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Small-angle scattering (SAS) is a key experimental technique for analyzing

nanoscale structures in various materials. In SAS data analysis, selecting an

appropriate mathematical model for the scattering intensity is critical, as it

generates a hypothesis of the structure of the experimental sample. Traditional

model selection methods either rely on qualitative approaches or are prone to

overfitting. This paper introduces an analytical method that applies Bayesian

model selection to SAS measurement data, enabling a quantitative evaluation of

the validity of mathematical models. The performance of the method is assessed

through numerical experiments using artificial data for multicomponent sphe-

rical materials, demonstrating that this proposed analysis approach yields highly

accurate and interpretable results. The ability of the method to analyze a range

of mixing ratios and particle size ratios for mixed components is also discussed,

along with its precision in model evaluation by the degree of fitting. The

proposed method effectively facilitates quantitative analysis of nanoscale

sample structures in SAS, which has traditionally been challenging, and is

expected to contribute significantly to advancements in a wide range of fields.

1. Introduction

In recent years, the analysis of nanoscale structures of mate-

rials has become increasingly important in advancing the

development of new materials and understanding biological

phenomena. Small-angle scattering (SAS) is a fundamental

experimental method for analyzing such nanoscale structures.

It involves irradiating substances with X-rays or neutron

beams and analyzing the resulting scattering intensity data at

small angles, typically 5� or less (Guinier & Fournet, 1955).

SAS is versatile and applicable to a wide array of hetero-

geneous materials including nanoparticles, polymers, soft

materials and fibers, and is utilized across many fields

including materials science, chemistry and biology.

SAS measurement data are expressed in terms of scattering

intensity that corresponds to a scattering vector, a physical

quantity representing the scattering angle. Data analysis

requires selection and parameter estimation of a mathematical

model of the scattering intensity that contains information

about the structure of the specimen. This selection process is

critical as it involves assumptions about the structure of the

specimen.

Traditionally, model selection in SAS data analysis has been

performed by listing candidate models according to theore-

tical or empirical rules, conducting parameter fitting against

the measurements, and comparing suitability using criteria

such as �-squared error, among other criteria (Breßler et al.,
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2015; Da Vela & Svergun, 2020; Kline, 2006; Larsen et al.,

2018a; Pedersen, 1997; Schneidman-Duhovny et al., 2010;

Svergun et al., 1995). Alternatively, models may be chosen on

the basis of the general shape of the measurement data.

However, these methods each have drawbacks: the former

risks overfitting, which can lead to an overestimation of the

model’s degrees of freedom (Rambo & Tainer, 2013), while

the latter yields only qualitative model selections. Further-

more, quantitatively evaluating the reliability of the results is

challenging with traditional methods.

In this study, we propose a novel framework for SAS model

selection that quantitatively assesses the validity of mathe-

matical models that represent specimen structures in

measurements. This approach uses Bayesian model selection

within the framework of Bayesian inference, a method

increasingly applied to analysis of various types of physical

experimental data (Nagata et al., 2012, 2019; Rappel et al.,

2020; Machida et al., 2021; Moriguchi et al., 2022; Nagai et al.,

2021; Kashiwamura et al., 2022; Katakami et al., 2022; Nelson

& Prescott, 2019; Orioli et al., 2020; Scheres, 2012; Ueda et al.,

2023). In the context of SAS data analysis, Bayesian inference

has been applied to various cases, including ensembles of

protein structures (Antonov et al., 2016), regularization

methods in parameter fitting (Larsen et al., 2018b), indirect

Fourier transforms (Hansen, 2000; Larsen & Pedersen, 2021),

the estimation of particle size distributions (Asahara et al.,

2021) and specimen parameter estimates (Hayashi et al.,

2023). The method solves inverse problems by establishing the

likelihood, which is the data generation model, and the prior

distribution, which corresponds to the prior knowledge about

the target being estimated. The posterior distribution is then

calculated according to the model and parameters with the

acquired data using Bayes’ theorem. In our proposed method,

the posterior probability of the data generation model is

calculated under the measured data using the exchange Monte

Carlo method (Hukushima & Nemoto, 1996), also known as

parallel tempering, and then the resulting values are compared

among the candidate models while concurrently obtaining

Bayesian estimates of the model parameters. Moreover, since

the validity of the measured data model is obtained as a

posterior probability, the reliability of the results can be

quantified by comparing these probabilistic values.

We conducted numerical experiments to assess the effec-

tiveness of our proposed method. These experiments are

based on synthetic data used to estimate the number of

distinct components in a specimen, which was modeled as a

mixture of monodisperse spheres of varying radii, scattering

length densities and volume fractions. The results demonstrate

the high accuracy, interpretability and stability of our method,

even in the presence of measurement noise. To discuss the

utility of the proposed method, we compare our approach with

traditional model selection methods based on the reduced

�-squared error.

The structure of this paper is as follows. We first formalize

the proposed analytical method, and then describe the model

of multicomponent monodisperse spheres used in our

numerical experiments. In Section 4, we detail the setup and

the results of these experiments using the proposed method to

estimate the number of mixed components in the synthetic

data. We then discuss the analytical capabilities of our method

and the performance of the traditional method based on the

degree of fitting. We conclude with implications and potential

applications of our method.

2. Formulation of the proposed framework

In this section, we present a detailed formulation of our

algorithm for selecting mathematical models for SAS speci-

mens using Bayesian model selection. The pseudocode for this

algorithm is provided in Algorithm 1.

2.1. Bayesian model selection

The process of generating experimental measurement data

is generally described by a probabilistic model that includes

noise components. The SAS measurement data consist of

scattering intensities that correspond to the scattering vector.

As the scattering intensity is a measure of the number of

incident photons on the detector, the scattering intensity

values are assumed to follow a Poisson distribution (Katakami

et al., 2022; Kirian et al., 2011; Liebi et al., 2015; Nagata et al.,

2019). Let IK(q, �) be the mathematical model of scattering

intensity characterized by the parameter K for sample para-

meters � and scattering vector magnitude q. The likelihood,

which is the probability of generating the measured value y, is

then given by
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p yjq;�;Kð Þ ¼
IKðq;�Þ

y
exp � IKðq;�Þ

� �

y!
: ð1Þ

Assuming that the measurement data D ¼ qi; yi

� �N

i¼1
,

consisting of N data points, are samples from an independent

and identically distributed population under K and �, the

likelihood is expressed by

p Dj�;Kð Þ ¼
YN

i¼1

p yijqi;�;Kð Þ: ð2Þ

Here, we introduce the Poisson cost function to transform the

likelihood of the measured data in equation (2) as

E �;Kð Þ ¼
1

N

XN

i¼1

IK qi;�ð Þ � yi log IK qi;�ð Þ þ
Xyi

j¼1

log j

" #

:

ð3Þ

The likelihood is thus expressed as

p Dj�;Kð Þ ¼ exp � NE �;Kð Þ½ �: ð4Þ

Let ’(K) be the prior distribution of the parameter K that

characterizes the model, and ’(�|K) be the prior distribution

of the model parameters �. Then, from Bayes’ theorem, the

posterior distribution of the parameters given the measure-

ment data can be written as

p �jD;Kð Þ ¼
pðDj�;KÞ ’ð�jKÞ ’ðKÞ

R
pðD;�;KÞ d�

ð5Þ

¼
exp½� NEð�;KÞ� ’ð�jKÞ

ZðKÞ
; ð6Þ

ZðKÞ ¼

Z

exp � NEð�;KÞ½ � ’ð�jKÞ d�: ð7Þ

Z(K) is the marginal likelihood, which corresponds to the

normalization constant of the posterior parameter distribu-

tion. The probability of model K given the data D, denoted

pðKjDÞ, is given by

pðKjDÞ ¼

R
pðD;�;KÞ d�

P
K

R
pðD;�;KÞ d�

ð8Þ

¼

R
exp½� NEð�;KÞ� ’ð�jKÞ ’ðKÞ d�

P
K

R
exp½� NEð�;KÞ� ’ð�jKÞ ’ðKÞ d�

ð9Þ

¼
exp½� FðKÞ�’ðKÞ

P
K exp½� FðKÞ� ’ðKÞ

; ð10Þ

where

FðKÞ ¼ � log ZðKÞ: ð11Þ

F(K) is referred to as the Bayesian free energy, also known as

the stochastic complexity. The posterior probability of the

model, pðKjDÞ, can be rephrased as the validity of model K for

the measurement data D. In other words, calculating and

comparing the value of pðKjDÞ for all candidate models {K}

thus enables quantitative model selection. Note that in

Bayesian model selection the parameter K does not need to

appear explicitly within the mathematical model of the

specimen. This means that the method is also applicable to

analyses such as comparing models with different sample

shapes, like cylinders and ellipsoids, or evaluating the validity

of spherical versus cylindrical models for the aspect ratios of

colloidal particles.

2.2. Calculation of marginal likelihood

In our Bayesian model selection method, the Bayesian free

energy F(K) and the probability pðKjDÞ are calculated and

compared for all candidate models. This computation relies on

determining the marginal likelihood Z(K), as expressed in

equation (7). The marginal likelihood generally involves

multi-dimensional integration, which can be computationally

intensive and unstable. To address this challenge, our frame-

work uses replica-exchange Monte Carlo (REMC) to calculate

the marginal likelihood (Hukushima & Nemoto, 1996). This

method facilitates sampling from the desired probability

distribution at multiple inverse temperatures, referred to as

replicas, using the Markov-chain Monte Carlo method

(MCMC) to exchange states strategically between adjacent

inverse temperatures at arbitrary intervals, thus avoiding local

minima. To calculate the marginal likelihood using REMC, we

establish a series of L inverse temperatures f�lg
L
i¼1 that satisfy

the relation

0 ¼ �1< � � �<�L ¼ 1: ð12Þ

Sampling from the joint probability distribution at each

inverse temperature gives

p �1; . . . ;�LjD;K; �1; . . . ; �Lð Þ ¼
YL

l¼1

p �ljD;K; �lð Þ; ð13Þ

where �l denotes the model parameter at the lth inverse

temperature �l. The posterior distribution p �ljD;K; �lð Þ

satisfies the following relation:

p �ljD;K; �lð Þ / exp � N�lEð�l;KÞ
� �

’ð�ljKÞ: ð14Þ

These distributions are sampled using MCMC at each inverse

temperature, as expressed in equation (14), and states at

adjacent inverse temperatures are periodically exchanged

with a probability that satisfies the detailed balance condition.

The probability of exchanging the lth and (l + 1)th states,

p(�l$ �l+1), is

p �l $ �lþ1

� �
¼ min 1;

pð�lþ1jD;K; �lÞ pð�ljD;K; �lþ1Þ

pð�ljD;K; �lÞ pð�lþ1jD;K; �lþ1Þ

� �

ð15Þ

¼ min
�
1; exp

�
N �lþ1 � �l

� �

� E �lþ1;K
� �

� E �l;Kð Þ
� ���

: ð16Þ

The marginal likelihood expressed in equation (7) can be

efficiently determined using samples from various inverse

temperatures sampled by REMC. The marginal likelihood

Z(K, �) at inverse temperature � is expressed as

ZðK; �Þ ¼

Z

exp � N�Eð�;KÞ½ � ’ð�jKÞ d�: ð17Þ
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In this case, the target marginal likelihood expressed in

equation (7) is equivalent to Z(K, � = 1). Using the relation in

equation (12), Z(K, � = 1) can be expressed as follows:

ZðK; � ¼ 1Þ ¼
YL� 1

l¼1

ZðK; �lþ1Þ

ZðK; �lÞ
ð18Þ

¼
YL� 1

l¼1

exp � Nð�lþ1 � �lÞEð�;KÞ
� �� �

pð�l jD;K;�lÞ
:

ð19Þ

In equation (19), the symbol h�ipð�l jD;K;�lÞ
denotes the expec-

tation value with respect to pð�ljD;K; �lÞ. Computing equa-

tion (19) using sampling with REMC provides the marginal

likelihood expressed in equation (7). Once the marginal

likelihood Z(K) is determined, we can find the Bayesian free

energy expressed in equation (11) and the posterior prob-

ability of model K given the measurement data expressed in

equation (10). For the numerical experiments presented here,

we used the Metropolis method (Metropolis et al., 1953) for

MCMC sampling of the posterior distributions at each inverse

temperature, as expressed in equation (14).

2.3. Estimation of model parameters

During the marginal likelihood calculation the posterior

distribution of pð�LjD;K; �L ¼ 1Þ is obtained, which simply

represents the Bayesian estimate of the model parameters

(Hayashi et al., 2023). Therefore, the parameter estimation is

conducted simultaneously with performing the Bayesian

model selection. Since the posterior distribution is sampled

using REMC sampling, it can provide a global parameter

estimate solution. The reliability of the estimation can be

assessed from the statistical properties of the sampled

posterior distribution.

In Bayesian estimation, the maximum a posteriori (MAP)

solution provides a point estimate of the parameters. The

MAP solution �MAP for the parameters of model K is

expressed by this equation from equation (14):

�MAP ¼ argmax
�

exp � NEð�;KÞ½ �’ð�jKÞ: ð20Þ

3. Formulation of a multicomponent monodisperse

spheres model

In this section, we describe a model for the scattering intensity

of a dilute sample comprising multicomponent monodisperse

spheres (Guinier & Fournet, 1955; Hashimoto, 2022). This

model serves as the basis for evaluating the performance of

the proposed method.

Let ei and es represent the unit vectors in the direction of

the wavevector of the incident and scattered beams, respec-

tively. If ei and es form an angle 2�, and the wavelength of the

beam is �, then the scattering vector q is given by

q ¼
2�

�
es � eið Þ: ð21Þ

In this paper, we consider isotropic scattering and focus on the

scattering vector’s magnitude q, defined as

q ¼ jqj ¼
4�

�
sin �: ð22Þ

Monodisperse spheres are spherical particles of uniform

radius. The scattering intensity I(q, �) of a specimen composed

of sufficiently dilute monodisperse spheres of a single type for

the scattering vector magnitude q is given by

Iðq; �Þ ¼ SV
sinðqRÞ � qR cosðqRÞ

ðqRÞ
3

� �2

þB; ð23Þ

where V ¼ 4
3
�R3. If the difference in scattering length density

between the solute and solvent of the specimen is �� and the

volume fraction is �, then S = (3��)2�. The parameters � of

this model are the particle size R, the scale S and the back-

ground B.

To formulate the scattering intensity of a specimen

composed of K types of monodisperse sphere, we assume a

dilute system and denote the particle size of the kth compo-

nent in the sample as Rk and the scale as Sk. The scattering

intensity of a sample composed of K types of monodisperse

sphere is then given by

IKðq;�Þ ¼
XK

k¼1

SkVk

sinðqRkÞ � qRk cosðqRkÞ

ðqRkÞ
3

� �2

þB; ð24Þ

where we assume that Vk ¼
4
3
�R3

k. The model parameters �

for the scattering intensity IK(·) are � ¼ fRk; Skg
K
k¼1;B

� �
.

4. Numerical experiments

Here, we present numerical experiments to evaluate the

model selection among models with K ranging from one to

four components to demonstrate the capabilities of the

proposed framework. We apply the framework to synthetic

data generated to represent a system with two types (K = 2) of

monodisperse sphere, as described by equation (24). Bi-

component spherical specimens, depicted in Fig. 1, correspond

to model scenarios where two types of particle differing in size
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Figure 1
An illustration of a mixture of two types of spherical specimen. This
shows scenarios with two components (K = 2), including mixtures of
spherical particles of different sizes or volume fractions, and aggregates
from a single particle type approximated as a large sphere.



or volume fraction are mixed, or cases in which particles of a

single type aggregate into larger spherical entities.

In typical SAS experiments, the scale parameter Sk in

equation (24) tends to be small. Therefore, we normalize the

scale parameter Sk as

Sk ¼ Sk � 108: ð25Þ

Accordingly, we refer to the model parameters as � =

fRk; Skg
K
k¼1;B

� �
.

The numerical experiments reported in this section were

conducted with a burn-in period of 105 and a sample size of 105

for the REMC. We set the number of replicas for REMC, the

values of inverse temperature and the step size of the

Metropolis method taking into consideration the state

exchange rate and the acceptance rate.

4.1. Generation of synthetic data

The scattering intensity in SAS experiments, which is typi-

cally recorded as count data, is subject to Poisson noise, as

described by equation (1). We therefore generated synthetic

data D using the following procedure:

(i) Set the number of data points to N = 400 and define the

scattering vector magnitudes at N equally spaced points within

the interval [0.1, 3] to obtain fqig
N¼400
i¼1 (nm� 1).

(ii) Assume K = 2 and set the true model parameters �

to ��.

(iii) Calculate the scattering intensity at the scattering

vector magnitudes fqig
N
i¼1 obtained in Step (i), using the model

in equation (24) and ��. Introduce a pseudo-measurement

time T to adjust the noise intensity in the data, to obtain

fIðqi;�
�;KÞTgNi¼1.

(iv) Generate measurement values fyig
N
i¼1 as Poisson-

distributed random numbers with means of fIðqi;�
�;KÞ �

TgNi¼1 to create the synthetic data set D ¼ fqi; yig
N
i¼1.

In this section, we consider cases with pseudo-measurement

times of T = 1 and T = 0.1. Generally, smaller values of T

indicate greater effects from measurement noise.

4.2. Setting the prior distributions

In the Bayesian model selection framework, prior knowledge

concerning the parameters � and the model-characterizing

parameter K is set as their prior distributions.

In this numerical experiment, the prior distributions for the

parameters � were set as Gamma distributions based on the

pseudo-measurement time T used during data generation,

while the prior for K was a discrete uniform distribution over

the interval [1, 4].

’ð�jKÞ ¼ ’ðBÞ
YK

k¼1

’ðRkÞ ’ðSkÞ; ð26Þ

’ðRkÞ ¼GammaðRk;� ¼ 1:2; � ¼ 20Þ ð27Þ

¼
expð� Rk=�Þ

�� � ð�Þ
R�� 1

k ; ð28Þ

’ðSkÞ ¼
GammaðSk; 1:05; 300� TÞ if fSkg

K
k¼1 is in

descending order,

0 otherwise,

8
<

:

ð29Þ

’ðBÞ ¼ GammaðB; 1:05; 0:02� TÞ; ð30Þ

’ðKÞ ¼ DiscreteUniformðK; 1; 4Þ: ð31Þ

Fig. 2 shows the prior distributions for each parameter, as

described in equations (28), (29), (30) and (31).
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Figure 2
Plots of the prior distributions for various parameters. (a) Prior distribution of Rk, ’(Rk). (b) Prior distribution of Sk, ’ðSkÞ. (c) Prior distribution of B,
’(B). (d) Prior distribution of K, ’(K).



4.3. Results for two-component monodisperse spheres based

on scale ratio

The ratio of the scale parameters S1 and S2 for spheres 1 and

2 during data generation, denoted rS, is defined as

rS ¼
S2

S1

: ð32Þ

Next, we present the results from applying our proposed

method to analyzing six types of data generated by varying the

value of rS for pseudo-measurement times of T = 1 and 0.1.

Table 1 displays the parameter values used to generate the

synthetic data.

Fig. 3 displays the fitting results and residual plots for

synthetic data generated with the parameter values from

Table 1. For each model (K = 1, K = 2, K = 3 and K = 4), 1000

samples were randomly selected from their respective

posterior parameter distributions to plot these curves. Here,

the residual �, which normalizes the difference between the

model predictions and the observed data points (q, y) using

the model parameters �, is given by
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Figure 3
Fitting to synthetic data generated at various rS values and residual plots. Panels A and B show cases for pseudo-measurement times of T = 1 and T = 0.1,
respectively. In plots (a)–( f ) and (g)–(l), the scale ratio rS is displayed in descending order for T = 1 and T = 0.1, respectively. Black circles represent the
generated data and the black dotted lines indicate the true scattering intensity curves. For models K = 1, K = 2, K = 3 and K = 4, the fitting curves and
residual plots are represented by blue dashed–dotted lines, red dashed lines, orange solid lines and green dotted lines, respectively. Fitting curves were
plotted using 1000 parameter samples that were randomly selected from the posterior probability distributions for each model. The width of the
distribution of these fitting curves reflects the confidence level at each point.



� ¼
IKðq;�Þ � y

IKðq;�Þ
: ð33Þ

The fitting curves in Fig. 3 illustrate that the intensity and

spread of these curves are indicative of confidence levels,

where darker areas and narrower spreads denote higher

confidence levels for the respective model.

In Fig. 3 the plots labeled (a) to (c) and (g) to (i) demon-

strate, through the residual plots, that the model with K = 1

predominantly fails to represent the data accurately. However,

we can also see that the fitting curves for models with K = 2–4

are almost identical in shape. The data shown in plots (d)–( f)

and ( j)–(l) are difficult to distinguish from the well known

scattering data of a single type of monodisperse sphere (K =

1), making it challenging to qualitatively compare the good-

ness of fit among the models with K = 1–4.

Fig. 4 presents the Bayesian model selection results using

our proposed framework. Within Fig. 4, panel A contains

results for the case with T = 1 and panel B contains results with

T = 0.1, each showing the probability pðKjDÞ of model K

based on the synthetic data D for each scale ratio rS. Here, ten

data sets were created for each parameter value by varying the

random seed during data generation, and the average value of

pðKjDÞ is indicated by the height of the bar graph, with error

bars indicating the maximum and minimum values. For the

relatively large scale ratios rS in plots (a)–(e) in panel A, the

true model with K = 2 has a high probability, while the average

value of pðKjDÞ is highest for K = 1 in plot ( f). In panel B, the

true model with K = 2 is associated with high probability in

cases (g)–( j), while in cases (k) and (l) K = 1 is associated with

the highest probability.

Table 2 summarizes the number of times each model was

found to have the highest probability in numerical experi-

ments using the ten separate data sets shown in Fig. 4. For

values of rS = 0.0004 and above (Table 2, part A) and for rS =

0.002 and above (Table 2, part B), the model with K = 2 was

associated with the highest probability in all ten data sets. This

demonstrates the high accuracy of the proposed method and

its robustness to measurement noise. In cases ( f), (k) and (l) of

Fig. 4 and Table 2, the model with K = 1 was found to have the

highest probability in nearly all of the ten data sets. These

results were used to inform a discussion of the suitable

analysis range of rS using the proposed method, as addressed

in the next section.

4.4. Results for two-component monodisperse spheres based

on radius ratio

During synthetic data generation, the ratio of the radii R1

and R2 of spheres 1 and 2, denoted rR, was defined as

rR ¼
R1

R2

: ð34Þ

In this setup, we generated seven types of data by varying the

value of rR for pseudo-measurement times of T = 1 and T = 0.1.
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Table 1
Parameter values used for data generation with varying rS.

Sphere 1 Sphere 2

Radius R (nm) 2 10

Scale S 250 {250, 100, 20, 0.5, 0.1, 0.05}
Background B (cm� 1) 0.01
Pseudo-measurement time T {1, 0.1}

Figure 4
Results of Bayesian model selection among models K = 1–4 for varying rS

values. Panel A shows the posterior probability for each model using data
generated with a pseudo-measurement time of T = 1, and panel B shows
results for T = 0.1. In cases (a)–( f ) and (g)–(l), the scale ratio rS is
displayed in descending order for T = 1 and T = 0.1, respectively. The
height of each bar corresponds to the average values calculated for ten
data sets generated with different random seeds, with maximum and
minimum values shown as error bars. Areas highlighted in red indicate
cases where, on average, the highest probability was found for the true
model with K = 2, while blue backgrounds indicate that models other than
K = 2 were associated with the highest probability on average.

Table 2
The number of times each model was associated with the highest prob-
ability in numerical experiments for ten data sets generated with different
random seeds at each rS value.

In cases (a)–( f ) and (g)–(l), the scale ratio rS is displayed in descending order
for T = 1 and T = 0.1, respectively. The most frequently counted case for each
rS value is shown in bold.

(A) T = 1

K

rS 1 2 3 4

(a) 1.0 0 10 0 0
(b) 0.4 0 10 0 0

(c) 0.08 0 10 0 0
(d) 0.002 0 10 0 0
(e) 0.0004 0 10 0 0
( f ) 0.0002 8 2 0 0

(B) T = 0.1

K

rS 1 2 3 4

(g) 1.0 0 10 0 0
(h) 0.4 0 10 0 0
(i) 0.08 0 10 0 0
( j) 0.002 0 10 0 0
(k) 0.0004 9 1 0 0

(l) 0.0002 10 0 0 0



Fig. 5 displays fitting curves and residual plots for the

models K = 1, K = 2, K = 3 and K = 4, calculated from 1000

samples randomly selected from their respective posterior

parameter distributions. These samples are derived from

synthetic data generated with the parameter values given in

Table 3. The residuals � were calculated using equation (33).

Aside from the cases of rR = 0.5 in plots (d) and (k), the

profiles of the data in Fig. 5 are very similar to those of a single

monodisperse sphere, and the fitting curves for models K = 1

to K = 4 are nearly identical in shape. In contrast, the data for

cases (d) and (k) with rR = 0.5 have a complex profile, and the

model with K = 1 represents the data poorly.
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Figure 5
Fitting to synthetic data generated at various rR values and residual plots. Panels A and B show cases for pseudo-measurement times of T = 1 and T = 0.1,
respectively. In plots (a)–(g) and (h)–(n), the radius ratio rR is displayed in descending order for T = 1 and T = 0.1, respectively. Black circles represent
the generated data and the black dotted lines indicate the true scattering intensity curves. For models K = 1, K = 2, K = 3 and K = 4, the fitting curves and
residual plots are represented by blue dashed–dotted lines, red dashed lines, orange solid lines and green dotted lines, respectively. Fitting curves were
plotted using 1000 parameter samples that were randomly selected from the posterior probability distributions for each model. The width of the
distribution of these fitting curves reflects the confidence level at each point.

Table 3
Parameter values used for data generation when varying rR.

Sphere 1 Sphere 2

Radius R (nm) {9.9, 9.7, 9.5, 0.5, 0.5, 0.4, 0.3} 10

Scale S 250 100
Background B (cm� 1) 0.01
Pseudo-measurement time T {1, 0.1}



Fig. 6 displays the results of Bayesian model selection using

synthetic data generated by varying the radius ratio rR. Ten

data sets were created for each parameter value by varying the

random seed during data generation. The average value of

pðKjDÞ is indicated by the height of the bar graph, with the

maximum and minimum values shown as error bars. Unlike

the results for the variations in scale ratio shown in Fig. 4, the

model selection procedure fails not only at a radius ratio rR

close to 0 but also at values close to 1, with K = 1 being the

most highly supported. In the case of rR = 0.04, the result for

T = 1 in case ( f) supports the true model K = 2, but for T = 0.1

in case (m) the alternative model K = 1 is the most highly

supported. However, in cases (b)–( f) and (i)–(l), the true

model K = 2 is associated with a high average probability

(Fig. 6).

Table 4 presents the results of numerical experiments for

the ten separate data sets shown in Fig. 6, summarizing the

number of times each model K = 1–4 was most highly

supported. Near the analytical limits of the proposed method,

there are cases where the supported model changes depending

on the data, as shown in Table 4, entries (a), ( f), (i), (l) and

(m).

5. Discussion

In Section 4, we conducted numerical experiments to deter-

mine the number of components K in two-component

monodisperse sphere specimens using the proposed method

through model selection applied to artificial measurement

data. In this section, we discuss the analytical limits of our

method under the settings of this study with respect to the

scale ratio rS and radius ratio rR of the specimen’s two

components, as well as the performance of the conventional

model selection method based on the reduced �-squared

error.

5.1. Limitations of the proposed method

The experiments detailed in Section 4 explored the selec-

tion of the number of components K for two-component

monodisperse spheres using the proposed Bayesian method.

We observed certain analytical limitations for various values

of the scale ratio rS and radius ratio rR. In practical data

analysis applications using the proposed method, it is advi-

sable to conduct preliminary tests using synthetic data with

noise intensity and anticipated parameter values similar to

those of the measured data. This step can help ensure a more

reliable analysis, as detailed below.

The scale parameter S is a value that is multiplied by the

square of the difference in scattering length density between

the solvent and the specimen, as well as the volume fraction.

This can cause rS to become extremely small when there is

little difference in scattering length density between the

solvent and a component of the specimen, or when there is a

significant difference in the mixing ratio of the components.

The results in Fig. 4 and Table 2 for a pseudo-measurement

time of T = 1 (panel A) indicate that the model selection

favored non-true models at a scale ratio of rS = 0.0002. Simi-

larly, for T = 0.1 (panel B), non-true models were favored at

scale ratios of rS = 0.0004 and rS = 0.0002, indicating that these

cases exceed the analytical capabilities of the proposed
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Figure 6
Results of Bayesian model selection among models K = 1–4 for varying rR

values. Panel A shows the posterior probability of each model using data
generated with a pseudo-measurement time of T = 1, and panel B shows
results for T = 0.1. In cases (a)–(g) and (h)–(n), the radius ratio rR is
displayed in descending order for T = 1 and T = 0.1, respectively. The
height of each bar corresponds to the average values calculated for ten
data sets generated with different random seeds, with the maximum and
minimum values shown as error bars. Areas highlighted in red indicate
cases where the true model K = 2 was most highly supported, while the
blue backgrounds indicate that the likelihood of a model other than K = 2
was the highest.

Table 4
The number of times each model was most highly supported in numerical
experiments for ten data sets generated by varying rR values.

In cases (a)–(g) and (h)–(n), the radius ratio rR is displayed in descending
order for T = 1 and T = 0.1, respectively. The cases with the highest counts for
each rR value are shown in bold.

(A) T = 1

K

rR 1 2 3 4

(a) 0.99 9 1 0 0
(b) 0.97 0 10 0 0

(c) 0.95 0 10 0 0
(d) 0.5 0 10 0 0
(e) 0.05 0 10 0 0
( f ) 0.04 1 9 0 0
(g) 0.03 10 0 0 0

(B) T = 0.1

K

rR 1 2 3 4

(h) 0.99 10 0 0 0
(i) 0.97 2 8 0 0
( j) 0.95 0 10 0 0
(k) 0.5 0 10 0 0

(l) 0.05 1 9 0 0
(m) 0.04 7 3 0 0
(n) 0.03 10 0 0 0



method. These findings imply that, within the experimental

parameters of this study, the proposed method reliably iden-

tifies the true model with a high probability for scale ratios up

to rS = 0.0004 at T = 1 and up to rS = 0.002 at T = 0.1.

In Section 4.4, we investigated the effect of varying the

radius ratio rR. When components of different radii are mixed,

it is important to consider not only simple mixtures but also

instances of aggregated specimens. The findings shown in

Fig. 6 and Table 4 indicate that the proposed method reaches

its analytical limits as rR approaches 1 and as it approaches 0.

As rR nears 1, the scattering profiles of the two-component

system become similar to that of a single-component system,

leading to the selection of the single-component model (K =

1). We found an analytical limit at rR = 0.99 for both T = 1 and

T = 0.1. The results for rR = 0.97 show that at T = 0.1, which has

a higher noise intensity than T = 1, the posterior probability of

the single-component model (K = 1) increases, resulting in an

unstable analysis. Conversely, as rR approaches 0 with the

results rR = 0.03 at T = 1 and rR = 0.04 and rR = 0.03 at T = 0.1,

the single-component model (K = 1) is associated with high

probability, indicating an analytical limit. Overall, the

proposed method demonstrates the ability to select the true

model with high probability for radius ratios ranging from rR =

0.04 to 0.99 at T = 1, and from rR = 0.05 to 0.99 at T = 0.1.

5.2. Model selection based on v-squared error

In SAS data analysis, selecting an appropriate mathematical

model for the analysis is a crucial but challenging process. In

this subsection, we compare the conventional model selection

method based on the �-squared error with the results of model

selection using our proposed method.

Conventionally, model selection is performed by mini-

mizing the �-squared error through fitting with candidate

models, and the model with a reduced �-squared closest to 1 is

considered to be the best representation of the data

(Pedersen, 1997). The �-squared error �2 is given by the

following equation:

�2 ¼
XN

i¼1

IKðqi;�Þ � yi

� �2

IKðqi;�Þ
: ð35Þ

The reduced �-squared �2
r is obtained by dividing the

�-squared error by the degrees of freedom, dof:

�2
r ¼

�2

dof
: ð36Þ

The degrees of freedom dof are calculated by subtracting the

number of model parameters from the number of data points

N. For the model represented by equation (24), it is given by

dof ¼ N � ð2K þ 1Þ: ð37Þ

In the following, we discuss the results of selecting the

model with the closest reduced �-squared �2
r to 1 for models

K = 1–4 using the same data generated with different random

seeds for each of the six types of rS determined by the para-

meters shown in Table 1 for T = 1, as in Section 4.3. Since it is

difficult to obtain a global optimum solution using conven-

tional fitting methods such as the quasi-Newton method

and conjugate gradient method, we evaluate the reduced

�-squared �2
r using the parameters that minimize �2 among

the parameters sampled from the posterior distribution in the

experiment of Section 4.3.

First, we present the results for the data shown in Fig. 3 plot

(a), generated using the model with K = 2. Fig. 7 shows the

fitting results and reduced �-squared for models K = 1–4

obtained by minimizing the �-squared error for the data in

Fig. 3 plot (a).

Fig. 7 shows the results obtained by the conventional

method, indicating that the model with K = 3, even though it is

not the true model, is considered most appropriate for the

data due to its reduced �-squared value being closest to 1. The

fitting curves for models K = 2, 3 and 4 exhibit nearly identical

shapes, which complicates the determination of the most

suitable model based solely on their appearance.

Table 5 shows the aggregated results of calculating the

reduced �-squared for models K = 1–4 and counting the
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Figure 7
The fitting results and residual plots for the data shown in Fig. 3(a) were
derived using parameters that minimize the �-squared error from the
posterior probability distributions for models ranging from K = 1 to K = 4.
For each of these models, the fitting curves and their corresponding
residual plots are represented by blue dashed–dotted lines, red dashed
lines, orange solid lines and green dotted lines, respectively. The legend
indicates the reduced �-squared values for each model (K = 1 to K = 4).

Table 5
Model selection results based on reduced �-squared values.

The table shows the number of times each model had the closest reduced
�-squared value to 1 for ten data sets generated with different random seeds

for each rS setting T = 1. Labels (a) to ( f ) refer to the settings in Figs. 3–4 and
Table 2. The cases with the highest level of support for each data set are shown
in bold.

K

rS 1 2 3 4

(a) 1.0 0 2 8 0\sim
(b) 0.4 0 0 9 1
(c) 0.08 0 0 9 1

(d) 0.002 0 0 10 0
(e) 0.0004 0 4 5 1
( f ) 0.0002 0 2 8 0



number of times each model was closest to 1 for the data sets

(a)–( f) generated by varying the scale ratio rS of the model

with K = 2 in Section 4.3.

The results shown in Table 5 indicate that the model with

K = 3 is the most supported for all data sets (a)–( f). This is

thought to be because minimizing the �-squared error failed

to address the noise in the data adequately, ultimately leading

to an overestimation of the model’s degrees of freedom. This

implies that it is difficult to select the true model using the

conventional method of comparing the �2
r values among

candidate models.

On the other hand, the results of the proposed method

shown in Table 2 part A demonstrate that the true model K = 2

is supported ten out of ten times for cases (a)–(e). Within the

analyzable range discussed in the previous subsection, the

proposed method enables accurate model selection that takes

into account the model degrees of freedom.

6. Conclusions

In this paper, we have introduced a Bayesian model selection

framework for SAS data analysis that quantitatively evaluates

model validity through posterior probabilities. We have

conducted numerical experiments using synthetic data for a

two-component system of monodisperse spheres to assess the

performance of the proposed method.

We have identified the analytical limits of the proposed

method, under the settings of this study, with respect to the

scale and radius ratios of two-component spherical particles,

and compared the performance of traditional model selection

methods based on the reduced �-squared.

The numerical experiments and subsequent discussion

reveal the range of parameters that can be analyzed using the

proposed method. Within that range, our method provides

stable and highly accurate model selection, even for data with

significant noise or in situations in which qualitative model

determination is challenging. In comparison with the tradi-

tional method of selecting models based on fitting curves and

data residuals, it was found that the proposed method offers

greater accuracy and stability.

SAS is used to study specimens with a variety of structures

other than spheres, including cylinders, core–shell structures,

lamellae and more. The proposed method should be applied to

other sample models to determine the feasibility of expanding

the analysis beyond the case examined here to broader

experimental settings. Future work could benefit from using

the proposed method to conduct real data analysis, which is

expected to yield new insights through our more efficient

analysis approach.
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