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Edited by A. Borbély, Ecole National Supérieure

des Mines, Saint-Etienne, France

Keywords: tensor tomography; texture analysis;

wide- and small-angle X-ray scattering; SAXS;

WAXS.

Supporting information: this article has

supporting information at journals.iucr.org/j

Published under a CC BY 4.0 licence

X-ray tensor tomography for small-grained
polycrystals with strong texture

Mads Carlsen,a* Christian Appel,a William Hearn,a Martina Olsson,b Andreas

Menzela and Marianne Liebia,b,c*

aPhoton Science Division, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland, bDepartment of Physics, Chalmers

University of Technology, SE-412 96 Gothenburg, Sweden, and cInstitute of Materials, Ecole Polytechnique Fédérale de

Lausanne (EPFL), 1015 Lausanne, Switzerland. *Correspondence e-mail: mads.carlsen@psi.ch, marianne.liebi@psi.ch

Small-angle X-ray tensor tomography and the related wide-angle X-ray tensor

tomography are X-ray imaging techniques that tomographically reconstruct the

anisotropic scattering density of extended samples. In previous studies, these

methods have been used to image samples where the scattering density depends

slowly on the direction of scattering, typically modeling the directionality, i.e. the

texture, with a spherical harmonics expansion up until order ‘ = 8 or lower. This

study investigates the performance of several established algorithms from small-

angle X-ray tensor tomography on samples with a faster variation as a function

of scattering direction and compares their expected and achieved performance.

The various algorithms are tested using wide-angle scattering data from an as-

drawn steel wire with known texture to establish the viability of the tensor

tomography approach for such samples and to compare the performance of

existing algorithms.

1. Introduction

In recent years, a method of tomographically reconstructing

the scattering density of non-isotropically scattering samples

has gained traction in small-angle X-ray scattering commu-

nities. This method, known as small-angle X-ray scattering

tensor tomography (SASTT), has been successfully applied to

study a wide range of phenomena in mineralized organic

tissue, ranging from bioinspired synthetic materials (Rajase-

kharan et al., 2018) to axon orientations in brains (Georgiadis

et al., 2021) and healing around bone implants (Liebi et al.,

2021). This method has been extended to wide-angle X-ray

scattering (WAXS) from crystalline systems including

hydroxyapatite in bone (Grünewald et al., 2020, 2023) and clay

minerals in Pierre shale (Mürer et al., 2021). Yet studies so far

have been limited to materials that display weak axially

symmetric texture similar to that commonly observed in

SAXS.

Tensor tomography (TT) differs from other computed

tomography (CT) reconstructions (Stock et al., 2008; Bleuet et

al., 2008) by explicitly modeling and reconstructing the scat-

tering anisotropy. The function that describes the intensity of

scattering, as a function of both scattering angle and direction

of scattering, is called a three-dimensional reciprocal space

map (3D-RSM). In WAXS, the 3D-RSM evaluated at a fixed

scattering angle, corresponding to a given Bragg reflection

hk‘, is proportional to a function used in texture analysis

called a pole figure. We refer to this function as Pfhk‘gðq̂Þ,

where q̂ is the normalized scattering vector which we use as a

variable to describe the direction of scattering. The properly

normalized P{hk‘} can be understood as the probability density
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of finding a reciprocal lattice vector of the {hk‘} planes

parallel to the direction q̂. Because the pole figure is defined as

a volume average over many grains, a spatially resolved

reconstruction of the pole figure is only appropriate if the

spatial resolution is much larger than the average grain size of

the sample, or when grains are strongly deformed and have

inherent mosaicity.

As-deformed metals often contain small and highly mosaic

grains and strong crystallographic texture caused by proces-

sing stresses. The sample investigated here displays grain sizes

on the order of hundreds of nanometres and azimuthal

variation of the powder rings with a full width at half-

maximum of around 10�. Owing to the deformed grains, such

samples are difficult to study with non-destructive grain-

mapping methods such as three-dimensional X-ray diffraction

(3D-XRD) (Poulsen, 2004) and diffraction contrast tomo-

graphy (Ludwig et al., 2008; Johnson et al., 2008), which rely on

identifying individual diffraction spots in the detector images

and are therefore restricted to samples containing large grains.

This restriction can partially be alleviated by using a focused

X-ray beam and raster-scanning the sample, as done in scan-

ning 3D-XRD (Hayashi et al., 2015). Differential-aperture

X-ray microscopy (Yang et al., 2004; Larson & Levine, 2013)

also images grain structures by inserting and scanning an

additional optical component downstream of the sample

rather than using tomographic methods.

In recent years, efforts have been made to extend 3D-XRD

to be able to characterize materials with a higher degree of

deformation and smaller grain sizes (Henningsson et al., 2020;

Kutsal et al., 2022). But since these methods all apply peak

finding as the first analysis step, they can only work when

isolated peaks stemming from individual grains can be

observed on the detector.

Wide-angle X-ray scattering tensor tomography (WASTT)

gets around this limitation by attempting to reconstruct not

individual grains but rather the pole figures, which contain

information about averages over many grains. Therefore,

establishing WASTT as a viable method for such systems

would make it possible to non-destructively image the

microstructure of such small-grained samples, which is not

possible with existing methods.

Initial studies using WASTT have focused on the 002 peak

in bone apatite, which has a slow dependence on the scattering

direction and strong scattering in a single direction, similar to

that typically observed in SAXS (Grünewald et al., 2020,

2023). This has in part to do with the extremely small crys-

talline domains found in bone hydroxyapatite, on the order of

tens of nanometres, as well as the low multiplicity of the

hexagonal 002 reflection. The samples of interest for this study

differ from what has been observed in studies on bone in that

the texture is stronger, i.e. the variation of scattering intensity

with respect to the scattering angle is much faster. Therefore, a

higher angular resolution is needed to properly model the pole

figure.

In this paper, we apply a representative set of algorithms

from SASTT on samples with fast directional variation of the

reciprocal space map. We compare their performance on the
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Figure 1
(a) Sketch of the experimental geometry with coordinate systems and
goniometer angles indicated. The � rotation is around the laboratory y
axis and the � rotation around the laboratory x axis. At � = � = 0 the
laboratory and sample coordinate systems coincide. (b) Measured sample
orientations plotted as (�, �) points. The measured directions are limited
to a range of � � 45� by the geometry of the goniometer. The closely
spaced points at � = 0 correspond to a normal tomography geometry. (c)
A 3D rendering of the reconstructed sample, showing the shape and
orientation of the reconstructed symmetry axis. A zoomed-in view is
shown in Fig. 6(a). The dashed circle marks the position of the voxel of
interest plotted in Fig. 3.



basis of the number of degrees of freedom at a given angular

resolution. To test the algorithms, we apply them on WAXS

data from an as-drawn steel wire with known texture. The

investigated sample shows narrow features in the measured

diffraction patterns with an FWHM of approximately 10� in

the azimuthal angle and is chosen because of its local wire-

symmetric texture, which can be correlated with its geometric

shape to provide an easy test case and establish the correct-

ness of the reconstructed texture.

2. Experimental details

2.1. Experiment

The WASTT experiment consists of scanning the sample in

a 2D raster grid through a focused beam to generate a stack of

diffraction patterns that together make up a single projection

of the sample. The raster scan is repeated for different sample

orientations to create a set of projections. A sketch of the

experimental geometry is given in Fig. 1(a). The experiments

were carried out at the cSAXS beamline at the Swiss Light

Source with a photon energy of 18 keV and a sample-to-

detector distance of 0.2 m using a PILATUS 2M detector

(Henrich et al., 2009).

The X-ray beam was focused onto the sample to a spot of

approximately 50 � 50 mm. The raster scans were performed

using two linear stages with continuous movement in the

vertical direction. Exposures were spaced 50 mm apart both

vertically and horizontally. The sample was rotated using a

purpose-built goniometer consisting of two orthogonal rota-

tion stages described by Liebi et al. (2018). The outer rotation

stage only reached angles up � = 45�, meaning that the full

range of projection directions could not be measured.

An exposure time of 0.1 s was used for each diffraction

pattern. The total scan time was 28 h, which includes about 6 h

of overhead due to sample movement and experimental

control software.

2.2. Sample

For this study we use a sample consisting of a drawn wire of

ALSi 302 stainless steel of thickness 25 mm (Goodfellow

Cambridge Limited, Huntington, England). The wire was

prepared into a tangled knot with a total extent of approxi-

mately 3 � 3 � 3 mm to have a non-trivial spatial structure.

The sample gives rise to both face- (f.c.c., �) and body-

centered cubic (b.c.c., �) diffraction peaks and has strong

texture, which is seen from the fact that the individual

diffraction rings have up to six separate maxima along the

azimuth with peak widths on the order of 10� FWHM, as can

be seen in Fig. 2.

We chose this sample because its texture is well known and

can be correlated at every point to the real-space direction of

the wire. Furthermore, the pole figures approximately have

rotational symmetry around the wire direction, which is

required by one of the applied algorithms. Finally, since the

wire is thin, we can assume that any given measurement

averages over the full thickness of the wire. This is the case for
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Figure 2
(a) Example detector frame with an inset showing a zoomed-in view of
the region marked by a white square. The powder ring appears smooth
and does not show spots corresponding to individual grains. (b) Inte-
grated intensity of a section of the � 200 peak as a function of azimuthal
angle plotted with different choices of N�. (c) Azimuthally regrouped
intensity showing the indexed peaks with N� = 96. The colormap is
oversaturated to improve visibility of the weaker peaks. The missing
points in (c) are masked-out data points due to the gaps between the
individual detector segments.



the shown experiments where we use a wire with 25 mm

diameter and a 25 mm spot size.

In such a wire, the � grains are known to preferably align

with (111) along the wire direction. Because the probed

diffraction peaks have multiplicity higher than 2, this

preferred alignment will lead not just to a single direction of

maximum intensity, as has been observed for the apatite 200

peak in bone (Grünewald et al., 2020, 2023), but to several

circles of high intensity in the pole figures centered on the wire

direction. The opening angles of the circles are given by the

relative angles of the corresponding reflection to the {111}

directions. This provides a challenge for the existing recon-

struction algorithms, as high angular resolution is needed to

resolve these circles, the distances between which is on the

order of 60�. The symmetry also results in the disappearance

of the ‘ = 2 component of the pole figures (Bunge, 1982),

which means the eigenvector-based analysis of preferred

orientations (Nielsen et al., 2023b) cannot be applied here.

3. Reconstructions

A typical WASTT/SASTT experiment creates a large data set,

typically of the order of a million diffraction patterns.

Reconstructing a 3D tomogram therefore requires efficient

algorithms. In this section, we present a selection of the most

common reconstruction algorithms and discuss their general-

ization to samples with fast angular variation of the scattering

patterns.

3.1. Description of the geometry

The sample is raster-scanned through a pencil beam while

the scattered X-rays are measured on a 2D pixel detector

downstream of the sample. The sample is rotated around its

center by the rotation Rp for p = 0, 1, 2, . . . , Np � 1 and the

raster scan is repeated at every orientation. We describe the

experiment in a sample-fixed coordinate system, (x, y, z), with

axes as drawn in Fig. 1. When Rp ¼ I , the identity rotation,

the sample-fixed coordinate system coincides with the

laboratory coordinates, (xl, yl, zl). zl is the direction of the

X-ray beam. A detector segment that measures a given

normalized q-space component q̂0ð2�; �Þ at Rp ¼ I measures

the q-space direction

q̂ðRp; 2�; �Þ ¼ RT
p q̂0ð2�; �Þ ¼ RT

p

cosð2�=2Þ cos �

cosð2�=2Þ sin �

� sinð2�=2Þ

2

4

3

5 ð1Þ

in the sample-fixed frame at a general orientation Rp. This

equation differs from SASTT only by the inclusion of the 2�/2

factors which account for the curvature of the Ewald sphere.

The scattering from a given voxel is assumed to be a function

of this vector, and the measured scattering is a sum of the

scattering from all voxels along the path of the direct beam

times the transmission of the incoming and outgoing beams at

each position and angle.

An experimental data set contains a set of raster scans at

sample rotations Rp for p = 0, 1, 2, . . . , Np � 1. Each raster

scan consists of Nj by Nk points. The sample rotations used in

the experiment can be parameterized by two Euler angles, �

and �, corresponding to an inner (around laboratory y at � =

0) and an outer (around laboratory x) mechanical rotation

stage, respectively.

The first step of analysis is to perform binning of the

detector images into the polar coordinates, 2� and �. Choosing

the number of azimuthal bins, N�, is a critical step of the

analysis. We perform integration in the 2� direction over the

full width of a given diffraction order, hk‘. Reconstructions

are performed independently for each hk‘, so this leaves us

with a data set for a given reflection of the size

Ntot ¼ NpNjNkN�: ð2Þ

The reconstruction is a voxel map of parameter vectors

where each parameter vector defines a model of the direc-

tional dependence of the scattering stemming from that voxel.

The reconstructed voxel map consists of Mx by My by Mz

voxels for a total of

Mtot ¼ MxMyMzM� ð3Þ

degrees of freedom. M� is the number of parameters

describing the pole figure of a given voxel. It is an important

quantity for this study as it determines how well scattering

with fast angular variation can be modeled. In the next section

we present a number of different reconstruction algorithms

and derive an expression for how the angular resolution of the

reconstruction relates to the sampling of projection directions.

3.2. Reconstruction algorithms

In this paper, we investigate three distinct algorithms from

the SASTT literature that are all in principle capable of

describing scattering from samples with arbitrarily strong

texture by including sufficiently many basis functions and look

at how they perform on a sample with fast directional varia-

tion in the scattering pattern. The differences between the

three methods are primarily the parametrization of the func-

tions that describe the directional dependence of scattering

from each voxel. Before we go into the specifics of the three

chosen methods, we first provide a broad overview of the

existing algorithms in the SASTT literature.

The method described by Schaff et al. (2015) splits the data

set into several smaller data sets corresponding to scattering

along a set of discrete directions covering the unit (half)

sphere and performs independent reconstructions for each

such direction. In this paper, we refer to this method as

discrete directions (DD).

In grating-based TT, the reconstruction algorithms rely on a

model that includes the experimental broadening of the

scattering due to the experimental sensitivity. The reciprocal-

space model is a superposition of this function aligned along a

number of sensitivity directions, of which commonly there are

seven (Malecki et al., 2014; Kim et al., 2022). The function used

to model the sensitivity is expressed as a second-order poly-

nomial in the Euclidean coordinates and is equivalent to
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second-order spherical harmonics or a rank 2 tensor descrip-

tion.

A recent algorithm investigated by Nielsen et al. (2023b)

expands the local directional dependence in a sum on real

spherical harmonics up to a maximum order ‘max and opti-

mizes the full set of spherical harmonics coefficients. In the

following sections, we will call this method simply spherical

harmonics or SH.

The method described by Liebi et al. (2015, 2018) uses only

the spherical harmonics with m = 0, called the zonal harmo-

nics, to describe the scattering pattern. It thereby enforces that

the scattering locally has axial symmetry. The direction of the

symmetry axis is found as a part of the optimization, along

with the spherical harmonics coefficients. We refer to this

method as zonal harmonics or ZH throughout this paper.

The algorithm investigated by Gao et al. (2019) describes

the scattering using a rank 2 tensor which is equivalent to

second-order spherical harmonics, and it is therefore limited

to certain smooth textures. While this method could in prin-

ciple be extended to higher-order tensors, such a method

would be similar to the SH method and is therefore not

pursued here.

In this paper, we focus on the three models DD, SH and ZH

and investigate how these models perform on samples with

fast azimuthal variation in the observed scattering patterns. In

these models, the directional resolution can be tuned by

choosing a hyperparameter of the reconstruction. For DD, this

parameter is the number of sensitivity directions as well as a

selection rule that determines whether or not a given

measurement point will be included in the reconstruction. For

SH and ZH, the hyperparameter is the maximum order of

spherical harmonics used in the expansion, ‘max.

In the following subsections we go through each of the three

methods in detail and investigate how the angular resolution

and the number of parameters are connected, and what

implications this has for the experiment and the reconstruc-

tion. We derive rules describing the sampling needed to

reconstruct at a given resolution. However, as with similar

sampling rules in computed tomography (Hansen et al., 2021)

and texture goniometry (Bunge, 1982), slight under-sampling

will lead not to catastrophic failure of the reconstruction but

rather to gradual degradation of the results. The rules are

therefore to be understood as approximate guidelines to help

when planning experiments.

3.3. Discrete directions

In DD the problem is split into a number of independent

problems by first defining a grid of directions covering the unit

half-sphere q̂� for � = 0, 1, 2, . . . , M� � 1. Given a full data

set, I( j, k; Rp, �), for a certain reflection, hk‘, we seek only a

subset of the data that corresponds to scattering along a

certain direction in reciprocal space on the sample-fixed

coordinate frame. Each such subset of the data points, I�,

constitutes a data set for an independent 3D scalar tomo-

graphy problem. As such, existing algorithms from scalar 3D

tomography can be used to perform the reconstruction.

For a specific reconstructed direction q̂�, the condition that

a measurement in (Rp, �) space can be included in the given

data set is that the probed direction in the sample coordinate

system is close to q̂�, i.e.

q̂ðRp; �Þ � q̂�: ð4Þ

q̂ðRp; �Þ parametrizes the circle of directions that satisfy the

Bragg condition for the sample orientation Rp. If � is treated

as a continuous variable, this equation can be solved for any

p̂ � q̂� ¼ cosð2�=2Þ, where p̂ ¼ Rpẑ is the projection direction

in the sample coordinates. This forms a circle in p̂ space where

the angle between p̂ and q̂� is 90�. Thus, an ideal data set

where all possible projection directions can be probed

constitutes a laminography data set with tilt angle �.

In practice, only discrete points in p̂ space can be sampled

and equation (4) can only be approximately satisfied. To make

the data sets, we need a rule to determine whether a given

projection is close enough to q̂� to be included or not. If we

assume that the pole figure is well described by a grid of M�

separate scattering directions uniformly distributed on the

half-sphere, the average area covered by any given direction is

ð4�=2Þ=M� and the typical distance between two neighboring

points is

�p ¼
2�

M�

� �1=2

: ð5Þ

This means that, if two points in the unit sphere are closer to

each other than this distance, we expect them to have similar

values and we can use this as a criterion for approximately

solving equation (4).

This criterion defines a band of area Aband � 2�(2�p) for

each q̂�, where p̂ can lie. Assuming that the measured

projection directions are equally spaced over the half-sphere,

there will on average be M� ¼ AbandNp=ð2�Þ ¼ 2Np 2�=Mð Þ1=2

projections in this band, where M� denotes the number of

projections in the �th data subset. To proceed, we assume that

the reconstructed volume is cubic and that the raster grid is

quadratic with the same number of points, i.e. Mx = My = Mz =

Nj = Nk. We need approximately M� = Nj to have a well

constrained tomographic problem. Substituting the previous

expression and rearranging yields

2Np

2

M�

� �1=2

¼ Nj , Np ¼ Nj

M�

8

� �1=2

; ð6Þ

which sets a lower limit for the number of projections needed

for a well constrained data set at a given resolution deter-

mined by the number of grid points M�. Equation (5) gives an

estimate of the angular resolution of the reconstruction.

For the individual M� scalar reconstructions, we use the

SIRT algorithm as implemented in the ASTRA Toolbox (van

Aarle et al., 2015, 2016). We use the 3D GPU parallel-beam

implementation (Palenstijn et al., 2011) to compute the

discrete X-ray transforms.
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3.4. Spherical harmonics

A typical basis for real-valued functions on the unit sphere

are the real spherical harmonics (just ‘spherical harmonics’

from here on). The spherical harmonics are enumerated by

two integers, ‘ and m, where ‘ 2 [0,1[ and m 2 [� ‘, ‘]. A

given spherical harmonic is typically denoted by the symbol

Y‘
mð�; �Þ as a function of two polar coordinates. To avoid

confusion regarding the symbol �, which we use to represent

the half scattering angle, we instead write the harmonics as a

function of a normalized vector Y‘
mðq̂Þ.

Using the spherical harmonics as a basis set, an arbitrary

square-integrable function on the sphere can be expanded as

f ðq̂Þ ¼
X1

‘¼0

X‘

m¼� ‘

c‘mY‘
mðq̂Þ; ð7Þ

where the sum over ‘ can be truncated to a finite integer ‘max

to give a finite-resolution approximation to the function. The

real numbers c‘m are called the spherical harmonics coeffi-

cients (from now just ‘coefficients’).

We will assume that the pole figures have Friedel symmetry,

i.e. Phk‘ðq̂Þ ¼ Phk‘ð� q̂Þ, which means that all coefficients with

odd ‘ are equal to zero. Counting the number of non-zero

coefficients up to a maximum even order ‘max gives a total of

M� ¼ ð‘max þ 1Þð‘max þ 2Þ=2 � ‘2
max=2 ð8Þ

independent coefficients, where the last expression is appro-

priate in the limit of high ‘max.

Flattening the data set into a vector, I, and the coefficient

voxel arrays into a vector c‘m, we can write the full forward

model as

I ¼ PYc‘m; ð9Þ

where P is a projection operator that transforms the (x, y, z)

voxel space into (p, k, j) projection space. Y is a matrix

containing the values of the spherical harmonics evaluated on

the points probed by the experiment given equation (1). This

is a linear problem, and the solution is found by minimization

of the function

copt ¼ argmin
~c‘m

jjI � PYc‘mjj
2; ð10Þ

where || · ||2 denotes the Euclidian norm.

Let us again consider a typical experiment where the raster

scan is quadratic and the reconstructed voxel grid is cubic, i.e.

with the same number of points along all directions. We

assume that the pole figure is smooth and can be represented

well by a spherical harmonics expansion up to maximum order

‘max. When a band-limited function on the sphere, i.e. a

function that can be exactly represented by a spherical

harmonics expansion to a given order ‘max, is sampled along a

circle, the resulting curve is a band-limited function in terms of

linear harmonics. Therefore, we can invoke the Nyquist–

Shannon sampling theorem which tells us that any N� > 2‘max

number of measurements along a circle is sufficient to capture

the full information content. Choosing critical sampling with

‘max and setting Ntot � Mtot yields a lower bound to the

number of projections that need to be measured to have an

over-constrained problem:

Np � Nj

M�

N�

� Nj

‘max

4
¼ Nj

M�

4

� �1=2

: ð11Þ

An upper limit to the angular resolution of such a recon-

struction is given by the Gabor limit:

2�

2‘max

�
�

21=2M�

; ð12Þ

which limits the smallest features that can be represented by a

band-limited function. This is the same scaling as was found

for the DD method in equation (6) but with a different pre-

factor.

3.5. Zonal harmonics

Zonal harmonics, like SH, uses a model based on spherical

harmonics coefficients to represent the local pole figure but,

unlike SH, ZH assumes that the local pole figure of a single

voxel has axial symmetry around a direction parameterized by

two angles, � and �, which are found as a part of the opti-

mization problem. This assumption reduces the number of

parameters that need to be refined in each voxel from (‘max +

1)(‘max + 2)/2 in SH to ‘max/2 + 1 coefficients and two polar

coordinates in ZH for the same ‘max. The reduction in the

number of degrees of freedom approaches a factor of ‘max and

therefore becomes more significant at higher directional

resolution.

In order to express the model in a compact form, we make

use of Wigner D matrices, which are introduced in Appendix

A. We write the forward model as

IZH ¼ PY DðH;UÞEc‘0; ð13Þ

where D(H, U) is a sparse matrix containing the elements of

the Wigner D matrices and H and U are vectors containing the

rotation angles for all voxels of the reconstruction. E is a

sparse binary matrix that expands the zonal coefficients, c‘0,

into the full space of coefficients. This expression has the

shape of an encoded version of SH, where the linear encoding

step depends non-linearly on the two angle parameters. The

model is slightly adapted from the original given by Liebi et al.

(2015) to make the comparison with SH clearer and to make

generalization to large ‘max easier.

As for SH, we have to choose the number of azimuthal bins

of the radial integration and, as before, a number M� = 2‘max

is sufficient. The number of independent parameters of the

model is ‘max/2 + 3. Since both the number of channels and the

number of parameters grow linearly with ‘max, repeating the

same analysis as was done for SH would suggest that a number

of projections corresponding to what is needed for a scalar

tomography problem would be enough to yield an over-

constrained problem at an arbitrarily high ‘max. As such, ZH

does not suffer from the same problem as DD and SH where

the number of projections needs to increase linearly with the

angular resolution of the pole figures.
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The man disadvantage of ZH compared with the two other

methods investigated here is the non-linearity in the forward

model, which means that the cost function is non-convex. This

results in the optimizer often converging to local minima of

the cost function that give unsatisfactory reconstructions of

the sample. Previous publications describe how this challenge

is overcome by utilizing prior knowledge of the sample to

generate a starting guess and using heuristics, like sequentially

refining the angles and the coefficients separately (Liebi et al.,

2018). A recent paper (Nielsen et al., 2023b) also reports on

using multiple random starts and the mean of the converged

solutions to yield better results. Here, we generate a starting

guess from the SH reconstruction using the approach

described in Appendix A.

3.6. Reconstructions

The experimental data set consists of raster scans with side

lengths Nj = 54 and Nk = 62 and a total of Np = 211 different

orientations measured. For each reconstruction, we have to

choose a number of hyperparameters of the reconstruction.

This choice can be guided by the analysis presented in the

previous section.

Using the inequality in equation (6) we see that DD should

be able to reconstruct M� = 100 independent directions, giving

an angular resolution of 14�. We found that increasing this

number to M� = 300 still yields good tomograms and improves

the visual quality of the pole figures. This model has a total of

65 million model parameters, around 200 000 for each of the

300 separate tomography problems. The individual tomo-

graphy problems have 21 independent projections on average,

giving a total of 15 million data points.

For SH, the inequality in equation (11) suggests that with

the given sampling we can reconstruct up to a maximum order

of ‘max = 16, which requires a number of angular bins N�� 32.

To assess whether this is enough to resolve the observed

diffraction patterns, we compare azimuthal curves made with a

varying number of azimuthal bins [Fig. 2(b)]. We conclude that

a number of N� = 48 is necessary to capture most of the

variation in the signal.

This choice of parameters leads to a total number of 34

million data points and 33 million model parameters. The

angular resolution implied by the Gabor limit is 11�.

For ZH, we have no similar restrictions to the resolution but

can, in principle, choose ‘max freely. In practice, however, ‘max

and N� are limited by the computational resources. We choose
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Figure 3
Pole figures for a single voxel reconstructed with, respectively, the (a–c) DD, (d–f ) SH and (g–i) ZH algorithms. The reconstructions are of the � phase (a,
d, g) {111}, (b, e, h) {200} and (c, f, i) {220} pole figures. Dashed red lines show the theoretically expected positions of circles of high intensity around the
fiber axis. The fiber axes in (a–f ) were determined independently for each pole figure using the approach of Appendix A. The colormaps of the {111} pole
figures are oversaturated to make lower-intensity features visible. The position of the voxel is marked with a red circle in Fig. 1(c). Pole figures are plotted
in stereographic projection in the sample-fixed coordinate system with the positive x direction pointing right, the positive y direction pointing up and the
positive z direction in the center.



to double the numbers used in SH, ‘max = 32 and N� = 96,

leading to a total number of 78 million data points and 7.5

million model parameters. This gives a maximum angular

resolution of 6�.

In summary, DD reconstructs individual diffraction direc-

tions, which makes the implementation of the reconstruction

easier and more efficient and provides a simple way to

implement a non-negativity constraint. SH and ZH both

utilize spherical harmonics, which provide a natural way to

describe smooth textures with a small number of independent

coefficients. The ZH algorithm assumes that the structure of

the sample has axial symmetry on the length scale of a single

voxel, which limits its applicability to certain sample systems

and resolutions but reduces the number of independent

coefficients when applicable. Furthermore, the ZH model is

non-linear, which necessitates a strategy to overcome local

minima in the cost function.

4. Results

Fig. 3 shows the calculated pole figures for a single voxel for

the reconstructions using the full data set. We plot the pole

figures for the three fully covered � peaks. All reconstructions

show the expected wire symmetry, and we can determine the

axis of rotational symmetry with the approach described in

Appendix A. For the DD reconstructions, the reconstructed

pole figures were first expanded into spherical harmonics

before the wire direction could be determined using the same

method. The pole figures contain circles of maximum intensity

that show good agreement with the theoretical expectation

plotted with red dashed lines. Both the DD and SH recon-

structions show approximate axial symmetry, but some

azimuthal variation can be seen in Fig. 4.

The pole figures of the SH reconstructions contain addi-

tional circles in the recovered pole figures aside from those

expected, as can be seen in Figs. 4(c) and 4(d). We interpret

these to be ringing artifacts caused by the truncation of the

spherical harmonics expansion. In DD no such rings are

observed, and in ZH, where the maximum order is higher,

these artifacts are effectively suppressed, appearing with

higher frequency and lower amplitude [Figs. 4(e) and 4( f)].

Ringing artifacts are often reported in the texture literature,

and different approaches have been developed to suppress

them (Bunge, 1982).

To further evaluate the reconstructed pole figures, we

compare them with the measured diffraction patterns from a

point in the data set where a section of the wire is orthogonal

to the incident beam, identified by an approximate inversion

symmetry of the diffraction pattern [Fig. 4(g)]. At this point,

we can uniquely determine the wire axis from the 2D

projection and therefore locate each azimuthal bin relative to

the wire axis. We plot the azimuthal variation of the 220 peak

[Fig. 4(h)] and compare this with the line traces of single-voxel

pole figures [Figs. 4(b), 4(d) and 4( f)]. Doing so, we see that

the features reconstructed by SH are too wide, with an FWHM

of the central peak of 16.4� in contrast to 12.7� for DD, 12.7�
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Figure 4
Single-pixel (a, c, e) pole figures and (b, d, f ) line plots of the recon-
structed value of the � 220 peak intensity using the three different
algorithms: (a, b) DD, (c, d) SH and (e, f ) ZH. (b, d, f ) show curves of
intensity along the half-circle orthogonal to the fiber axis. In (b, d) three
different curves are plotted, corresponding to circles 60� apart. The
positions of the circles are marked in (a, c) with the corresponding colors.
The ZH reconstruction is aziumthally symmetric, so here all such curves
are identical and only a single curve is plotted in ( f ). (g) shows a single
frame of the data set taken from a position where the wire direction is
orthogonal to the incident beam and where the wire direction could be
determined by inspecting the raster scan. (h) shows the intensity of the
220 peak from (g) as a function of the angle between the probed q-space
component and the wire direction plotted for the left and right sides of
the diffraction pattern, as marked in (g) with dashed lines of corre-
sponding color.



for ZH and 9.9� for the measured diffraction. The measured

diffraction pattern has 32% of the intensity in the central lobe

in contrast to 29% for DD, 28% for SH and 29% for ZH. For

an ideal texture where the (111) direction is fully aligned with

the wire axis, half of the 220 intensity lies in the equatorial ring

of the {220} pole figure, and after accounting for differences in

solid angle, 37% of the intensity is expected to lie in the

middle lobe. The measured data show large variability

between the left- and right-hand sides of the diffraction

pattern, indicating that the assumption of axially symmetric

texture used by ZH is not exactly fulfilled on the length scale

of the beam size. Both DD and SH reconstruct pole figures

with large variations around the wire axis, similar to what is

observed in the measured diffraction pattern.

In Fig. 5, we show three orthogonal projections of the

reconstructed scattering along the x direction. The scattering

density appears well reconstructed in the z projection, which is

close to a projection direction that has been measured as a

part of the original data set. The y projection could not be

measured because the geometry of the goniometer blocks

X-rays from this direction. This leads to the typical limited

angle artifacts in Figs. 5(b) and 5(e), which is a common

problem in SASTT and has previously been discussed in the

literature (Schaff et al., 2015; Nielsen et al., 2023b). While the

missing projection angles lead to poor reconstructions of the

directional scattering density, the anisotropic component is

still well reconstructed, leading to the sharp images in Figs.

5(c) and 5( f).

In the ZH model, scattering in different directions cannot

vary independently, because rotational symmetry has to be

maintained. This effectively leads to a sharper image in Fig.

5(h) compared with the corresponding image made with the

SH [Fig. 5(e)] and DD [Fig. 5(b)] algorithms.

Comparing the images made with the DD [Figs. 5(a)–5(c)]

and SH [Figs. 5(d)–5( f)] algorithms, we see that the SH images

contain a large amount of noise seen as intensity outside of the

silhouette of the wire sample. We interpret this as coming from

overfitting of the high-‘ components of the reconstruction. In

DD, these overfitting features have to some extent been

avoided by implementing a non-negativity constraint on the

reconstruction. This is an advantage of the DD method over

SH, as a non-negativity constraint cannot easily be formulated

for spherical harmonics expansions (Nielsen et al., 2023b). The

non-negativity constraint is more useful when many voxels

have zero scattering and the solution therefore lies on the

constraint boundary. The benefit offered by the non-negativity

constraint is therefore expected to be less drastic for more

dense samples.

The ZH model has far fewer degrees of freedom than the

SH models. We therefore see that the overfitting artifacts are

less apparent in Figs. 5(g)–5(i) compared with Figs. 5(d)–5( f).

The reduced number of degrees of freedom also means that
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Figure 5
Projections of the reconstructed directional scattering density of the � 200 peak using the three different algorithms: (a–c) using DD, (d–f ) using SH and
(g–i) using ZH. (a, d, g) show the q̂ ¼ x̂ scattering directions projected along the z direction and (b, e, h) show the same scattering direction projected
along the y direction. (c, f, i) show the scattering density averaged over all directions projected along the y direction. The projections of the directional
scattering have bright regions, where the angle between the wire axis and the probed q̂ falls on the maxima of the pole figure, while the averaged density
is constant along the wire.



we expect to be able to achieve good reconstructions with a

smaller number of measurements, as was shown in the

previous section. However, because the ZH model is non-

convex, we need a good starting point for the angle para-

meters to achieve convergence to the global minimum. In Figs.

6(a)–(c) we compare the reconstructions achieved by first

creating a starting guess using SH and then performing the ZH

reconstruction. We use a progressively smaller subset of the

full experimental data set in both the SH and ZH algorithms.

Even with the smallest number of projections (49), we are able

to recover the wire orientation. We also perform a recon-

struction using only the measurements from a normal tomo-

graphy geometry, with � = 0. In this reconstruction, we see that

the reconstructed symmetry axis does not align with the wire

axis, supporting the assertion that tensor tomography benefits

from projection directions spaced over the whole unit sphere

and not just a single equatorial band (Liebi et al., 2018).

5. Discussion

Both DD and SH succeed in reconstructing pole figures

displaying the expected circles of high intensity and in re-

covering a symmetry axis that aligns with the wire direction.

While the two methods obtain reconstructions of similar

quality, the DD approach has some practical advantages in

that it splits the TT problem into a number of much smaller

scalar tomography problems that can be solved more effi-

ciently with smaller demands on the computational resources

needed. Furthermore, because the algorithms and software for

scalar CT are more established, many reconstruction algo-

rithms and software packages are available that can readily be

used to perform the reconstructions, whereas new algorithms

for TT have to be developed, implemented and tested from

scratch. Yet shortcomings of DD are clearly visible when

considering scattering in directions where a full circle of

projections cannot be collected [Figs. 5(b) and 5(c)]. And

while the implementation of SH used here is kept basic,

methods such as SH that perform a global optimization over

all scattering directions could be adapted to utilize correla-

tions of the scattering in different directions, which we expect

would alleviate this problem.

In ZH, scattering in different directions is not reconstructed

independently, because the sample is assumed to be rota-

tionally symmetric locally. This prior knowledge of the sample
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Figure 6
Comparison of reconstructions with the ZH method and using SH to provide a starting guess for the optimization using different subsets of the full data
set containing (a) 178 projections, (b) 89 projections, (c) 49 projections and (d) 51 projections. In (a–c), the projections are selected to make the sampling
of the unit sphere as evenly spaced as possible, while in (d) only a single equatorial line is used. The plotted voxels are selected with a volume mask based
on a threshold of the absorption tomogram. The 3D renderings use perspective shading with the virtual light source placed above the scene. The
anisotropy used as the color scale is the anisotropic power divided by the isotropic power ½jc00j=ð

P‘max

‘¼0 c2
‘0Þ

1=2�.



symmetry gives a huge reduction in the number of indepen-

dent parameters, which is probably responsible for the better

performance of the ZH reconstruction compared with the two

other investigated methods. However, for many samples of

interest, such axial symmetry will not be present, and the ZH

algorithms can therefore not be used as a general recon-

struction tool.

While none of the algorithms tested here explicitly makes

use of the fact that the sample is sparse (i.e. that it contains

many voxels with zero scattering), the DD reconstructions use

a positivity constraint, which suppresses streaking artifacts in

the empty part of the reconstructed volume and helps explain

the relatively good quality of the DD reconstructions

compared with SH observed in Fig. 5. A significant disad-

vantage of the spherical harmonics basis used in SH and ZH is

that there is no easy formulation of a positivity constraint,

which prevents a similar constraint being applied for SH. In

the original paper by Liebi et al. (2015), non-negativity was

enforced by using a basis consisting of the square of the

spherical harmonics. This approach is not pursued in the

present paper because the squares of the spherical harmonics

are not a complete set and can therefore only be used to model

special textures.

The sample used for this study was deliberately chosen for

its low absorption. TT relies on being able to express the

scattered intensity as a line integral of the scattering density of

the sample. This is not exactly the case when the sample

absorbs, and the absorption of both the incident and scattered

light has to be taken into consideration. In SASTT, this is

corrected for by utilizing a complimentary measurement of the

transmitted beam intensity, from which the transmission

coefficient can be calculated. Because SASTT uses X-rays

scattered to small angles, the absorption seen in all the scat-

tering directions is approximately the same and equal to the

absorption seen by the transmitted beam.

For WASTT, this approximation becomes less appropriate

as X-rays scattered to different directions and scattered in

different parts of the sample all experience different effective

transmission. Computational transmission corrections can be

formulated, as is discussed by Grünewald et al. (2023), but in

general this is a difficult problem as the correction will either

need to be approximate or involve the calculation of a very

large number of line integrals through the sample absorption

density, which increases the computational cost. This problem

is alleviated by using harder X-rays, both because the

absorption coefficient is smaller and because the scattering

angle, and therefore the difference between the path of the

transmitted and scattered beams, is smaller. In the current

study, the photon energy was limited by the beamline at which

it was performed, but in general WASTT would benefit from

utilizing harder X-rays, as long as the diffraction rings can be

measured with sufficient resolution.

We have shown here that ZH achieves satisfactory recon-

structions even with a very small number of measured

projections, a conclusion also reached by Liebi et al. (2018) for

a different type of sample. This might be a result of the

particularly simple sample used for this study, which has a

large fraction of zero-intensity voxels. The main difficulty with

applying ZH in practice is the issue of non-convexity. For the

reconstructions shown here, we depend on other methods to

provide a reasonable starting guess for the orientation of the

symmetry axis. In the SASTT literature, the same problem is

overcome by using more advanced approaches to the opti-

mization and regularization to enforce a smooth variation of

the direction (Liebi et al., 2018).

The pole figures of different crystal reflections from the

same crystalline phase are not independent, as they all arise

from the same crystals. The different pole figures are bound to

be connected to the distribution of crystal-grain orientations

present in the sampled volume, which can be quantified by the

orientation distribution function (ODF). The ODF in turn

must respect the symmetry of the crystal lattice, which

provides extra symmetry information that can, in principle, be

enforced on the reconstruction. Texture analysis, such as

described by Bunge (1982), provides a formalism to calculate

pole figures from the ODF and vice versa when enough

independent directions are reconstructed to make the

problem well constrained.

In texture analysis, the ODF is expanded into a sum of

generalized spherical harmonics. The problem of calculating

the ODF in general has many more degrees of freedom than a

pole figure at the same ‘max and is therefore only well

constrained when many diffraction rings of the sample crys-

talline phase are measured. In practice, however, symmetry

can decrease the number of expansion coefficients dramati-

cally. Both sample symmetries (such as the wire symmetry)

and crystal symmetries (such as the cubic symmetry of the f.c.c.

or b.c.c. lattice) can be utilized in this way, whereas only the

sample symmetries can be straightforwardly utilized in the

expansion of the individual pole figures.

In the special case of axial sample symmetry, the full texture

information is contained in the inverse pole figure (IPF) in the

symmetry direction because the ODF is independent of the

Euler angle corresponding to rotations about the wire direc-

tion. Utilizing the cubic symmetry of the crystal lattice, the

three reconstructed {hk‘} orders are enough to calculate this

IPF up to the highest resolved order ‘ = 32, which is plotted in

Fig. 7(a). The IPF can be seen as the probability density of

finding a given lattice vector aligned along the sample direc-

tion, and, as expected for �-steel, we see preferential align-

ment of the {111} direction along the wire direction. The ODF

and IPF were calculated via the approach described by Bunge

(1982) using the real spherical harmonics as defined by

Schaeben & van den Boogaart (2003). We also performed

electron backscatter diffraction (EBSD) measurements on a

piece of wire from the same spool. From these measurements

we calculate an inverse pole figure in the wire direction, which

is shown in Fig. 7(b). Like the IPF calculated from the

tomographic reconstruction [Fig. 7(a)], it also displays a

maximum at (111) with approximately the same angular

spread. The EBSD mapping was done on a surface of 9 �

15 mm normal to the wire direction and it therefore averages

over far fewer grains compared with the 50 mm cubed volume

of a reconstructed voxel. The IPF map is presented in Fig. 7(c)

research papers

J. Appl. Cryst. (2024). 57 Mads Carlsen et al. � X-ray tensor tomography for small-grained polycrystals 11 of 15



and showcases a prevalence of {111}-oriented grains. Fig. 7(e)

shows the image quality of the collected IPF map. This map

contains many areas with low image quality, which can be an

indication of high deformation levels (Schwartz et al., 2008).

Tensor tomography is already being applied to study a

number of sample systems that display anisotropic scattering

properties such as deformed metals and bio-minerals. While

we have here tested the methods on wide-angle diffraction

data, there are also systems that display fast angular variation

of the small-angle scattering such as crystalline polymers and

highly aligned fibers in composites and biomaterials.

6. Availability

The data used to create the reconstructions can be down-

loaded from https://doi.org/10.5281/zenodo.10889439, and the

algorithms presented have been made available in the soft-

ware package mumott, which is distributed under an open-

source license and can be downloaded from https://mumott.

org (Nielsen et al., 2023a).

7. Conclusion

We have shown that the TT approach can be used to recon-

struct pole figures of small-grained polycrystals with strong

texture. We compared a number of the most common algo-

rithms from TT and highlighted various advantages and

shortcomings of the different approaches. The results of this

pilot study indicate that WASTT shows promise as a new non-

destructive technique to study microstructure in small-grained

polycrystalline materials, complementing existing methods for

large-grained materials.

Both DD and SH give good reconstructions of the sample

shape and recreate the expected features in the pole figures.

They both, however, contain severe artifacts, interpreted as

limited angle artifacts, due to a missing range of projection

directions that could not be measured. In the DD recon-

struction these artifacts are somewhat suppressed owing to the

non-negativity constraint. The ZH reconstruction reduces the

artifacts even further by enforcing axial symmetry on the pole

figures of individual voxels. The disadvantage, however, is

higher computational costs and a more complicated optimi-

zation procedure owing to the existence of many local minima

in the cost function.

APPENDIX A

Wigner’s D matrices

The existing implementation of the ZH algorithm used for a

number of publications (Liebi et al., 2015, 2018; Grünewald et

al., 2020; Mürer et al., 2021) is only implemented up to ‘ = 6,

which is not sufficient for this paper. In attempting to extend

this algorithm, we found that a great simplification of the

implementation could be achieved by utilizing the approach of

Wigner’s D matrices to carry out the rotations rather that the

explicit rotations of polar coordinates used in the existing

implementation.

In this appendix we go over the details of the new imple-

mentation, which is publicly available as part of the mumott

software package (Nielsen et al., 2023a).

A1. Definition of the D matrices

For a function f ðq̂Þ 2 S2 ! R where S2 ¼ fx; y; z 2 R3 :

x2 þ y2 þ z2 ¼ 1g and a rotation R 2 SO(3), we define the

rotated function as R� f ðq̂Þ ¼ f ðRTq̂Þ.

One of the useful features of spherical harmonics is that the

function space spanned by the spherical harmonics of a given

order ‘ is closed with respect to rotation. In other words, the

rotated function of any spherical harmonic with order ‘ will be

equal to a linear combination of spherical harmonics only with

order ‘. That is to say some set of matrix elements, D‘
m;m0 , exist

such that

R� Y‘
mðq̂Þ ¼

X‘

m0¼� ‘

D‘
m;m0Y

‘
m0 ðq̂Þ , R� Y‘ðq̂Þ ¼ D‘Y‘; ð14Þ

where on the right-hand side we treat m as matrix and vector

indices for the matrix D‘ ¼ ½D‘
m;m0 � and vector Y‘ ¼ ½Y‘

m�,

respectively. This also means that the coefficients of a rotated

function can be calculated from the coefficients of the original

function as a matrix product:

c0‘m ¼
X‘

m¼� ‘

D‘
m;m0c‘m0 , c0‘ ¼ D‘c‘; ð15Þ

where c‘m are the coefficients of a function f ðq̂Þ and c0‘m are

the coefficients of the rotated function.
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Figure 7
(a) Calculated inverse pole figure in the fiber direction. The inverse pole
figure is fitted to the average coefficients of the three reconstructions
made using the ZH method. (b) Inverse pole figure from an EBSD
measurement. (c) Inverse pole figure map from same sample showcasing
small grains sized 3 mm and below. (d) Legend explaining the meaning of
the colors in (c). (e) Image quality map showcasing the presence of
noticeable deformation within the grains.

https://doi.org/10.5281/zenodo.10889439
https://mumott.org
https://mumott.org


The matrices defined this way are called Wigner D matrices.

There is one (2‘ + 1) � (2‘ + 1) matrix for each order ‘, and

the matrix elements are continuous functions of the rotation.

The Wigner matrices of combined rotations are the matrix

products of the matrices of individual rotations:

D‘ðR1R2Þ ¼ D‘ðR1ÞD
‘ðR2Þ; ð16Þ

which means the D matrices for a given order ‘ constitute a

representation of the rotation group with a one-to-one

mapping and all the same algebraic rules that are known for

the 3-by-3 rotation matrices. One of these rules is that any

rotation may be described through its Euler angles from a set

of particularly simple rotations (the ‘primary’ rotations about

the axes of the original Cartesian coordinate system x, y, z):

R ¼ Rzð�ÞRyð�ÞRzð�Þ; ð17Þ

where (�, �, �) constitute a set of zyz Euler angles. The

representation property of the D matrices therefore means

that the corresponding D matrix can be calculated by a similar

matrix product, if the matrices of these primary rotations are

known.

The elements of the D matrices are real and differentiable

functions of the rotation, D‘
m;m0 ðRÞ 2 SOð3Þ ! R, and there-

fore also continuous differentiable functions of the Euler

angles. These functions constitute a complete orthornormal

set of functions on SO(3) and are commonly called ‘general-

ized spherical harmonics’ (Schaeben & van den Boogaart,

2003).

A2. Calculation of D matrices

If we want to calculate the D matrices using equation (17),

we only need to calculate the D matrices corresponding to

rotations about the z and y axes. Rotations about the z axis

(which we chose as the special axis in our definition of the

polar coordinates) are especially easy to work with, as they

only change the azimuthal coordinate and not the polar

coordinate. This has the effect that rotations only mix sphe-

rical harmonics with equal |m|. That is to say, the Wigner D

matrices become sparse and the only non-zero elements are

D‘
m;mðRzð�ÞÞ ¼ cos m�

for m ¼ � ‘; � ‘þ 1; . . . ; ‘ � 1; ‘ ð18Þ

and

D‘
� m;mðRzð�ÞÞ ¼ sin m� for m 6¼ 0; ð19Þ

e.g.

D2ðRzð�ÞÞ ¼

cos 2� 0 0 0 � sin 2�

0 cos � 0 � sin � 0

0 0 1 0 0

0 sin � 0 cos� 0

sin 2� 0 0 0 cos 2�

2

6
6
6
6
4

3

7
7
7
7
5
: ð20Þ

A rotation about the y axis can be achieved by first rotating

the y axis into the z axis, performing a rotation about the new z

axis and then performing the inverse of the first rotation. We

can write this as

Ryð�Þ ¼ R� 1
x ð�=2ÞRzð�ÞRxð�=2Þ: ð21Þ

Utilizing this approach, we only need to compute the D

matrices corresponding to the rotation Rx(�/2). While this is

not easy for an arbitrarily large ‘, there is an extensive

literature on the subject and software packages that can be

utilized for this purpose. The matrices d‘�=2 ¼ D‘ðRxð�=2ÞÞ can

then be precomputed and stored.

Now we can write the D matrix for an arbitrary orientation

as

D‘ðRÞ ¼ D‘ðRzð�ÞÞ
T
ðd‘�=2Þ

T
D‘ðRzð�ÞÞd

‘
�=2

� �
D‘ðRzð�ÞÞ; ð22Þ

where ( . . . )T refers to the matrix transpose.

A3. Derivatives

The most obvious derivatives to consider when dealing with

spherical harmonics are perhaps the derivatives with respect

to the polar coordinates, but for our purpose it is sufficient and

maybe more convenient to consider derivatives of a rotated

function with respect to the Euler angles of the rotation. For

example, consider the quantity

dR�f ðrÞ

d�
¼ lim

��!0

Rð�;�þ��;�Þ�f ðrÞ � Rð�;�;�Þ�f ðrÞ

��
;

ð23Þ

which is itself a function on the unit sphere.

Using the D matrices, the coefficients of this derivative can

be efficiently calculated by only defining the extra matrix:

�D‘(Rz(�)), with the elements

�D‘
m;m0 ðRzð�ÞÞ ¼

dD‘
m;m0 ðRzð�ÞÞ

d�
; ð24Þ

which can easily be evaluated by differentiating the sine and

cosine functions of the z-axis D matrices. Using an identity

for the differentiation of matrix products, we can now calcu-

late the coefficients of the differentiated function using the

equation

d~c‘m

d�
¼
P

m0
D‘ðRzð�ÞÞ d‘�=2

� �T
�D‘ðRzð�ÞÞd

‘
�=2D‘ðRzð�ÞÞ

h i

m;m0
c‘m0

ð25Þ

where ~c‘m0 are the coefficients of the original function and c‘m
are the coefficients of the rotated function. This expression is

the same as the normal expression for the rotation (21), just

with one of the matrices replaced with the differentiated

matrix. Similar expressions for the � and � derivatives can be

derived in the same way.

A4. Reformulating ZH with D matrices

We describe the scattering by a sample with local axial

symmetry with a voxel model, where every voxel contains a

number of spherical harmonics coefficients ~c‘l0 with m = 0, and

a pair of Euler angles, �0 and �0, describing the local fiber

axis. The original function has axial symmetry about the z axis,

and the rotated function has symmetry about the axis with

polar coordinates (�, �) = (�0, �0). The forward model of the

ZH TT algorithms is described in a few steps:
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First the m = 0 coefficients are expanded into a basis of all

the coefficients:

c ¼ Ec‘0; ð26Þ

where E is a binary matrix (i.e. a matrix containing only 0s and

1s) with only a single 1 in each line. The transpose of E is a

projection matrix which projects the full spherical harmonic

coefficient space onto the sub-space with rotational symmetry

about the z axis.

Then the coefficients are rotated from the local coordinate

system of the voxel, where the function is rotationally

symmetric, into the sample coordinate system:

~c ¼ DðRð0;�0;�0ÞÞc‘; ð27Þ

where D(R) is a block diagonal matrix containing the D

matrices for every odd order ‘. The voxel maps of these

coefficients are integrated along the direction of the X-ray

beam, here represented by a linear operator P, with a conju-

gate represented by PT. These projected coefficients are finally

mapped to the detector segments by multiplying with a matrix

containing values of the spherical harmonic functions eval-

uated at the point of the corresponding detector segments. We

collect these function values in the matrix Y:

IZH ¼ PY~c: ð28Þ

We use the least squares error

ERR ¼ jjIZH � Ijj2: ð29Þ

Now that the full model is stated in linear algebra terms, we

can differentiate it using equations from matrix calculus:

d ERR

dc‘0
¼ � 2ETDðRð0;�0;�0ÞÞ

T
PTYTðIZH � IÞ ð30Þ

and

d ERR

d�0

¼ � 2
X

m;‘

PTYTðIZH � IÞ
� �

m;‘

dc‘m

d�
Ec‘0

� �

m;‘

: ð31Þ

Again, the �0 derivatives follow in a similar fashion.

A5. Finding the direction of rotational symmetry

We introduce the heuristic measure for the degree of

symmetry, d, around the z axis:

d ¼

R �
0

R 2�

0
f ð�; �Þ d�

h i2

d�
R �

0

R 2�

0
f ð�; �Þ

2
d� d�

; ð32Þ

which is equal to the power of the rotationally averaged

function divided by the power of the original function. If the

coefficients of the function f are given, this quantity is equal to

d ¼

P1
‘¼0 c2

‘0
P1

‘¼0

P‘

m¼� ‘ c2
‘m

: ð33Þ

The degree of symmetry with respect to rotation around any

other direction, with polar coordinates (�, �), can be calcu-

lated using Wigner’s D matrices as

dð�; �Þ ¼

P1
‘¼0

P‘

m¼� ‘ D‘ðRð0; �; �ÞÞ0;mc‘m

h i2

P1
‘¼0

P‘

m¼� ‘ c2
‘m

; ð34Þ

which is equal to the power of the zonal harmonic modes

along the given direction divided by the total power. The

direction of orientation can now be found by optimizing this

quantity with respect to the two direction angles:

ð��; ��Þ ¼ argmax
�;�

dð�; �Þ: ð35Þ

The optimization is performed by first evaluating d(�, �) on

a mesh grid sized 2‘max � 2‘max and choosing the point with

the highest value. This point is then used as a starting guess for

a gradient optimization method to refine the optimal direc-

tion. The initial grid search was found to be necessary to avoid

falling into a local minimum.
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& Grünewald, T. (2021). Acta Biomater. 134, 804–817.

Ludwig, W., Schmidt, S., Lauridsen, E. M. & Poulsen, H. F. (2008). J.
Appl. Cryst. 41, 302–309.

Malecki, A., Potdevin, G., Biernath, T., Eggl, E., Willer, K., Lasser, T.,
Maisenbacher, J., Gibmeier, J., Wanner, A. & Pfeiffer, F. (2014).
Europhys. Lett. 105, 38002.
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