observed for a number of other patterns, meaning that a high

Rwp value is not necessarily linked to poor prediction of phase

fractions and therefore supports the accurate results of the

DNN method. Note that, despite some poor predictions of

phase displacements, rebuilding the patterns from these

predictions always leads to better results than for recon-

structed patterns without sample displacements (Figs. S12 and

S13 show Rwp histograms considering no sample displacement

and sample displacement from serial Rietveld analysis).

4. Conclusions

This study demonstrates the suitability of DNNs for real-time

processing of very large datasets from XRD-CT acquisitions.

These DNNs have a basic architecture with a single hidden
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Figure 6
Histogram representations of Rwp for all the patterns (some outliers are
not represented for a better readability of the classes, nine in total) from
NN predictions and from serial Rietveld refinement.

Figure 7
Left: three examples of experimental patterns (blue) compared with their rebuilt patterns (orange) for low, medium and high Rwp values. The difference
between the two patterns is plotted in green. Right: the same examples with serial Rietveld refinement.



layer sufficient to accurately predict the phase fractions of

complex systems such as highly degraded multi-layered

cultural heritage samples. As the difficulty with this type of

algorithm lies in the lack of training data, we created our own

XRD pattern generation function using an XRD pattern

description similar to the one used in the Rietveld method. In

order to improve this description, we have chosen a data-

driven approach to better match the generated patterns with

the experimental ones. It is based on the Rietveld refinement

of the sum pattern, which allows us to create our own lists of

interplanar distances and integrated intensities, while giving us

other key information such as the size of diffracting domains.

After a grid search optimization on a basic theoretical three-

phase system, we applied the DNN on a mock-up and a

historical sample. The approach provides satisfactory results,

similar to other methods used on the same sample. The phase

fraction maps show the expected succession of layers that can

be found in this type of cultural heritage sample, confirming

the performance of our method. In addition, we also evaluate

our method through agreement factors between experimental

patterns and patterns regenerated from predictions, enabling

us to confirm the accuracy of this data-driven approach.

Although certain assumptions were made in carrying out this

work, it seems that the quality of the results obtainable in such

a short amount of time may be an essential help in the time-

limited environment of a synchrotron experiment. Its ease of

use and speed of execution are assets that allow scientists to

easily adapt manipulations and thus save invaluable research

time. Although it has been developed for XRD-CT data, the

same method can be applied to other massive data collection

techniques where the proportions of phases with constant

structure vary over space (e.g. mapping) or time (battery

cycling etc.).

5. Code environment and data availability

Everything was developed on JupyterLab (Version 3.4.0) and

Notebook (Version 6.4.11) using ESRF computing resources

(1 CPU of 40 cores). The packages were used in the following

versions: tensorflow = 2.11.0, h5py = 3.6.0, matplotlib = 3.4.3,

numpy = 1.21.6, scikit-learn = 1.0.2. The codes developed in

this study can be found at https://github.com/polinev/

NNXRD-mfraction and the data to run the codes at https://

zenodo.org/records/10958419.
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