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Serial crystallography (SX) involves combining observations from a very large

number of diffraction patterns coming from crystals in random orientations. To

compile a complete data set, these patterns must be indexed (i.e. their orien-

tation determined), integrated and merged. Introduced here is TORO (Torch-

powered robust optimization) Indexer, a robust and adaptable indexing algo-

rithm developed using the PyTorch framework. TORO is capable of operating

on graphics processing units (GPUs), central processing units (CPUs) and other

hardware accelerators supported by PyTorch, ensuring compatibility with a

wide variety of computational setups. In tests, TORO outpaces existing solu-

tions, indexing thousands of frames per second when running on GPUs, which

positions it as an attractive candidate to produce real-time indexing and user

feedback. The algorithm streamlines some of the ideas introduced by previous

indexers like DIALS real-space grid search [Gildea, Waterman, Parkhurst,

Axford, Sutton, Stuart, Sauter, Evans & Winter (2014). Acta Cryst. D70, 2652–

2666] and XGandalf [Gevorkov, Yefanov, Barty, White, Mariani, Brehm,

Tolstikova, Grigat & Chapman (2019). Acta Cryst. A75, 694–704] and refines

them using faster and principled robust optimization techniques which result in

a concise code base consisting of less than 500 lines. On the basis of evaluations

across four proteins, TORO consistently matches, and in certain instances

outperforms, established algorithms such as XGandalf and MOSFLM [Powell

(1999). Acta Cryst. D55, 1690–1695], occasionally amplifying the quality of the

consolidated data while achieving superior indexing speed. The inherent

modularity of TORO and the versatility of PyTorch code bases facilitate its

deployment into a wide array of architectures, software platforms and bespoke

applications, highlighting its prospective significance in SX.

1. Introduction

Serial crystallography (SX) is a technique with applications in

the field of structural biology (Chapman et al., 2011; Stellato et

al., 2014) and chemistry (Higashino et al., 2023; Schriber et al.,

2022). Unlike traditional crystallography, which collects

diffraction from one single large crystal from multiple (fixed)

viewing angles, SX collects a series of diffraction patterns

coming from thousands or even millions of randomly oriented

micro- and nano-crystals, for example using a high-viscosity

extrusion jet (Grünbein & Nass Kovacs, 2019) (see Fig. 1), and

merges them to determine the three-dimensional atomic

structure of macromolecules.

SX is especially valuable for studying molecules that do not

readily form large high-quality crystals, as well as for capturing

ultrafast (femto- to millisecond) dynamic processes through

time-resolved experiments (Weinert et al., 2019; Wranik et al.,

2023). SX experiments are usually performed at X-ray free
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electron lasers (Boutet et al., 2012) and bright synchrotron

facilities (Leonarski et al., 2023b; Diederichs & Wang, 2017),

though it is also possible to perform the experiments with

electron beams (Hogan-Lamarre et al., 2024).

Obtaining the final structure from the randomly oriented

diffraction patterns requires indexing each diffraction pattern

and merging the intensities into a complete data set, which can

then be used to solve the structure. To date, several automated

indexing algorithms such as XGandalf (Gevorkov et al., 2019),

DIALS real-space grid search (Gildea et al., 2014), MOSFLM

(Powell, 1999), IDXREF in XDS (Kabsch, 2010), DirAx

(Duisenberg, 1992), Pinkindexer (Gevorkov et al., 2020) and

many others (Li et al., 2019) are used in well established data

processing suites such as CrystFEL (White et al., 2012) and

DIALS (Winter et al., 2018).

A fundamental challenge of SX comes from the fact that the

method generates massive data sets, comprising thousands to

millions of diffraction patterns collected with large-format

kilohertz pixel-array detectors, like for example EIGER

(Förster et al., 2019), JUNGFRAU (Leonarski et al., 2018),

CITIUS (Takahashi et al., 2023) or AGIPD (Gisriel et al.,

2019). While the advancements in detector technology allow

the collection of complete data sets in a shorter time, very high

data volumes become a significant challenge for the

computing infrastructure (Leonarski et al., 2020).

To deal with this challenge, we introduce the TORO (Torch-

powered robust optimization) Indexer algorithm, which in the

current implementation is applicable when the unit-cell

parameters are known. TORO features:

(i) High-speed (�2 kHz) indexing of serial crystallography

data.

(ii) State-of-the-art indexing quality.

(iii) A user-friendly interface, thanks to its PyTorch-based

design for prototyping and integration into Python pipelines

with C++ deployment capabilities.

(iv) A seamless variable computational setup for running on

different architectures, e.g. graphics, tensor and central

processing units (GPUs, TPUs and CPUs, respectively).

To achieve real-time data processing, software usually

undergoes a complex series of optimizations, aimed at fully

utilizing the available hardware. Significant gains can be

achieved through use of hardware accelerators (Thompson &

Spanuth, 2021; Peccerillo et al., 2022), like for example GPUs,

field-programmable gate arrays (FPGAs) and TPUs. When

these accelerators were first introduced in a general-purpose

computing context, programming them required low-level

frameworks, like CUDA (Nickolls et al., 2008) for GPUs or

register transfer languages for FPGAs. This is a lengthy

process that requires specific knowledge and expertise.

With the advent of modern machine learning (ML) frame-

works like PyTorch (Paszke et al., 2019) and TensorFlow

(https://www.tensorflow.org/), the landscape of software

development is witnessing a transformation. Designed for

modularity and efficiency, these frameworks empower a wider

audience of researchers to translate intricate ideas, particu-

larly those centred on tensorial operations, into functional

solutions rapidly with a minimal code footprint. This marriage

of tensor computing capabilities in advanced ML frameworks

with scientific computing is what made TORO possible. While

no machine learning is involved in our algorithm, these

frameworks remain a powerhouse when dealing with optimi-

zation and linear algebra operations, tools we thoroughly

exploit in the implementation of our indexer. To draw a

comparison, the indexing algorithm XGandalf, primarily

crafted in C++, involves an extensive code base (several

thousand lines) and is limited to CPU processing. In contrast,

TORO, developed using PyTorch, is encapsulated within less

than 500 lines of high-level Python code. The difference is

mostly in the fact that low-level code has to incorporate a lot

of ‘infrastructure’ code, which includes details of how to

implement the operations on a CPU or other device. On the

other hand, PyTorch code contains only a description of the

mathematical computations. This makes it easy for scientists to

understand the algorithm from the code and adapt TORO for

applications not covered within this paper. Moreover, the C++

back end of PyTorch allows for seamless deployment in both

C++ and Python projects.

Despite its concise code base, TORO delivers indexing

quality on a par with XGandalf yet is versatile enough to

operate on GPUs, TPUs and CPUs alike. With the change of a

single line of code, TORO is optimized to run on modern

GPUs. This allows for parallel indexing of spot patterns within

large batches, leading to indexing performance that surpasses

the 2 kHz regime requirement of modern detectors like
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Figure 1
Schematic representation of an example serial crystallography experiment. The X-ray beam illuminates a liquid jet, i.e. a medium loaded with protein
crystals. Upon beam–crystal interaction, a diffraction image is captured by the detector. Advancements in detector technology enable data collection
rates exceeding 1 kHz, resulting in vast data sets (typically several terabytes). Primary data processing involves identifying images with distinct signals
and pinpointing strong reflections through spot finding. Subsequent indexing associates spots with the corresponding Miller indices, gathering the
requisite statistics for integration and merging.

https://www.tensorflow.org/


JUNGFRAU (4M) (Leonarski et al., 2018). As with most

indexing algorithms, TORO offers a trade-off between speed

and quality by choosing different hyperparameters. However,

even in the fastest setting we studied, the drop in indexing

quality is barely noticeable.

TORO also profits from optimization methods readily

available in modern ML frameworks. By employing robust

optimization methods resilient to outliers and closed-form

updates at each algorithmic step, we can reject outliers in a

principled way and achieve fast convergence of the estimates

in a small number of iterations (see Section 2.1.1 for details).

This gives TORO a competitive advantage in terms of

robustness and efficiency over existing methods (Gevorkov et

al., 2019; Winter et al., 2018) that employ gradient-descent

updates for refinement of the estimates and heuristic rules for

outlier removal.

In the following sections, we introduce the problem

formally and then proceed to describe our algorithm and put it

in context by comparing it with other indexers. Section 3

presents the results of both the indexing quality and compu-

tational performance of TORO. We show that TORO achieves

state-of-the-art indexing quality by comparing it with XGan-

dalf and MOSFLM on different protein data sets. We then

turn to computational performance. Our benchmarks show

over a 1000 times speed-up with TORO over XGandalf on a

fixed curated data set, designed to be representative of the

needs of SX.

2. Methods

2.1. The indexing problem

Indexing involves identifying Bragg spots (reflections)

observed in frames containing a diffraction pattern and using

them to infer the crystal orientation. The process begins by

mapping the positions of Bragg spots on the detector to a set

of vectors in three-dimensional reciprocal space lying on the

Ewald sphere (Drenth, 2007). Such mapping can be computed

on the basis of the experimental setup (i.e. detector geometry,

wavelength and incident direction of the beam etc.). The

resulting set of points in three-dimensional reciprocal space,

denoted Q, is a subset of a rotated version of the reciprocal

lattice which is initially unknown. We refer to the points in Q

as ‘reciprocal spots’. We formalize the mathematical problem

of indexing a set of points Q in reciprocal space.

The following expression describes the Laue equation. Let

Q ¼ fqig
n
i¼1, qi 2 R

3, be a set of n points in reciprocal space

and assume that there is a subset Q� � Q and three vectors

a�; b�; c� 2 R3 being the crystal lattice basis vectors such that

for each q 2 Q� there exist integers hq; kq; lq 2 Z such that the

following (ideal) Laue condition is satisfied:

q � a� ¼ hq; q � b� ¼ kq; q � c� ¼ lq: ð1Þ

We refer to hq, kq, lq as the Miller indices of q. That is, there is

a subset of the integer grid Z3 that gets mapped to Q� using

the matrix M� :¼ ða�; b�; c�ÞT. In practice, real data are

intrinsically noisy and thus we aim to satisfy the Laue condi-

tion up to some bounded error, i.e. we assume that there is a

known maximum absolute allowed error which is a hyper-

parameter of our algorithm.

Formally, the indexing problem consists of determining

a�; b�; c� and Q� using solely Q as an input. This problem is

challenging as Q may contain outlier points due to noise and

false detections that do not satisfy the Laue condition, i.e. they

could be arbitrary points. We also assume that, in each

problem, the ideal properties of the crystal lattice basis vectors

are known, i.e. we know the reference norm of a�, b� and c�, as

well as the angles between them, that any valid solution should

approximate. That is, we can assume that we are given a matrix

M�0 :¼ ða�0; b�0; c0Þ
T, being the given ideal crystal lattice basis

with some arbitrary orientation.

We say that a basis matrix M� ¼ ða�; b�; c�ÞT is a solution to

the indexing problem if, for a subsetQ� � Q with at least kmin

elements, it holds that jjM�q � RoundðM�qÞjj � � for all

q 2 Q�, where � is the bound on the maximum allowed

absolute error mentioned above. That is, we have a basis M�

for which all reciprocal spots in Q� satisfy the Laue condition

up to the maximum allowed error. We aim to have solutions

that resemble the structure of the given ideal crystal lattice

basis M�0, so if M� differs much from this structure we do not

consider it as a valid solution.

2.1.1. TORO: algorithm description. Indexing algorithms

usually operate in two phases. Initially, they attempt to iden-

tify potential candidates for the vectors a�, b� and c�. In the

subsequent phase, these candidates are assembled to form a

solution that exhibits a similar structure to the given matrix

M�0 . A final tuning phase can be employed to refine the

solutions.

Our algorithm follows a similar two-phase approach, but we

emphasize the differences, in particular with XGandalf, as

follows. In XGandalf, the first phase involves sampling vectors

and optimizing them using gradient descent (GD). However,

GD is inherently sequential, which hinders parallelism and, in

the case of XGandalf, requires a large number of iterations

and employs a set of hand-crafted functions to avoid being

trapped in local minima. The final tuning phase also relies on

GD. Furthermore, using GD is not inherently robust, as it does

not effectively account for outliers; instead, XGandalf

combines several heuristics to mitigate their influence. TORO

uses robust optimization for outlier removal instead, as

described in Section 2.1.2 below.

Another issue with the approach of XGandalf is that

candidate vectors for a�, b� and c� are only optimized inde-

pendently and then a solution basis is put together from these

candidate vectors. That is, in order to index correctly, the

algorithm requires all three vectors of the solution to be

present in the candidate vectors, which decreases the chances

of finding a solution. Moreover, joint optimization occurs only

during the final refinement step. This becomes problematic,

particularly in the presence of a large number of outliers, as

each candidate vector for a�, b� and c� might propose a

different set of outliers, leading to incompatible solutions.

In its first phase, TORO also involves a sampling strategy to

obtain candidates for the vectors a�, b� and c�, but to address
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the above-mentioned issues, we use a simplification of the

objective function which allows us to avoid employing GD.

This simpler objective has closed-form updates that accelerate

computation and eliminate GD-related problems such as

being stuck in local minima, zigzagging, choosing the learning

rate, and gradient explosion or vanishing, among others. In

fact, with no outliers, our approach only requires a single

update step to reach the solution. However, handling outliers

is fundamental to solving the indexing problem. Consequently,

we introduce a robust optimization technique akin to the least

trimmed squares (LTS) method (Vı́šek, 2006). This technique

introduces a slight constant overhead on the number of

updates compared with the regular least-squares (LS) method.

However, it enables us to robustly handle any number of

outliers without incurring the iterative demands often asso-

ciated with GD methods.

To optimize candidate vectors jointly, in the second phase of

our algorithm we utilize the candidate vectors obtained earlier

to construct copies of the given basis M�0 attached to these

candidates. Essentially, for each candidate vector a we create a

copy of M�0 and rotate it in three dimensions so that one of its

vectors aligns with a. We then spin this copy around a to

produce more basis samples. This can be viewed as a second

sampling strategy, but this time we sample entire basis

matrices rather than individual vectors. While sampling

directly in this matrix space without using candidate vectors

seems appealing, we found it to be too computationally

expensive, hence the need for a more precise two-phase

sampling approach. After sampling, we apply the same robust

estimation procedure mentioned earlier to simplify the

objective function and perform a joint robust optimization to

find the three vectors a�, b� and c�. This strategy has the

advantage that only a single vector from the solution needs to

be present in the candidate vectors found in the first phase.

Fig. 2 provides an overview of the algorithm, where two

score-and-rank steps are also included. These steps make use

of a relaxation of the Laue condition. That is, we rank higher

the candidate vectors (or matrices) that are close to satisfying

the Laue condition, i.e. they are close enough to integers after

taking the product. This allows us to focus our computational

power on those that are more promising. XGandalf uses

similar steps where only the top candidates are passed to

subsequent phases.

Since each frame can be treated independently, both

XGandalf and TORO are trivially parallelizable. However,

due to the reduced number of iterations in TORO and the

similarity between the computations done on different frames,

we can harness the power of GPUs and TPUs, while retaining

the flexibility of using multi-core CPUs when other accel-

erators are unavailable. Regardless of the architecture choice,

TORO offers a faster alternative.

2.1.2. Robust optimization. In this section, we explain the

proposed estimation method which does not rely on using GD.

Let us first consider a simplification of the problem (which we

will remove in the next section). Assume that an oracle

provides the target Miller indices for the reciprocal spots in

Q�, i.e. for each q 2 Q we are given vq ¼ ðhq; kq; lqÞ
T 2 Z3

such that for each q 2 Q� vq coincides with the Miller indices

of q (the oracle can give us anything as vq for the spots in

Q n Q� and we cannot differentiate between them a priori).

While this is a seemingly strong assumption, we discuss later

how a sampling strategy can simulate such an oracle.

Our problem then becomes that of finding Q� � Q and the

vectors a�, b� and c� so that the Laue condition is almost

satisfied with the Miller indices provided by the oracle.

Once the setQ� has been determined, we would like to find

the basis vectors M that best fit the data in the least-squares

sense:

minimize
M2R3�3

X

q2Q�

Mq � vq

�
�

�
�

�
�

�
�2; ð2Þ

which is a simplification of the general indexing problem

where the provided Miller indices vq serve as discrete targets

for the optimization. In addition, for a solution to be accepted,

we would like the norm of all residuals jjMq � vqjj, q 2 Q�, to

be less than the bound � on the maximum allowed absolute

error. Note that finding the optimal basis M in (2) can be done

in closed form, and from the obtained estimate it is straight-

forward to check whether the acceptance condition

jjMq � vqjj � �, q 2 Q�, is met.

However, the subset of points Q� is unknown a priori and

needs to be estimated as well. For this purpose, we propose a

robust estimation method akin to LTS (Vı́šek, 2006). Recall

that in LTS, the goal is to find a subset of a given cardinality

and regression coefficients that minimize the squared error. In

our case, the cardinality of the set Q� is variable as it depends

on the prescribed error tolerance �. It can thus be understood

as the dual version of the LTS and can then be solved as a

sequence of LTS problems where the cardinality of the set is
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Figure 2
TORO Indexer algorithmic flow. The process starts with mapping the positions of Bragg spots to a set of vectors in three-dimensional reciprocal space.
This data set is then subjected to robust optimization methods, such as least trimmed squares and residual threshold annealing, in order to identify the
crystal orientation.



monotonically updated. The process roughly consists of the

following steps:

(i) Fitting phase. The process starts by fitting the linear

model to the current estimate of the subset Q�.

(ii) Residual calculation and sorting. After fitting the model,

the residuals (i.e. jjMq � vqjj) are calculated for each data

point and sorted in ascending order.

(iii) Trimming phase. The current subset of valid points is

updated by discarding all data points with large residuals.

(iv) Refitting. The model is then refitted using the new

subset of points.

This process is repeated until the residuals go below a given

threshold. More precisely, we proceed as follows:

(v) Residual threshold annealing. To find the solution to (2),

we proceed by rounds consisting of a fitting and a trimming

phase as described above. We begin by letting Qð0Þ :¼ Q, but

this subset is updated in each round. In the fitting phase of the

kth round, we minimize over M the loss in (2) by fixing

Q� ¼ QðkÞ. Note that such minimization is an ordinary least-

squares problem, which has a closed-form solution. Once its

optimum MðkÞ is computed, the trimming phase consists of

looking at each residual, i.e. each jjMðkÞq � vqjj, and defining

QðkÞ as the set with all reciprocal spots with a residual smaller

than the current residual threshold. This residual threshold

starts with a large enough value and is decreased mono-

tonically at each iteration as in the following algorithm,

approaching the maximum allowed error that a valid solution

can have as the iterations increase.

In this way, we monotonically reduce the value of the loss in

(2) in each iteration. We stop whenever we go below the

maximum acceptable error value and output the remaining

reciprocal spots as our solution for Q�, along with the corre-

sponding M�. However, since we have the constraint that any

valid solution should have a minimum number of reciprocal

spots kmin, whenever we are left with fewer than kmin reci-

procal spots we stop and give the output that there is no valid

solution for this instance.

A summary of the robust estimation procedure can be

found in the algorithm above.

2.1.3. Sampling can replace the oracle. In this section we

show that, with enough computing power, a sampling strategy

can play the role of the oracle invoked in the previous section.

Recall that we assume that the structure of the ideal crystal

lattice basis vectors is given, i.e. we know the ideal norms

(lengths) of a�, b�, c� and the ideal angles between them (the

actual solution might differ slightly from these ideal condi-

tions).

If we are given an arbitrary rotation of M�, say M�0, it

induces a set of possible Miller indices for the reciprocal spots

ofQ by considering the set fRoundðMqÞ : q 2 Qg � Z3. These

induced Miller indices will be used to replace the oracle from

the previous section as follows.

Recall that for each q 2 Q�, vq ¼ ðhq; kq; lqÞ denotes the

true Miller indices of q. The goal of our sampling strategy is to

construct candidate bases, being rotations of M�0, such that for

at least one of them the induced Miller indices of this basis

mostly coincide with the true Miller indices of Q�. That is, we

want to sample a basis M̂ such that RoundðM̂qÞ ¼ vq for most

reciprocal spots q 2 Q�. If that were the case, then these

induced Miller indices would play the role of the oracle and,

by running the proposed robust estimation procedure on

them, the optimization will succeed in solving the indexing

problem. The larger the number of candidate samples we take,

the higher the chances of obtaining such M̂ but the higher the

computational cost.

Our sampling algorithm is described in detail in the

supporting information and sketched hereafter (see also

Fig. 3). We start by computing evenly spaced vectors from the

surface of a sphere to be candidates for the crystal lattice basis

vector a� (the process is repeated in parallel for b� and c�, but

we describe it only for a� for simplicity). We rank them and
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Figure 3
A sketch of our sampling algorithm. Points are sampled for a sphere of
radius jja�0 jj. For each top-ranked sample a among them, a copy of M�0 is
attached to it by making a and a�0 coincide. Then M�0 is rotated around the
axis defined by a. Snapshots are stored every predefined number of
degrees, producing a set of rotated copies of M�0 being the basis samples
that correspond to a.
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keep only the most promising candidates among them. Then

for each candidate a, we attach a copy of the given

M�0 ¼ ða
�
0; b�0; c�0Þ

T by making a�0 and a coincide. We produce

several copies by spinning these bases around their fixed

vector a. We rank these produced bases and choose the most

promising among them to obtain a setM of candidate bases.

Both ranking strategies prefer candidates where the Laue

condition is closer to being satisfied for more reciprocal spots.

Finally, for each M 2 M, we consider the Miller indices

induced by M as a target for solving (2), i.e. we have jMj

instances that we solve in parallel using our proposed robust

estimation procedure of the algorithm given in Section 2.1.2.

Among the solutions found, we report the one with the largest

number of reciprocal spots for Q� and lower penalization (by

using residual threshold annealing, we guarantee that the

solutions are below the maximum allowed threshold). The

penalization compares the shape of the final basis with the

given M�0 and gives high penalization if the lengths of the

vectors or the angles differ by a large margin. Details of this

last part of our algorithm can be found in the supporting

information.

Note that this approach is capable of handling diffraction

patterns corresponding to a few crystals without further

iterations, as solutions for each of the crystals can be found

independently in different instances.

An important restriction of the presented algorithm is the

necessity to have the unit-cell parameters, represented by the

matrix M�0 , ready beforehand.

3. Results

TORO was applied to four publicly available protein data sets.

In our experiments, we compare TORO with XGandalf and

MOSFLM.

The largest and most recent data set is a serial millisecond

crystallography data set of lysozyme that was collected on the

BioMAX beamline at the MAX IV Laboratory (Leonarski et

al., 2023b). The crystals were prepared and measured

following previously established protocols, with a frame rate

of 2 kHz. Additionally, three serial femtosecond crystal-

lography data sets were utilized, namely the serotonin

receptor 5-HT2B bound to ergotamine (Liu et al., 2013),

�-lactamase (Wiedorn et al., 2018) and thaumatin (Nass et al.,

2021). These data sets are publicly accessible from the

Coherent X-ray Imaging Data Bank (CXIDB) (Maia, 2012)

under entries 21, 83 and 180, respectively. Every data set was

analysed under two conditions: with and without the default

checks (--no-retry --no-refine --no-check-

cell) in the indexamajig program, as suggested by Gevorkov

et al. (2019). For the CXIDB entries, the data processing
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Figure 4
Visualization of various indexing quality metrics for the different systems considered in this study. The rows, from top to bottom, represent the CC versus
Resolution, I/� versus Resolution and Redundancy versus Resolution subplots, respectively. The columns, from left to right, represent the lysozyme,
CXIDB ID 21, CXIDB ID 83 and CXIDB ID 180 systems, respectively. The red, blue and dashed black lines in each plot represent the measured
indexing quality of XGandalf, MOSFLM and TORO Indexer, respectively. The plots are obtained from stream files produced with indexamajig using
--no-retry --no-refine --no-check-cell flags to emphasize the difference in quality between the indexing algorithms.

http://doi.org/10.1107/S1600576724003182
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protocols as reported in the original publications were

adhered to. The processing parameters for lysozyme were fine-

tuned to enhance the indexing rate of XGandalf.

3.1. Indexing rate

Table 1 presents the indexing rate (in %) of the three

indexers (TORO, XGandalf and MOSFLM) for the four

proteins with default checks in indexamajig enabled (upper

panel) and disabled (lower panel). When default checks are

enabled TORO indexes more patterns than XGandalf (0.6%,

8.9% and 5% more) for the three proteins lysozyme, CXIDB

ID 83 and CXIDB ID 180, respectively. For CXIDB ID 21,

both indexers (TORO and XGandalf ) show the same indexing

rate. In all four systems, MOSFLM shows a lower indexing

rate (�2–20% less) than both TORO and XGandalf. For

lysozyme, the analysis with default checks on was done with

the --multi flag on as well, due the nature of this specific

data set (Leonarski et al., 2023a). Typically, default sanity

measures are enabled in indexamajig, such as retry indexing,

prediction refinement and cell parameter verification, to

ensure enhanced quality of the final result. However, by

employing the flags --no-retry, --no-refine and

--no-check-cell, this analysis shifts focus to the

unadulterated performance of the bare indexing algorithms.

When the default checks are disabled (see Table 1, lower

panel) similar behaviour is shown: TORO indexes consider-

ably more patterns than XGandalf, especially for CXIDB ID

83 (31.5%) and CXIDB ID 180 (48.3%).

In both scenarios – whether the default checks in index-

amajig are enabled or disabled – TORO consistently exhibits

comparable or better indexing rates across the data sets.
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Table 1
Comparison of the percentage of indexed frames between three indexers
(TORO, XGandalf, MOSFLM) with the total number of frames for each
protein specified in brackets.

Numbers in bold highlight the best performing algorithm for each system.

Default checks ON.

Protein (processed frames) TORO XGandalf MOSFLM

Lysozyme (500 000 frames) 53.3 52.7 32.0
CXIDB ID 83 (16 532 frames) 93.8 84.9 79.2
CXIDB ID 21 (152 531 frames) 10.2 10.2 5.1

CXIDB ID 180 (59 928 frames) 53.2 48.2 46.2

Default checks OFF.

Protein (processed frames) TORO XGandalf MOSFLM

Lysozyme (500 000 frames) 60.0 50.5 29.8
CXIDB ID 83 (16 532 frames) 90.5 59.0 69.6
CXIDB ID 21 (152 531 frames) 18.1 16.7 5.7
CXIDB ID 180 (59 928 frames) 99.5 51.2 59.3

Figure 5
Various quality metrics for the different systems considered in this study, with default sanity checks in indexamajig enabled. The rows, from top to
bottom, represent the CC versus Resolution, I/� versus Resolution and Redundancy versus Resolution subplots, respectively. The columns, from left to
right, represent the lysozyme, CXIDB ID 21, CXIDB ID 83 and CXIDB ID 180 systems, respectively. The red, blue and dashed black lines in each plot
represent the measured quality of XGandalf, MOSFLM and TORO Indexer, respectively. This analysis presents a comprehensive overview of the data
quality metrics under the standard operating conditions of indexamajig.



3.2. Merged data quality

After the diffraction patterns have successfully been

indexed and integrated, they are merged to obtain a complete

data set, which can be further used for downstream map

generation and structure refinement. The patterns were

merged and analysed with the programs partialator and

compare_hkl (see Section S1 of the supporting information for

more details) of the CrystFEL suite (Gevorkov et al., 2019).

Higher indexing rates should lead to improved merging

statistics. Therefore, the data quality indicators CC1/2 (Karplus

& Diederichs, 2012) and I/� (Maes et al., 2008), in combination

with the redundancy of the reflections, were used to assess the

indexing quality of TORO in comparison with XGandalf and

MOSFLM. As proposed by Gevorkov et al. (2019), the

indexing step in indexamajig was done with the default checks

disabled (flags --no-retry --no-refine --no-

check-cell) in order to ensure a fair comparison between

the indexers. Results for the four proteins are reported in

Fig. 4. Results with the default checks enabled can be found in

Fig. 5. On average, TORO performs similarly to XGandalf and

outperforms MOSFLM for all four cases, as expected from

earlier studies with XGandalf and MOSFLM (Gevorkov et al.,

2019):

For lysozyme, TORO’s indexing quality closely mirrors

XGandalf’s when considering parameters such as redundancy,

I/� and CC1/2. TORO indexes �10% more patterns than

XGandalf (Table 1), which is reflected by the increased

redundancy and a slightly improved I/� for the low-resolution

range. TORO also shows a significantly higher I/� than

MOSFLM, whereas CC1/2 is similar for all three indexers.

For CXIDB ID 21, TORO shows a similar indexing quality

to XGandalf in terms of all three statistical metrics, while it

shows higher quality for all three metrics than MOSFLM.

For CXIDB ID 83, both data quality indicators CC1/2 and

I/� show higher values in all resolution shells compared with

XGandalf, in accordance with the higher redundancy. TORO

consistently outperforms MOSFLM on all metrics.

For CXIDB ID 180, TORO Indexer also shows a similar

behaviour to XGandalf in terms of CC1/2, although XGandalf

performs slightly better in the high-resolution range. TORO

shows a significantly higher (twice as high) redundancy, which

in this case does not translate into a uniform improvement in
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Figure 6
Comparison between TORO and XGandalf for frames exclusively indexed by one method (and discarded by the other) in different proteins (dashed
line) against the full analysis reported in Fig. 4 (solid line). Rows showcase CC versus Resolution, I/� versus Resolution and Redundancy versus
Resolution metrics, while columns differentiate between lysozyme, CXIDB ID 21, CXIDB ID 83 and CXIDB ID 180. Solid lines represent the measured
quality of the indexing algorithm on the full data set, while dashed lines indicate the quality metrics computed only on the subset of frames exclusively
indexed by each indexer: black for TORO and red for XGandalf. Data were generated using indexamajig with --no-retry --no-refine --no-
check-cell.

Table 3
Mean and standard deviation of the estimated profile radii of different
indexers for CXIDB ID 83.

Indexer Mean � s.d. (nm� 1)

MOSFL 0.0054 � 0.0044
XGandalf 0.0032 � 0.0019

TORO 0.0031 � 0.0016

http://doi.org/10.1107/S1600576724003182


terms of I/� but only for the low-resolution range (up

to �5 Å).

In order to validate the previously mentioned metrics, the

merged data sets of all proteins for the two indexers TORO

and XGandalf were refined minimally with PHENIX

(Liebschner et al., 2019) against the originally published PDB

models, showing very similar Rwork and Rfree (see Section S2 in

the supporting information).

The indexing quality is further compared with that of

XGandalf in Fig. 6 and Table 2, showing the subset of frames

exclusively indexed by either TORO or XGandalf. The three

metrics demonstrate that the patterns uniquely indexed by

TORO add meaningful data to the full data set. Notably,

TORO-indexed frames deliver significant signals for all

proteins. XGandalf identifies some additional frames for

lysozyme, CXIDB ID 21 and CXIDB ID 180. However, its

indexing quality there is inferior to that of TORO, except for

CXIDB ID 21 where they are comparable in terms of I/� and

redundancy, while XGandalf has a better CC at low resolution.

Frames exclusively indexed by XGandalf for CXIDB ID 83

were omitted, as the number of frames exclusively indexed by

XGandalf (and not by TORO) was insufficient to produce

meaningful statistics.

3.3. Comparison of estimated profile radii

Another metric obtained from the indexed diffraction

patterns is the profile radius of the Bragg spots. This is defined

as the maximum distance of a reciprocal-lattice point from the

Ewald sphere that can still result in a Bragg reflection

(Gevorkov et al., 2019). This characteristic can be viewed as a

property of the crystal and it is influenced by factors such as

mosaicity and crystal size. CrystFEL estimates this measure

from the detected Bragg spots and the reciprocal-lattice points

that best predict them. Errors in the indexing solution typi-

cally impact the determination of the profile radius (Gevorkov

et al., 2019).

As demonstrated in Fig. 7, TORO’s indexing quality for

CXIDB ID 83 matches that of XGandalf and surpasses that of

MOSFLM [as shown previously in Fig. 10 of Gevorkov et al.

(2019)]. The same trend is observed for the remaining three

proteins, indicating that the indexing solutions of TORO and

XGandalf are comparable. The estimated mean and standard

deviation of the radius profile for CXIDB ID 83 are

summarized in Table 3. As can be inferred, a smaller profile

radius indicates better indexing quality, with TORO aligning

closely with XGandalf and outperforming MOSFLM.

3.4. Implementation details

The stand-alone implementation of TORO is coded in

Python and consists of less than 500 lines of code. We rely on

the PyTorch framework, which is designed to exploit raw

computing power by enabling parallelism, either on GPUs or

on CPU multi-cores. A cornerstone of PyTorch’s coding

principles is the use of large batches, the elements of which are

processed in parallel. For TORO this is not straightforward, as

different frames have different numbers of strong reflections.

While not a problem for sequential CPU processing, this

mismatch in the size of the data needs to be addressed to

benefit from using large batches. We opted to set a fixed

number of spots for each batch, which means that frames with

a lower number of spots need to be padded with zeros and

frames with more spots need to be pruned. The latter can be

done by sorting the spots by resolution and keeping the ones

with lower resolution. The maximum number of spots within

the frames in a batch has a tangible impact on speed, which is

shown in Fig. 9, where we can see a near-linear increase in

running time with respect to the size of the batch. It is,

however, a common practice among indexers to choose only

strong reflections with low resolution. Our speed results

revolve around frames with 80 strong reflections, which is

above the average in many SX experiments.

Our indexer is encapsulated by a PyTorch nn.Module

and serialized into a .pt file using LibTorch (Paszke et al.,

2019), which can later be loaded into C++ code bases. This is

how we are able to develop a CrystFEL plug-in that loads this

model and integrates it into their pipeline. While this might

not be the best way to maximize performance, it allowed us to

benchmark the quality of our indexer using the integrated

tools within CrystFEL. See the Appendix A for more details of

TORO’s implementations.

4. Computational performance analysis

In this section, we benchmark the computational performance

of TORO. First within CrystFEL, with the --profile

option enabled, we conducted a thorough performance

comparison between TORO and XGandalf (Gevorkov et al.,

2019). This particular option provides granular insights into
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Figure 7
Comparison of the estimated profile radii between MOSFLM, XGandalf
and TORO Indexer for CXIDB ID 83, with default checks in indexamajig
turned off. Patterns indexed by XGandalf and TORO have smaller
estimated radii than those of MOSFLM, indicating more precise indexing
solutions, in agreement with the results reported in Fig. 10 of Gevorkov et
al. (2019)

Table 2
Frames uniquely indexed by one indexer and discarded by the other.

Protein TORO XGandalf

Lysozyme 64845 17591

CXIDB ID 21 9101 5233
CXIDB ID 83 5279 72
CXIDB ID 180 29406 1883

http://doi.org/10.1107/S1600576724003182


execution times at every step of the analysis. For this

comparison, both indexing algorithms were evaluated on a

subset of the lysozyme data set. Specifically, our benchmarking

data set consists of 953 frames, containing only frames

indexable by both TORO and XGandalf and each having

exactly 80 strong reflections. These reflections were identified

using the peakfinder8 tool, with the detailed parameters

outlined in Section S4 of the supporting information. In an SX

experiment, many frames might be empty or have weak

reflections, while some might contain multiple crystals, so

performance is heavily dependent on the data set used. We

believe that our benchmarking data set describes a realistic

but at the same time challenging setting meaningful for this

benchmarking task. A stream file corresponding to our

benchmarking data set is included in the released code.

TORO was incorporated into CrystFEL using LibTorch

(Paszke et al., 2019) and serialized .pt models. Both tools

were tested under the same computational conditions to

ensure a fair comparison. Specifically, they were both run on a

single core (as stipulated by the -j1 flag) of an Intel Xeon

Gold 6230R CPU running at 2.1 GHz. The flags --no-

revalidate --no-retry --no-refine --no-

check-peaks were used in all the CrystFEL benchmarks.

The key performance indicator evaluated was the compu-

tational time for indexing (time for the indexing routine, as

reported by the profiling option). On average, XGandalf took

404 ms (standard deviation 8.2 ms) for indexing, while TORO

demonstrated inferior speed with 621 ms (standard deviation

49 ms). This performance was obtained using the flag

--xgandalf-fast-execution for XGandalf and by

using the parameters lattice_size=50000, angle_

resolution=150 and num_top_solutions=400 for

TORO. When decreasing the parameters to lattice_

size=10000, angle_resolution=100 and num_

top_solutions=25 – which we dub TORO real time (RT)

– the performance of TORO improves considerably (without

sacrificing quality, as reported in Fig. 8), reducing the indexing

time to 53 ms (standard deviation 66 ms). The average

execution times for the indexing part of an indexamajig cycle

were 1.73, 1.00 and 2.16 images s� 1 for XGandalf, TORO and

TORO RT , respectively. We are confident that, with a more

refined implementation targeted at optimizing existing

bottlenecks within our prototype CrystFEL plugin, the overall

performance of the TORO plugin will improve significantly in

the future.

The true potential of TORO is unveiled when operated as a

standalone application, capitalizing on the combination of

Python’s expressiveness and ease of use along with PyTorch’s

robust computational capabilities, especially when deployed

on GPU architectures. Table 4 reports results for TORO and

TORO RT when running on the high-end NVIDIA A100

GPU. Indexing our benchmarking data set, TORO achieves

an indexing speed of 301.21 images s� 1 (standard deviation

33.09 images s� 1) while TORO RT runs in the kilohertz

regime, processing 3006.76 images s� 1 (standard deviation

24.68 images s� 1). In order to achieve these speeds, TORO

processes spot patterns within large batches in parallel: up to

900 for the aforementioned result. Batching allows us to use

all resources from the GPU. In practice, we recommend setting

the batch size to the largest value possible allowed by the GPU
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Figure 8
Indexing quality profiling of TORO (black dashed line) versus XGandalf
(red solid line) across the lysozyme and CXIDB ID 83 data sets, exploring
varying TORO hyperparameters for optimal speed. Metrics presented
include CC versus Resolution, I/� versus Resolution and Redundancy
versus Resolution. Distinct columns represent data from the lysozyme
and CXIDB ID 83 data sets, respectively. For context, findings from Fig. 4
for both TORO and XGandalf are juxtaposed against TORO RT
(dashed–dotted grey line) – a swifter yet slightly less precise variant of
TORO, configured with lattice_size=10000, angle_
resolution=100 and num_top_solutions=25. TORO RT
boasts a processing rate of 3006.76 images s� 1 on an A100 GPU in
standalone mode, making it a suitable candidate for real-time feedback
indexing. Quality-wise, TORO RT remains robust, matching (lysozyme)
or outperforming (CXIDB ID 83) XGandalf. Data sets were processed
using indexamajig with --no-retry --no-refine --no-check-
cell.

Table 4
Performance of TORO and XGandalf on various hardware accelerators
on lysozyme over 953 indexable frames containing 80 strong reflections
identified using peakfinder8.

The CrystFEL configuration indicates that the performance test was done
using indexamajig with flags --no-revalidate --no-retry --no-
refine --no-check-peaks --no-multi and the --profile flag,

while Python refers to standalone Python code. Time is reported in milli-
seconds.

Hardware accelerator Type Configuration
Time
(ms)

Speed-
up

Batch
size

Intel Xeon Gold 6230R CPU CrystFEL (XGandalf ) 404 1.0� 1
Intel Xeon Gold 6230R CPU CrystFEL (TORO) 621 0.7� 1
Intel Xeon Gold 6230R CPU CrystFEL (TORO RT) 53 7.6� 1
NVIDIA A100 GPU Python (TORO) 3.3 122.4� 100
NVIDIA A100 GPU Python (TORO RT) 0.33 1214� 900

http://doi.org/10.1107/S1600576724003182


memory (Fig. 9). This implies that the pipeline executing the

indexing in real time would need a buffer to store all the

frames of one batch before passing the batch to the indexer. In

order to measure the speed with such large batch sizes more

reliably, we stack copies of the benchmark data set until

surpassing 10 000 frames and then trim this new stacked data

set until its size becomes a multiple of the batch size. In this

way, we can average the performance over several batches and

we ensure that each tested batch has the same number of

elements.

Fig. 8 shows a quality profile comparison between TORO

and XGandalf. This comparison emphasizes distinct variations

in indexing quality for both the lysozyme and CXIDB ID 83

data sets. Intriguingly, TORO RT, which is optimized for

speed, either equates to or excels over XGandalf, under-

scoring its efficiency. Fig. 9 offers further insights with an in-

depth analysis of TORO’s computational performance. The

upper panel elucidates the interplay between average execu-

tion time and the number of strong reflections (with fixed

batch size). The lower panel shows the significant influence of

batch size on performance. A larger batch size allows for more

data points to be processed simultaneously, exploiting the

GPU’s capability to handle multiple operations in parallel and

maximizing its throughput.

5. Discussion and conclusions

Modern advances in SX necessitate indexing algorithms that

can handle significant data volumes with precision. Traditional

methodologies, while robust, often struggle to keep up with

the escalating data rates of modern high-performing detectors.

To counter this, we have introduced TORO, a novel indexing

algorithm optimized for modern GPUs, applicable when unit-

cell parameters are known. TORO exhibits superior speed

while maintaining data quality and showing equal or higher

indexing rates.

Our analysis of four protein data sets highlights the equal or

superior indexing quality of TORO compared with XGandalf,

one of the most prominent indexers used in SX. Overall

TORO achieved significantly higher redundancy, reflecting the

detection of a larger number of patterns. Importantly, this

increased pattern detection did not result in a degradation of

data quality, as shown by the sustained high I/� from uniquely

indexed frames. These findings underscore the robustness and

efficacy of TORO as an indexing algorithm for SX data.

This level of computational performance opens a few doors

for the SX community. On the one hand, indexing is no longer

the bottleneck to obtaining real-time feedback during an

experiment, which can provide valuable information to

beamline users. On the other hand, one could consider

indexing in real time and storing only indexable frames, which

could help reduce the large amounts of data stored in SX

experiments. While this requires further research, our findings

suggest that using our indexer to discard non-indexable frames

would preserve enough information to obtain similar recon-

structions to those obtained using current pipelines based on

XGandalf.

TORO’s implementation in Python and PyTorch further

enhances its appeal. This implementation facilitates ease of

maintenance and updates and scalability across CPUs and

GPUs, and capitalizes on the wide array of libraries and tools

offered by the modern AI development stack. The streamlined

code base of a few hundred lines delivers a state-of-the-art

performance, highlighting the remarkable advantages intro-

duced by PyTorch in scientific software development. The

ease of use of this code base provides developers with the

ability to modify and tailor this indexer further to their specific

needs.

We have made a preliminary integration of TORO into the

CrystFEL suite to enhance its accessibility within the crys-

tallographic community and allow for a comparison with other

indexers. This will not only allow users to make use of TORO’s

speed and precision but also facilitate access to the compre-

hensive set of tools provided by CrystFEL. Standalone

versions of TORO are readily portable to other dedicated

software environments on beamlines, thereby augmenting its

potential utility. The simplicity of the TORO code base allows

adaptation of the algorithm by scientists for additional

indexing problems, like pink-beam or two-colour SX, electron

diffraction, or rotational crystallography.

As with all newly introduced methodologies, TORO is not

without its limitations. While it shows promise in terms of

speed and flexibility, rigorous benchmarking under diverse

data sets, experimental conditions and integration scenarios is

still warranted. Initial implementations within CrystFEL have

revealed performance bottlenecks that need addressing. An
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Figure 9
The performance of TORO Indexer. (Upper panel) Average execution
time (milliseconds) against the number of strong reflections. The plots
compare different models, TORO and TORO RT, and the batch size used
(shown in brackets). The shaded regions represent the standard deviation
around each curve. (Lower panel) Average execution time (milliseconds)
as a function of batch size.



important design choice for TORO is the required estimate of

the crystal unit cell. Our goal is to provide a highly robust

solution for automated indexing and we see this mostly

possible for a simple use case of a well defined protein. Our

experience is that more complex cases, e.g. crystal contam-

ination or unknown or multiple crystal forms, should be

understood with offline processing and are not limited by raw

throughput. We see existing algorithms (like MOSFLM or

XGandalf ) as more suitable for these cases. Furthermore, to

achieve a high indexing speed we need to use batching, which

might increase the complexity of a real-time pipeline and

limits the performance of our CrystFEL plugin.

In conclusion, preliminary findings suggest that TORO

offers competitive indexing quality and superior speed against

established algorithms like XGandalf. Its modular design aims

to streamline updates and modifications, which can be

advantageous in the dynamic field of crystallography.

However, consistent evaluations and user feedback will be

critical in refining TORO, ensuring its robustness and

confirming its potential value in future SX research.

6. Related literature

The following additional literature is cited in the supporting

information: González (2010).

APPENDIX A

Data and code

A1. Program and data availability

The standalone optimized version of TORO Indexer,

tailored for diverse computational environments, is available

at https://renkulab.io/projects/lfbarba/toro-indexer-for-serial-

crystallography.

TORO’s CrystFEL plugin is available at https://github.com/

henrique/CrystFEL/tree/torch_indexer.

The CXIDB ID 83, CXIDB ID 21 and CXIDB ID 180 data

sets are available under the corresponding IDs at https://cxidb.

org/. The lysozyme data set is available at https://doi.org/10.

2210/pdb8p1a/pdb.

A2. Software implementation

TORO Indexer is built on the PyTorch framework (Paszke

et al., 2019). PyTorch allows the TORO Indexer code base to

be both concise, with fewer than 500 lines, and efficient. It

achieves indexing quality comparable to that of XGandalf

while ensuring portability across all supported accelerators.

Additionally, through TorchScript, PyTorch facilitates seam-

less integration into C++ and Java software environments.

Listing 1 in Fig. 10 shows a simple example implementation

and serialization of TORO in Python. We use the torch.

jit.script function to map the PyTorch model to

TorchScript, an intermediate representation that eliminates

the Python runtime dependency. The TorchScript model is

then serialized to disk, enabling non-Python-dependent

deployment.

To demonstrate the integration process further, Listing 2 in

Fig. 11 offers an insight into how a serialized PyTorch model

can be loaded and utilized within the CrystFEL suite using the

LibTorch API. These few lines of code are enough to integrate

TORO into CrystFEL without the need for recompiling the

application. While this endeavour exemplifies TORO’s

adaptability potential, it is worth noting that TORO’s inte-

gration within CrystFEL is still in its early stages and would

benefit from continuous feedback and refinements from the

CrystFEL community. An initial implementation of TORO’s

CrystFEL plugin is available at https://github.com/henrique/

CrystFEL/tree/torch_indexer.

Fig. 12 illustrates an example of the end-to-end processing

pipeline using TORO. It highlights how TORO exploits high-

performance computing for real-time indexing with its Python

implementation and for offline processing using either the

Python or CrystFEL versions. The depicted pipeline is

modular and scalable, ensuring ease of adaptation and inte-

gration into high-performance computing infrastructures or

edge computing setups across diverse beamlines.
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Figure 10
Listing 1. TORO follows the general implementation and serialization in
PyTorch. The torch.jit.script translates the model to Torch-
Script, allowing it to run without Python. The serialized model is saved to
disk for later use without the original Python code. Indexer specifics, as
detailed in the main text, are omitted, but this PyTorch interface can be
used for any indexer algorithm, allowing it to be integrated into CrystFEL
without recompiling the application.

Figure 11
Listing 2, an example integration of a serialized PyTorch model into the
CrystFEL suite. Using LibTorch, the serialized model is loaded, the
necessary inputs are prepared and the indexer is then executed. This
interface highlights the potential for using serialized PyTorch models
within a C++ application, allowing integration without recompilation.

https://renkulab.io/projects/lfbarba/toro-indexer-for-serial-crystallography
https://renkulab.io/projects/lfbarba/toro-indexer-for-serial-crystallography
https://github.com/henrique/CrystFEL/tree/torch_indexer
https://github.com/henrique/CrystFEL/tree/torch_indexer
https://cxidb.org/
https://cxidb.org/
https://doi.org/10.2210/pdb8p1a/pdb
https://doi.org/10.2210/pdb8p1a/pdb
https://github.com/henrique/CrystFEL/tree/torch_indexer
https://github.com/henrique/CrystFEL/tree/torch_indexer
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Figure 12
A schematic representation of the full TORO pipeline. Users can use
TORO as a standalone Python module or use TorchScript to run it in a
non-Python environment, e.g. CrystFEL. TORO comes with a flexible
implementation and its performance and functionality remain consistent
regardless of the data transport method used, be it through the file
system, 0MQ or any alternative approach.
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