
research papers

J. Appl. Cryst. (2024). 57, 1085–1097 https://doi.org/10.1107/S1600576724004709 1085

ISSN 1600-5767

Received 5 February 2024

Accepted 20 May 2024
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X-ray ptychography is a lensless imaging technique that visualizes the nano-

structure of a thick specimen which cannot be observed with an electron

microscope. It reconstructs a complex-valued refractive index of the specimen

from observed diffraction patterns. This reconstruction problem is called phase

retrieval (PR). For further improvement in the imaging capability, including

expansion of the depth of field, various PR algorithms have been proposed.

Since a high-quality PR method is built upon a base PR algorithm such as ePIE,

developing a well performing base PR algorithm is important. This paper

proposes an improved iterative algorithm named CRISP. It exploits subgradient

projection which allows adaptive step size and can be expected to avoid yielding

a poor image. The proposed algorithm was compared with ePIE, which is a

simple and fast-convergence algorithm, and its modified algorithm, rPIE. The

experiments confirmed that the proposed method improved the reconstruction

performance for both simulation and real data.

1. Introduction

Ptychography is a lensless imaging technique for microscopic

observation, based on the diffraction of a coherent wave,

including X-rays (Maiden & Rodenburg, 2009; Harada et al.,

2013; Valzania et al., 2018). With the increasing demand for

nondestructive high-spatial-resolution imaging of various

specimens, hard X-ray ptychography has gained much atten-

tion. The short wavelength and high penetrability of hard

X-rays enable nondestructive observation of internal struc-

tures of thick specimens at high spatial resolution, even

though they are too thick for electron microscopy. Hard X-ray

ptychography has been applied to specimens in various fields

including biology (Polo et al., 2020; Suzuki et al., 2016; Shah-

moradian et al., 2017; Jones et al., 2014), chemistry (Pattam-

mattel et al., 2020; Shi et al., 2019; Hirose et al., 2019, 2020) and

materials science (Cuesta et al., 2019; Grote et al., 2022;

Uematsu et al., 2021; Gao et al., 2020).

Fig. 1 schematically illustrates the ptychographic measure-

ment in transmission geometry. In the measurement, Fraun-

hofer diffraction patterns from the specimen (termed ‘object’)

are collected with a localized X-ray beam (the ‘probe’). This

measurement is repeated by shifting the illumination area on

the object with some overlap. The diffraction data set is then

subjected to a computational image reconstruction process

utilizing an iterative optimization algorithm, yielding the

spatial distribution of the complex-valued refractive index (i.e.

phase and absorption contrast image) of the object and also
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the complex wavefield of the probe. This image reconstruction

process is often called phase retrieval (PR) because the

process recovers phase information of the diffraction wave-

field lost in the diffraction data.

Various algorithms have been proposed to solve the PR

problem in ptychography: the conjugate gradient method

(Guizar-Sicairos & Fienup, 2008), the difference map (Elser,

2003; Thibault et al., 2009), relaxed averaged alternating

reflections (Luke, 2004; Marchesini et al., 2016), the maximum

likelihood method (Thibault & Guizar-Sicairos, 2012), the

proximal splitting algorithm (Hesse et al., 2015; Qian et al.,

2014) and the extended ptychographical iterative engine

(ePIE) (Rodenburg & Faulkner, 2004; Maiden & Rodenburg,

2009). In the iterative update of the object and probe func-

tions, most algorithms use the entire set of diffraction patterns

simultaneously, while ePIE sequentially reflects the diffraction

patterns point by point. The former batch updating approach

is advantageous for parallel computing, but it requires more

memory compared with the latter sequential updating

approach and is prone to a poor local solution (Pham et al.,

2019). It is also empirically known that the batch updating

approach can actually require more iterations for convergence

(Yatabe & Takayama, 2022). On the other hand, the ePIE

algorithm is simple and computationally efficient and thus

widely used.

Because of the favorable properties of the ePIE algorithm,

it is also used for advanced PR. Advanced PR tackles, for

example, a practical restriction that the higher the spatial

resolution, the thinner the sample must be. This trade-off

relationship between sample thickness (depth of field) and

spatial resolution is known as the diffraction limit in the

theory of general transmission microscopy (Tsai et al., 2016;

Born & Wolf, 1980). To overcome this trade-off relationship, a

multi-slice PR approach has been proposed as an extension of

ePIE (Tsai et al., 2016; Maiden et al., 2012). Thanks to the

strong real-space constraint in ptychography, multi-slice PR

achieved extension of the depth of field. However, the

increase in information to be retrieved in the multi-slice

approach makes the PR problem more difficult, and recon-

structed-object slices often suffer from cross-talk artifacts

caused by poor depth resolution (Du et al., 2021). To reduce

the artifacts, it is important to develop a base PR algorithm

that performs better than ePIE.

To improve the convergence performance of ePIE, some

variants have been proposed (Maiden & Rodenburg, 2009;

Maiden et al., 2017; Pham et al., 2019). The regularized PIE

(rPIE) (Maiden et al., 2017) involves a modification of the

updating formula of ePIE with a regularization weighting that

uses the square of the absolute value of the object and probe.

The momentum PIE (mPIE) improves the convergence speed

with a momentum motivated by a stochastic or incremental

gradient approach (Maiden et al., 2017). Although rPIE and

mPIE may work better with well tuned hyperparameters, it is

difficult to tune them because their heuristic modifications

involve an increase in the number of hyperparameters.

In this paper, we propose a stable PIE-like algorithm named

CRISP to realize a reliable method that can automatically

tune its hyperparameter. CRISP exploits an optimization

technique that is called subgradient projection. Thanks to the

favorable property of subgradient projection, CRISP can

avoid getting stuck in poor local solutions. Moreover, an

auxiliary method included in the proposed method can auto-

matically tune the parameter for subgradient projection. With

the combination of these techniques, CRISP achieves high

performance despite its simplicity. Our experiments showed

that CRISP improved reliability especially at high spatial

frequencies and reduced PR artifacts while achieving

convergence speeds comparable to those of ePIE and rPIE.

2. Preliminaries

2.1. Notation

The two-dimensional Fourier transform operator and the

two-dimensional inverse Fourier transform operator are

denoted by F and F � 1, respectively. Matrices are indicated

by bold capital letters, i.e. A, and the elements of the ith row

and jth column are denoted by A[i, j]. Vectors are indicated by

bold lower-case letters, i.e. v, and the ith element is denoted by

v[i]. Element-wise multiplication is denoted by � , the

element-wise absolute value is denoted by | · | and the largest

absolute value among all elements of input is denoted by

| · |max. kAkF is the Frobenius norm, which is defined as

kAkF ¼ ð
PI

i¼1

PJ
j¼1 jA½i; j�j2Þ1=2. sign(·) denotes the signum

function that is generalized for complex numbers as sign(z) =

z/|z|. The complex conjugate of A is denoted by A�. For any

differential function g, rg denotes the gradient of g.

2.2. Ptychographical iterative engine framework

We first explain the ptychographic measurement model

shown in Fig. 2. In ptychographic measurement, a set of

diffraction patterns is observed by shifting the measurement

position. The nth observed diffraction intensity pattern In

corresponds to the squared magnitude of the two-dimensional

Fourier transform of the exit wavefield. The wavefield is

modeled by multiplication of the illumination probe function

P and the object transmission function O. Thus, the nth

observed diffraction intensity pattern In can be written as

In ¼ F ½Pn �On�
�
�

�
�2 þ Nn; ð1Þ
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Figure 1
Schematic illustration of a ptychographic measurement.



where n = 1, . . . , N is a sample index, N is the number of

samples, Pn ¼ Trn
ðPÞ, On ¼ Srn

ðOÞ, and Nn is an observation’s

noise. The functions Srn
and Trn

model the position shift with

the coordinate vector of the nth scan position rn. The position

shift is decomposed into integer and subpixel shifting. The

function Srn
performs an integer shift, and Trn

performs a

subpixel shift.

Ptychography aims to estimate the object transmission and

illumination probe functions from the observed diffraction

patterns. In the PIE-based algorithms, the PR problem can be

formulated as the following optimization problem that mini-

mizes the squared error in the exit wavefield in the real space:

minimize Pn;On

1
2
kPn �On � W0nk

2
F: ð2Þ

W0n is the revised exit wavefield constrained to the reciprocal

space (Maiden et al., 2017):

W0n ¼ F � 1 Inð Þ
1=2
� signðF WnÞ

� �
; ð3Þ

where Wn is the exit wavefield of the nth scan position, i.e.

Wn ¼ Pn �On. This manipulation replaces the propagated

modulus with the square root of the observed diffraction

patterns and propagates back to the real space. It is difficult to

find a reasonable solution to the problem in equation (2)

because it involves the product of unknown variables Pn and

On and has local minima. To make the problem simpler, the

PIE-based algorithms deal with the following two sub-

problems that optimize each variable On and Pn while fixing

the other ones:

minimize On

1
2
kPn �On � W0nk

2
F; ð4Þ

minimize Pn

1
2 kPn �On � W0nk

2
F: ð5Þ

ePIE (Maiden & Rodenburg, 2009) updates the object (o) and

probe (p) as follows:

O0n ¼ On � �o

P�n

jPnj
2
max

��Wn; ð6Þ

P0n ¼ Pn � �p

O�n

jOnj
2
max

��Wn; ð7Þ

where �o, �p 2 (0, 1] are step size parameters, and �Wn ¼

Wn � W0n. The update formulas can be obtained by applying

the gradient descent method to each subproblem in equations

(4) and (5) (details will be given in the following section).

rPIE (Maiden et al., 2017) considers the slightly different

subproblems in equations (4) and (5) and includes a regular-

ization term with the subproblems such as

minimize O0n
1
2
kPn �O0n � W0nk

2
F þ

1
2
kUn � ðO

0
n � OnÞk

2
F;

ð8Þ

minimize P0n
1
2
kP0n �On � W0nk

2
F þ

1
2
kWn � ðP

0
n � PnÞk

2
F; ð9Þ

where Un and Wn are weight matrices with nonnegative

elements. The 1
2
kUn � ðO

0
n � OnÞk

2
F and 1

2
kWn � ðP

0
n � PnÞk

2
F

terms penalize significant changes to objects and probes

between updates. By setting the weights as Un ¼ jPnj
2
max and

Wn ¼ jOnj
2
max and solving the subproblems in equations (8)

and (9), the updating formulas of rPIE can be derived as

follows:

O0n ¼ On �
P�n

ð1 � �oÞjPnj
2 þ �ojPnj

2
max

��Wn; ð10Þ

P0n ¼ Pn �
O�n

ð1 � �pÞjOnj
2 þ �pjOnj

2
max

��Wn; ð11Þ

where �o, �p > 0 are balancing parameters, and division is

computed element-wise.

The entire procedure of ePIE is summarized in the

following pseudocode, where k = 1, . . . , K is the iteration

index, K is the number of iterations, l is a vector of the

randomized sample indices, and randPermðNÞ is a function

that randomly permutes an integer vector up to N. The

functionbSrn
assigns the object sampled by the function Srn

to

the scan position rn, and the function bTrn
restores the probe

shifted by the function Trn
. The updating formulas, equations

(6) and (7), are on lines 11 and 12. When lines 11 and 12 are

changed to equations (10) and (11), the procedure becomes

the rPIE algorithm.
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Figure 2
Schematic illustration of the observation model.



2.3. ePIE as a gradient descent method

As mentioned in the previous section, the updating

formulas of ePIE are based on the gradient descent method. It

is helpful for characterizing the proposed method to explain

the derivation of ePIE’s updating formulas. In particular, the

property of its step size will give a suggestion for the proposed

method.

Let x be an optimization variable and g a differentiable cost

function to be minimized. The gradient descent method finds a

local minimum of g by iterating the following update:

x0 ¼ x � �rgðxÞ; ð12Þ

where x and x0 are, respectively, variables before and after the

update, and � is a step size parameter. By applying equation

(12) to equation (4), the following updating formula of On is

obtained:

O0n ¼ On � �oP�n ��Wn: ð13Þ

In the same manner, from equation (5) and (12) the updating

formula of Pn is obtained:

P0n ¼ Pn � �pO�n ��Wn: ð14Þ

If we set the step size parameters �o ¼ �o=jPnj
2
max for equation

(13) and �p ¼ �p=jOnj
2
max for equation (14), these updating

formulas become equal to equations (6) and (7).

The step size setting of ePIE is derived from the property

that g(x0) < g(x) if � 2 (0, 1/L], where L is the Lipshitz constant

of rg(x) (Bauschke & Combettes, 2017). This property guar-

antees the cost always decreases through updates. The

Lipshitz constants of the gradient of the cost functions in

equations (4) and (5) are given by jPnj
2
max and jOnj

2
max,

respectively (Qian et al., 2014). Thus, the updating formulas in

equations (13) and (14) always decrease the cost under the

conditions �o 2 ð0; 1=jPnj
2
max� and �p 2 ð0; 1=jOnj

2
max�. In the

update of ePIE, setting �o, �p 2 (0, 1] satisfies the condition. In

practice, it has been shown that ePIE stably converges when

�o, �p is chosen from the range (0, 1] (Maiden et al., 2017).

3. Proposed method

We propose a PR algorithm, CRISP (clipped reliable iterative

subgradient projection). We exploit a subgradient projection

that is considered to have a favorable property (Section 3.3).

The proposed method consists of a main updating formula and

two auxiliary methods that improve the stability (Section 3.4)

and simplicity (Section 3.5) of the proposed method. The

explanations of these auxiliary methods follow an intuitive

explanation of the subgradient-projection-based algorithm.

3.1. Subgradient projection

We first introduce subgradient projection, which plays a

central role in the proposed method. Subgradient projection is

known in the field of optimization and is usually used for

optimization with non-differentiable cost functions whose

subgradient can be calculated. We introduce the simplified

version of subgradient projection that is for differentiable

functions because we only consider a differentiable function in

this paper.

Let g be a differentiable function. The subgradient projec-

tion for a differentiable function is given by

x0 ¼ x � �
ðgðxÞ � �Þþ

krgðxÞk2
2

rgðxÞ; ð15Þ

where (·)+ = max{0, ·}, � 2 (0, 2) is a step size parameter and �

is a real-valued hyperparameter (Bauschke & Combettes,

2017).

The iterative subgradient projection algorithm (Bauschke

& Combettes, 2017), which uses subgradient projection

iteratively, can be regarded as a type of gradient descent

method. Compared with the updating formula in equation

(12), the step size � is replaced by a scalar-valued function

�ðgðxÞ � �Þþ=krgðxÞk2
2. From now on, we treat this scalar

variable as the step size of the updating formula of iterative

subgradient projection.

3.2. The basic form of CRISP

We next derive a basic updating formula based on

subgradient projection. As introduced in Section 2.2, the

cost function of the PR problem in ptychography is
1
2
kPn �On � W0nk

2
F ¼

1
2
k�Wnk

2. Applying the cost function

for each variable On and Pn to the formula of the subgradient

projection in equation (15), the following formulas can be

obtained:

O0n ¼ On � �o

ð12 k�Wnk
2
F � �Þþ

kP�n ��Wnk
2
F

P�n ��Wn; ð16Þ

P0n ¼ Pn � �p

ð1
2
k�Wnk

2
F � �Þþ

kO�n ��Wnk
2
F

O�n ��Wn; ð17Þ

where �o, �p are step size parameters with the same role as the

step size parameters of ePIE (�o, �p), and � is a hyperpara-

meter. We use the same � for all n.

An important property of the proposed updating formula is

that the step size changes adaptively. The main part of the step

size ð1
2
k�Wnk

2
F � �Þþ=kP

�
n ��Wnk

2
F changes depending on

the cost 1
2
k�Wnk

2
F.

This property can bring a better solution (details are given

in the following section).

3.3. Intuitive explanation of CRISP

Let us clarify the properties of the updating formulas in

equations (16) and (17). We first show that the iterative update

using subgradient projection can bring about benefits that are

likely to reach a better solution. In Fig. 3, an iterative update

by the gradient descent method (corresponding to ePIE) and

the subgradient projection (corresponding to CRISP) are

demonstrated. As shown in Figs. 3(a) and 3(b), the gradient

descent can get stuck in the local minimum, while the

subgradient projection arrives at the global minimum even

when it starts from a poor initial value. This is because the

gradient descent method stops when rg(x) = 0 even if it is a

local minimum whose cost is large. On the other hand, the
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subgradient projection keeps updating whenever g(x) > �.

When the sequence of the subgradient projection approaches

the local minimum, krg(x)k becomes close to 0, while g(x) is

still larger than �. This makes the step size large because the

step size includes the reciprocal of the gradient rg(x) as in

equation (15). This property can avoid poor local minima.

Next, we visualize the importance of the setting of the

hyperparameter �. Fig. 4 shows the sequences generated by

iterative updates under different conditions of � and E. As

shown in Figs. 4(a) and 4(b), when the minimum value of g is 0

and � = 0, the sequence of the subgradient projection

converges to the minimum in the same way as the gradient

method. As shown in Fig. 4(c), when the minimum value of g is

E > 0 and � = 0, the sequence diverges because the step size

gðxÞ=krgðxÞk2
2 becomes extremely large near the minimum

point where the gradient rg(x) is close to 0. To avoid this, we

need to set an appropriate constant � > 0. As shown in Fig.

4(d), when we set � greater than E, the points stop at the area

where g(x) � � � E.

The entire CRISP procedure is summarized in the following

pseudocode, where Do and Dp denote the matrices containing

the updating directions,R is a set of scan position vectors, and

I is a set of observed diffraction patterns. The vector e stores

the cost in each sample for calculation in line 16.

The following subsections are about auxiliary methods for

CRISP.

3.4. Adaptive step size clipping

As the first auxiliary method, we propose a stabilizing

method for updating objects and probes. Although the

subgradient projection can avoid local minima, its step size

may become extremely large around points where the gradient

is close to 0, as shown in Fig. 3(b). This may cause a perfor-

mance degradation. For stability, limiting the step size can be

conceivable. This technique is commonly used in the field of

machine learning and has shown good results (Lin et al., 2018).

Fig. 3(c) illustrates updating with subgradient projection with

step size clipping. The left sequence in Fig. 3(c) goes to the

global minimum while avoiding a large step as in Fig. 3(b). As

can be seen, step size clipping may work well for optimization

with subgradient projection.

To make it easier to explain step size clipping, we first

introduce a step size function G that replaces part of the step

size in equations (16) and (17) as

GðQ;�W; �Þ ¼
ð1

2
k�Wk2

F � �Þþ

kQ� ��Wk2
F

; ð18Þ

where Q is either Pn or On. By using this step size function, the

updating formulas of the proposed method in equations (16)

and (17) are rewritten as

O0n ¼ On � �oGðPn;�W; �ÞP�n ��Wn; ð19Þ

P0n ¼ Pn � �pGðOn;�W; �ÞO�n ��Wn: ð20Þ

We next introduce a modified step size function that sets an

upper limit for the update amount:

GclipðQ;�W; �; �Þ ¼ min GðQ;�W; �Þ;
�

jQj2max

� �

; ð21Þ

where � is a clipping parameter that controls the clipping

strength. Smaller � clips the step size more strongly. The

clipping parameters for object and probe are denoted by �o,

�p, respectively. We use two types of parameter setting in our

experiment: (�o, �p) = (1, 1) and (|Pn|max, |On|max). The former
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Figure 3
Contour plot of a cost function and trajectories of iterative updates. (a) An example using the gradient descent method. Examples using the iterative
subgradient projection (b) without step size clipping and (c) with it. The points are colored according to the number of updates, and the arrows indicate
the transition of each update. The global minimum is shown with a red star.



limits the maximum step size to that of ePIE with (�o, �p) =

(�o, �p). This is because GclipðQ;�W; �; �Þ becomes 1=jQnj
2
max,

and equation (19) becomes equation (6) when (�o, �p) =

(�o, �p). The latter adopts an adaptive limit that depends on

the scale of the object and probe. Our experiment will show

that the former setting often works well in practice and that

the latter setting may further improve performance. The pro-

posed clipping is used in lines 5 and 6 in the following algo-

rithm, which corresponds to the function CRISPdirection.

3.5. Automatic tuning of n

As the second auxiliary method for CRISP, we propose to

improve its practicality by relaxing the difficulty of hyper-

parameter tuning. The subgradient-projection-based update

finally stops near a good solution when � is appropriately set

for the minimum value of the objective function, as shown in

Fig. 4(d). However, the update stops in an undesired solution

when � is set to too large a value because the value of the step

size function G becomes 0 early before the cost 1
2
k�Wnk

2
F

becomes sufficiently small. To avoid this, we automatically

adjust � with each iteration to keep updating until the cost

becomes small.

Since the subgradient-projection-based update depends on

the error variable 1
2
k�Wnk

2
F, we adjust �[k+1] according to the

average of the cost ð1=NÞ
PN

n¼1
1
2
k�Wnk

2
F at the kth iteration.

We adopt the adjusting step as follows:

�½kþ1� ¼
c

N

XN

n¼1

1

2
k�Wnk

2
F; ð22Þ

where c > 0 is a tuning parameter for adjusting how much to

reduce from the average cost. Since we expect the average cost

to decrease with updates, we set c 2 (0, 1) so that �[k+1]

becomes smaller than the average cost in the kth iteration.

For this procedure, the error should be saved for each

iteration as in line 4 in CRISPdirection. In each iteration,

� is updated to �0 after all objects and probes have been

updated as line in 16 in the CRISP algorithm. � is initialized

before the iteration begins as in line 1 in the CRISP algorithm.

As shown in the pseudocode initializeXi, this initi-

alization computes the error for each sample using the initial

values of the object and probe and then uses all of them to

calculate the first �.

4. Experiment

To investigate the properties of the proposed algorithm,

numerical experiments were performed. For a numerical

simulation, we used a TiO2-particle-filled polymethyl metha-

crylate film used in a previous paper (Yatabe & Takayama,

research papers

1090 Natsuki Akaishi et al. � Phase-retrieval algorithm for X-ray ptychography J. Appl. Cryst. (2024). 57, 1085–1097

Figure 4
Comparison of iterative updates between the gradient descent method and the subgradient projection for several cases. (a) An example using the
gradient descent method. (b)–(d) Examples using the iterative subgradient projection. (b) shows the case where the minimum value of the objective
function g is 0, and (c) and (d) show the case where the minimum value is E. In (c) and (d), the constants used in the subgradient projection are 0 and �,
respectively. The three-dimensional schematic diagram in the upper panels is projected to a two-dimensional plane and is shown in the lower panels. The
color of the points represents the number of iterations, and the arrows indicate the transition of each update. The plane at g(x) = 0 is shown in light gray
and the plane at g(x) = � in light blue. In the bottom diagram of (d), the area where g(x) � � � E is shown in blue.



2022). These data were configured to imitate the hard-X-ray

ptychographic measurement system at an imaging station of

the Hyogo ID beamline BL24XU at SPring-8 (Takayama et al.,

2020, 2021). This measurement system is shown in Fig. 5. An

undulator radiation X-ray beam monochromatized to a

photon energy of 8 keV was cropped with the slit used as a

virtual light source, and then the X-ray beam diffracted from

the slit illuminated the beam-defining aperture (BDA). The

BDA, a Fresnel zone plate (FZP) lens and the specimen were

placed according to the thin lens formula; thus the demagni-

fied image of the BDA was formed on the specimen for the

local illumination. The first-order diffraction was selected with

an order-sorting aperture (OSA). The diameter of the BDA

was 20 mm, the outermost zone width and diameter of the FZP

were 86 nm and 416 mm, respectively, and the demagnification

ratio was set to 5, yielding an illumination beam with a

diameter of 4 mm. It was assumed that the diffraction intensity

patterns of the specimen were measured with an EIGER X

1M detector (Dectris Ltd) placed 4.5 m downstream of the

specimen.

We used two simulation data sets whose diffraction inten-

sities at the origin (I0) were varied: 1010 (high dose) and 108

(low dose). We added Poisson noise to the observed intensity

patterns, which is a common assumption for actual measure-

ments. For an experiment with real data, we used the

measurement of a Siemens star chart and ink toner particles.

The proposed algorithm CRISP was compared with ePIE.

For a quantitative evaluation, we used the following evalua-

tion indices. To check the convergence of the algorithm, the RF

factor (Miao et al., 2006)

RF ¼

P
n

P
i;j j�n½i; j�j � In½i; j�ð Þ

1=2
�
�

�
�

P
n

P
i;j In½i; j�ð Þ

1=2
ð23Þ

was calculated.

To evaluate the image resolution of the objects, we calcu-

lated the Fourier ring correlation (FRC) (Rosenthal &

Henderson, 2003),

FRCðSÞ ¼

P
i;j2IðSÞ����½i; j�b�����½i; j�

ð
P

i;j2IðSÞ j����½i; j�j2
P

i;j2IðSÞ j
b����½i; j�j2Þ

1=2
; ð24Þ

where ����;b���� are the Fourier transforms of the estimated and

true object transmission functions, respectively, and IðSÞ is the

set of frequency indices corresponding to the ring whose

radius is equal to the given spatial frequency S. The closer the

value is to 1, the higher the accuracy at that spatial frequency.

4.1. Result 1: performance per iteration

We compared the convergence speed among ePIE, rPIE

and CRISP. We used the high-dose simulation data. To

compare under similar conditions, the step size parameters of

the proposed method were set to the same as those of ePIE,

i.e. �o = �o = 1.0, �p = �p = 0.4. The balancing parameters of

rPIE were set to those providing the best results according to

the preliminary tuning: �o = 0.1, �p = 1.0. The clipping para-

meters and the tuning parameter of CRISP were (�o, �p) =

(1, 1) and c = 0.5, respectively. The number of iterations was

300. The ratios of the total computational time of CRISP to

those of ePIE and rPIE were 1.09 and 1.02, respectively.

The results are shown in Fig. 6. In Fig. 6(j), the RF factors of

ePIE and rPIE are lower than those of CRISP until the 100th

iteration, while CRISP reached a lower RF factor than ePIE

and rPIE at the 300th iteration. In Fig. 6(i), the FRC of CRISP

at the final iteration is higher at the high spatial frequency

than that of ePIE and rPIE. The reconstructed-object images

shown in Figs. 6(a) to 6(c) reflect the result in Fig. 6(i). At the

final (300th) iteration, the amplitude image reconstructed by

CRISP was closer to the ground truth [Fig. 6(g)] than that of

ePIE. Note that ePIE enhanced the white contour of the

particles as shown in the upper-right box of Fig. 6(a), which is

known as an artifact of defocusing. Moreover, the amplitude

image reconstructed by CRISP shown in the upper-right box

of Fig. 6(c) was less noisy than that reconstructed by rPIE

shown in the upper-right box of Fig. 6(b). These results

confirm that CRISP converges as fast as other methods and

can reconstruct higher-quality images.

For each algorithm, the correlation coefficients between the

reconstructed probes [Figs. 6(d)–6( f)] and the ground truth

[Fig. 6(h)] in the reciprocal space were almost 1, where these

were calculated over the spatial frequency range cropped with

the aperture of the illumination zone plate.

Compared with ePIE and rPIE, CRISP had a slower drop in

RF during the first 100 iterations. This behavior can be inter-

preted as follows. At the beginning of iterations, the error

�Wn tends to be large, resulting in a large gradient. This

makes the step size of ePIE and rPIE large at the beginning of

iterations, as shown in Fig. 3(a). On the other hand, the step

size of CRISP has less variation for the entire set of iterations,

as shown in Fig. 3(c), because equation (15) normalizes its step

size by the norm of the gradient in the denominator. These

characteristics of CRISP might be the reason for its stable

performance and better reconstruction quality.

4.2. Result 2: effect of the step size clipping

The following two experiments confirm the validity of the

auxiliary methods of CRISP. This experiment verified the

effect of the step size clipping. We used both high-dose and

low-dose data. To show the difference in behavior due to

clipping parameters, we compared the two types of setting:
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Figure 5
Schematic illustration of the experimental setup.
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Figure 6
Comparison of performance per iteration among ePIE, rPIE and CRISP. (a)–(c) show the amplitude (upper) and phase (bottom) of object images
reconstructed by (a) ePIE, (b) rPIE and (c) CRISP, respectively. (d)–( f ) show the probe reconstructed by ePIE, rPIE and CRISP, respectively. (g) and
(h) show the ground-truth object image and probe, respectively. (i) and (j) are the calculated FRC and RF factor, respectively. The FRC figures
correspond to 100, 200 and 300 iterations from left to right, respectively. The line colors correspond to the colors of (a)–(c).The horizontal black line in (j)
represents the RF factor between the diffraction patterns and their noise-free version. Bars in (c), (d) and (g) indicate 4 mm, and those in the inset are
0.5 mm.



(�o, �p) = (1, 1) (ePIE-like clipping) and (�o, �p) = (|Pn|max,

|On|max) (scale-adaptive clipping). The parameter settings for

this experiment with the high-dose data were the same as in

Section 4.1. For the experiment with the low-dose data, the

step size parameters were set as �o = �o = 0.4, �p = �p = 0.2, the

balancing parameter for rPIE was �o = 0.1, �p = 5.0, the tuning
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Figure 7
Comparison of reconstruction performance among (a) ePIE, (b) rPIE and CRISP with (c) no clipping, (d) ePIE-like clipping and (e) scale-adaptive
clipping. The left and right columns are high dose and low dose, respectively. The line colors in ( f ) and (g) correspond to the colors of (a)–(e). For ease of
viewing, only the purple line is dashed. The reconstructed amplitude and phase images of the object are shown in the left and middle of each column,
respectively. The reconstructed probes are shown in the right of each column. ( f ) and (g) are the FRC for high dose and low dose, respectively. The
typical diffraction intensities are shown at the top. Bars in (e) indicate 4 mm, and that in the inset 0.5 mm.



parameter for CRISP was c = 0.01, and the number of itera-

tions was 400 (compared with the experiment with high-dose

data, more iterations were required for sufficient conver-

gence).

The results are shown in Fig. 7. In both high-dose and low-

dose data, the FRC results with step size clipping were better

than those without clipping, and even ePIE and rPIE as shown

in Figs. 7( f) and 7(g). The reconstructed-object images,

especially those reconstructed from low-dose data, exhibited

higher improvement of FRC than those reconstructed without

clipping. The third from the right images of Figs. 7(d) and 7(e)

were reconstructed with step size clipping. These were less

noisy than the image reconstructed without step size clipping

[the third from the right of Fig. 7(c)]. These results confirm

that step size clipping is essential for CRISP to perform stable

high-precision reconstruction. Similarly to Section 4.1, the

correlation coefficients in the reciprocal space between the

reconstructed probes and the ground truth were 1 for all

results.

The behavior of CRISP depended slightly on the clipping

parameter as shown in Figs. 7( f) and 7(g). The ePIE-like

clipping worked best with the high-dose data, and the scale-

adaptive clipping worked slightly better than the ePIE-like

clipping with the low-dose data. Although this suggests that

which clipping parameter to set may depend on the condition

of the data, we found experimentally that ePIE-like clipping

generally stabilizes performance. Therefore, CRISP can avoid

a detailed setting of the clipping parameter, and the only

additional parameter that needs to be set in CRISP is the

tuning parameter c for automatic tuning.

An advantage of CRISP over rPIE is noise robustness. In

Figs. 7( f) and 7(g), rPIE performed well for high-dose data,

while FRC was poor for low-dose data. rPIE uses an element-

wise step size in equations (10) and (11) to improve the
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Figure 8
�-dependent performance of CRISP. The left and right columns are the result of high-dose and low-dose data, respectively. The top row is the RF factor,
the middle is the RF factor at the final iteration for each � and the bottom is FRC. For all subfigures, the colors correspond to values of fixed �, which go
from yellow to blue as the value increases from 0. The dashed black lines are ePIE, the dashed brown lines are rPIE, the red line and points are the
automatic-�-tuned CRISP, and the rest are the �-fixed CRISP. The black lines in the top row represent the RF factor between the diffraction patterns and
their noise-free version. The � values of the red points on the middle row were calculated using the final updated �[K] as (1/c)�[K] by considering the
scaling by tuning parameter c.



convergence speed, whereas ePIE and CRISP use a common

step size for all elements as in equations (6), (7), (19) and (20).

Using the common step size may improve the stability of

image reconstruction for low-dose data because it balances

updates among all elements.

4.3. Result 3: effect of automatic tuning

We next verified the effectiveness of the automatic tuning.

We compared the reconstruction performance of CRISP with

automatic tuning and with an arbitrarily set �. We used both

the high-dose and low-dose data. The parameter settings were

the same as in Section 4.2. In order to confirm the validity of �

obtained through automatic tuning, we tested it with several

constant � settings. The constant � was set from 0 to 0.75 in

increments of 0.05 for the experiment with the high-dose data

and from 0 to 0.11 in increments of 0.01 for the experiment

with the low-dose data.

The bottom row of Fig. 8 shows that CRISP with the

automatic tuning had the highest FRC at high spatial

frequency compared with CRISP with fixed � and ePIE for

both simulation data sets, while CRISP with better constant �

also showed higher FRC than ePIE. These results indicate that

the automatic tuning allows us to achieve high performance.
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Figure 9
Results for real data. The left and right columns are the Siemens star chart and ink toner, respectively. Typical diffraction intensity patterns are shown at
the top. The amplitude images of the object, phase images of the object and probe reconstructed by (a) ePIE, (b) rPIE and (c) CRISP are shown in the
left, middle and right, respectively. (d) and (e) are histograms of �ij for (d) the Siemens star chart and (e) ink toner. The blue bins are ePIE, the yellow
bins are rPIE and the red bins are CRISP. For the Siemens star chart, the median of �ij was 1.4 � 10� 2 for ePIE, 1.5 � 10� 2 for rPIE and 1.1 � 10� 2

for CRISP; the variance of �ij was 5.8 � 10� 6 for ePIE, 8.5 � 10� 6 for rPIE and 8.0 � 10� 7 for CRISP; the RF factor at the final iteration was 0.422 for
ePIE, 0.499 for rPIE and 0.423 for CRISP. For ink toner, the median of �ij was 4.5 � 10� 3 for ePIE, 9.3 � 10� 3 for rPIE and 4.2 � 10� 3 for CRISP; the
variance of �ij was 4.2 � 10� 7 for ePIE, 2.6 � 10� 6 for rPIE and 1.7 � 10� 7 for CRISP; the RF factor at the final iteration was 0.237 for ePIE, 0.299 for
rPIE and 0.230 for CRISP. Bars in (c) indicate 4 mm, and that in the inset 1 mm.



We provide further arguments to support the validity of the

automatic tuning. The bottom and middle rows of Fig. 8 show

that FRC increased and the RF factor decreased as � increased

to a certain value such as � = 0.5 for the high-dose data and � =

0.06 for the low-dose data. On the other hand, FRC degen-

erated when � was set greater than its appropriate value. These

results suggest that there is a proper � range for better

performance. The � derived by automatic tuning was 0.47 for

the high-dose data and 0.074 for the low-dose data, as shown

in the middle rows of Fig. 8. These values were close to the

setting of � that exhibited the best performance among the

fixed �. Thus, it was shown that automatic tuning simplifies the

difficult parameter setting and can set an appropriate � to give

a good performance.

4.4. Result 4: performance with real data

For real data, we verified the robustness of the proposed

method to the order for the object update, which is known to

affect the reconstruction performance. We evaluated the

dispersion of reconstruction performance in ten trials in which

the update order was randomly changed. To evaluate the

dispersion, we used the �ij score which is calculated as follows

(Sekiguchi et al., 2017; Takayama & Nakasako, 2024):

�ij ¼
P

k;l

jOi½k; l� � Oj½k; l�j=
P

k;l

jOi½k; l� þOj½k; l�j; ð25Þ

where Oi and Oj are the pair of reconstructed-object images

from two different trials. The lower �ij is, the smaller the

difference between the two reconstructed images. Since ten

trials were conducted, there were 45 combinations of recon-

structed images (excluding itself). The step size parameters

were set to �o = �o = 0.8, �p = �p = 0.4 for the Siemens star

chart and �o = �o = 0.4, �p = �p = 0.2 for ink toner. The

balancing parameters of rPIE were set to �o = 0.4, �p = 2.0 for

the Siemens star chart and �o = 0.5, �p = 1.0 for ink toner. The

tuning parameter of CRISP was c = 0.01 for both, and the

clipping parameter was (�o, �p) = (1, 1) for both. The number

of iterations was 300 for the Siemens star chart and 100 for ink

toner.

The results are shown in Fig. 9. We visualized the histograms

of �ij for each data set as shown in Figs. 9(d) and 9(e). In both

figures, �ij scores of CRISP have smaller values and are

distributed in a narrower range than those of the other

methods. This was also shown by the fact that the median and

variance of �ij scores were lower in CRISP than in the other

methods.

These results confirm that CRISP is more robust to the

update order than the other methods.

5. Conclusion

In this paper, we proposed a PR algorithm named CRISP that

is based on subgradient projection. It performs error-adaptive

updates and can avoid poor update stagnation. The proposed

method stably reconstructed higher-quality images than ePIE

and rPIE, while the convergence speed and complexity in

parameter tuning were almost the same as those of ePIE. In

future work, we will extend the proposed method to handle

regularizations and different noise models, such as the Poisson

model, and apply it to multi-slice approaches.
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