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Unlike most of the periodic table, many rare-earth elements display consider-

able resonant scattering for thermal neutrons. Although this property is

accompanied by strong neutron absorption, modern high-intensity neutron

sources make diffraction experiments possible with these elements. Computa-

tion of scattering intensities is accomplished by fitting the variation in resonant

scattering lengths (b0, b0 and b00) to a semi-empirical Breit–Wigner formalism,

which can be evaluated over the range of neutron energies useful for diffraction,

typically E = 10–600 meV; � = 0.4–2.8 Å (with good extrapolation to longer

wavelengths).

1. Introduction

Most elements and common isotopes of the periodic table

exhibit neutron scattering lengths that are independent of

scattering vector and show no imaginary component. As they

cannot be accurately calculated from first principles, but must

be experimentally measured, numerous tables have been

published (Koester et al., 1981; Sears, 1986, 1992a,b; Rauch &

Waschkowski, 2003). The elements/isotopes that show little or

no significant neutron absorption can thus be used in the

typical sample sizes (>1 cm diameter) used for diffraction with

most neutron sources. However, modern high-intensity reac-

tors and, more especially, time-of-flight (TOF) sources have

allowed experiments on samples containing the few highly

absorbing elements and isotopes by reducing the sample

diameter to �1 mm (similar to X-ray sample sizes). In most

cases, the high absorption arises from low-energy (<1 eV)

neutron resonance features; these give rise to strong wave-

length-dependent real and imaginary scattering lengths, which

are not accurately provided in the usual scattering-length

tables. Lynn & Seeger (1990) fitted measured values of b0 + b0

and b00 (components of resonant neutron scattering lengths)

for the rare earths, and published tables of their values over

the neutron energy range of interest for diffraction (�10–

600 meV). To have them in a more convenient form, we fitted

these curves to a modified Breit–Wigner function based on

that of Ramaseshan (1966) and report the coefficients here.

Using the same formalism, we have also included some other

strongly resonant elements/isotopes.

2. Analysis and results

Given the resonance parameters (Table 1) from Mughabghab

(1984) and Mughabghab et al. (1984), one can compute the

real and imaginary components of the scattering length from

individual resonances [equations (1)–(3)]:

Re ¼
2g� m�0�

8�
104; ð1Þ
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Im ¼
2g� m� �0�

16�
104 ð2Þ

and

b ¼ b0 þ b0 þ b00 ¼ b0 þ Re

XN

i¼0

AiðE � EiÞ

ðE � EiÞ
2
þ ð� 2=4Þ

þ iIm

XN

i¼0

Ai

ðE � EiÞ
2
þ ð� 2=4Þ

; ð3Þ

with the first term in the sums having A0 = 1.0. The term � =

(A + 0n) /A0n (A is atomic mass and 0n is neutron mass) is the

reciprocal of the reduced mass for the nucleus–neutron

interaction, and �0 = (81.787/E0)1/2. The values of b0, b0, b00, Re

and Im are scaled to the conventional units for neutron scat-

tering lengths (10� 12 cm). Although the original Breit–Wigner

formulation gave a negative imaginary component, we follow

Peterson & Smith (1961) who carefully measured both X-ray

and neutron resonance diffraction from a hexagonal CdS

(zincite structure, space group P63mc) single crystal, which

made the imaginary component positive to match the chirality

implied from the X-ray resonant experiment. Equation (3)

was then used to fit the tabulated values of b0 + b0 and � b00

given by Lynn & Seeger (1990) to give the coefficients shown

in Table 2; in the fit A0 = B0 = 1.0. The residuals for these fits

were all less than 1%. Lynn & Seeger (1990) followed the

original Breit–Wigner negative imaginary sign convention; the

sign only matters for single-crystal diffraction experiments on

chiral materials where Friedel’s law does not hold (e.g. hexa-

gonal CdS, as noted above).

3. Discussion

Apart from Eu and Er, a single resonance term was sufficient

to form a good fit between equation (3) and the Lynn &

Seeger (1990) resonant scattering curves. For example, for Gd

(see Fig. 1), which has two resonant isotopes (155Gd and
157Gd), the best-fit values of Re and Im (72.72 and 3866,

respectively) are close to the sum of isotope-abundance-

weighted values of Re and Im from Table 1 (73.1 and 3708,

respectively). Both the resonance energies and widths are

similar for these isotopes (Table 1), and thus the values

obtained (Table 2) for naturally abundant Gd are their

weighted averages. The best-fit value of b0 for Gd has abun-

dance-weighted contributions from all seven naturally occur-

ring Gd isotopes. The Re, Im, E0 and � parameters (Table 2)

for the fits to the 155Gd and 157Gd curves are in good agree-

ment with the values in Table 1. Similar agreement is found for

the other elements/isotopes with a single resonance. This

includes Sm, even though there is a second resonance at

872 meV; it is sufficiently higher than the practical thermal

region (<500 meV; >0.4 Å) explored here so it has little or no

impact on the resonant scattering lengths.

For 167Er and Eu, each has two resonances within the

thermal neutron energy band; this requires the use of two

terms in equation (3). An example fit for 167Er is shown in Fig.

2 using the parameters b0, Re, Im, E0, � , E1 and A1 (Table 2);

the first six correspond well to the parameters given in Table 1.

A1 is simply the ratio of the Re values for the E1 resonance and

the E0 resonance; values from Table 1 give 0.6209 while the

best-fit value given in Table 2 is 0.6481 (11). We have

constrained the widths (� ) of the two resonances to be the

same; they are nearly identical for 167Er (Table 1), so this is a

suitable simplifying assumption. The same set of coefficients is
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Table 1
Low-energy neutron resonance parameters (E0, 2g� m and � ) for selected
isotopes taken from Mughabghab (1984) and Mughabghab et al. (1984),
and Re and Im computed according to equations (1) and (2).

Isotope
Natural
abundance (%) �

E0

(meV) 2g� m

�
(meV) Re Im

103Rh 100 1.0097 1257.0 0.77 156 78.92 6156.0
113Cd 12.22 1.0088 178.0 0.98 113 226.7 15070.0
149Sm 13.9 1.0067 97.3 0.600 60.5 220.4 6667.0
149Sm 13.9 1.0067 872 0.835 59.8 102.3 3060
151Eu 47.86 1.066 321 0.0833 74.5 16.84 627.4
151Eu 47.86 1.066 460 0.776 87.0 131.1 5702.0
151Eu 47.86 1.066 1055 0.2254 88.0 25.14 1106.0
155Gd 14.8 1.0065 26.8 0.130 108.0 90.96 4912.0
157Gd 15.7 1.0065 31.4 0.588 106.0 380.0 20143.0
167Er 22.9 1.0060 460 0.314 88.0 53.00 2332.0
167Er 22.9 1.0060 584 0.224 86.3 33.56 1448.0
168Yb 0.127 1.0060 597 4.4 64.0 652.0 20863.0
176Lu 2.9 1.0057 1413 0.0865 62.3 26.34 820.4
239Pu N/A 1.0042 296 0.108 102.0 22.66 1156.0
240Pu N/A 1.0041 1057 4.64 32.4 515.8 8356.0

Table 2
Low-energy neutron resonance coefficients for rare-earth elements and isotopes from fitting equation (3) to the resonance tables of Lynn & Seeger
(1990).

Element/isotope b0 Re Im E0 (meV) � (meV) A1 E1 (meV) A2 E2 (meV)

Sm 0.4099 (10) 30.10 (15) 949 (6) 97.75 (13) 65.14 (23) 0 0 0 0
149Sm 0.470 (8) 216.4 (11) 6830 (50) 97.74 (13) 65.15 (23) 0 0 0 0
Eu 0.7550 (23) 8.55 (4) 385.5 (33) 321.01 (21) 87.32 (11) 7.14 (5) 459.65 (7) 1.25 (7) � 31.0 (8)
151Eu 0.731 (4) 17.88 (9) 807 (6) 321.0 (20) 87.35 (11) 7.14 (4) 459.64 (6) 1.22 (6) � 30.5 (8)
Gd 0.6794 (11) 72.72 (31) 3866 (13) 30.40 (7) 105.60 (23) 0 0 0 0
155Gd 0.6820 (2) 88.74 (5) 4672.3 (19) 28.069 (8) 105.135 (27) 0 0 0 0
157Gd 0.6428 (18) 379.9 (5) 20178 (18) 31.0194 (20) 105.74 (6) 0 0 0 0
Er 0.8525 (2) 12.08 (3) 523.5 (13) 460.30 (7) 88.08 (9) 0.6522 (21) 584.42 (8) 0 0
167Er 0.5635 (5) 52.42 (6) 2281.9 (28) 460.16 (4) 87.93 (5) 0.6481 (11) 584.23 (4) 0 0

Yb 1.2273 (8) 0.56 (10) 36.2 (33) 596.97† 66.165† 0 0 0 0
168Yb 0.7046 (1) 635.179 (12) 21152.9 (7) 596.9696 (5) 66.1647 (12) 0 0 0 0
176Lu 0.8042 (13) 25.55 (16) 765 (8) 141.36 (18) 60.560 (31) 0 0 0 0

† Values for Yb taken from 168Yb, since the resonant isotope abundance is only 0.127%.



used for naturally abundant Er; its best-fit values (Table 2) are

similar to the isotopic values, except that Re and Im are scaled

by the natural abundance of 167Er (22.9%).

For Eu, the rise in b00 at low energy (Fig. 3) indicates the

existence of a possible ‘zero’ energy bound state for the
151Eu + 0n collision (Lynn, 1989), which is evident in the work

of Mughabghab (1984) as a small negative E0 term in the list of

resonances. For the present work, naturally abundant Eu and
151Eu require an additional third term in equation (3) for

this zero-bound state. The apparent best-fit value of E2 =

� 31 meV (Table 2) is close to that reported by Lynn (1989)

(� 34 meV) from a multilevel analysis. We have assumed that

all three terms have the same resonance width (� ). Thus the

best-fit value is close to that of the dominant E = 460 meV

resonance. The best-fit values of Re and Im are reasonable

compared with the corresponding ones for the E = 321 meV

resonance in Table 1. The corresponding values of Re and Im

for the dominant E = 460 meV resonance, as given by the best-

fit ReA1 and ImA1 (from Table 2), respectively, are quite close

to those in Table 1. There is good agreement between the best-

fit values for naturally abundant Eu and 151Eu apart from Re

and Im, which scale by the natural abundance (47.89%) of
151Eu. The higher-energy resonance (E = 1055 meV) in 151Eu

has no impact on the thermal neutron scattering lengths.

In all of these fits, the agreement between the simplified

model used here and the values given by Lynn & Seeger

(1990) is best for elements and isotopes with a single reso-

nance (cf. Fig. 1); the largest differences (|�b| < 0.01 �

10� 12 cm) are at the resonance. For two or more resonances,

the differences can be larger (|�b| < 0.05� 10� 12 cm; compare

Figs. 2 and 3) but are generally confined to be near the reso-

nances.

Given the effectiveness of the Breit–Wigner expression as

used in equation (3) for describing resonant neutron scattering

lengths, this function and its coefficients have been imple-

mented in the software tools GSAS (Larson & Von Dreele,

2004; Toby, 2001) and GSAS-II (Toby & Von Dreele, 2013).

Also included in this present study are coefficients (Table 1)

for the non-rare earths Rh, Cd and Pu, which also have low-

energy resonances and thus wavelength-dependent scattering

lengths.

4. Conclusions

Since the original implementation of this function and its

coefficients in GSAS (Larson & Von Dreele, 2004) and their
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Figure 2
Fits of equation (3) to Lynn & Seeger (1990) resonant neutron scattering
lengths for 167Er with respect to energy; the real part (b0 + b0 ) is in blue
and the imaginary part (b0 0) is in red. Crosses mark values from Lynn &
Seeger (1990) with the sign of b0 0 reversed; curves are from the fitted
coefficients. The respective residuals from the fits are shown as blue and
red lines close to zero.

Figure 1
Fits of equation (3) to Lynn & Seeger (1990) resonant neutron scattering
lengths for naturally abundant Gd with respect to energy; the real part
(b0 + b0) is in blue and the imaginary part (b0 0) is in red. Crosses mark
values from Lynn & Seeger (1990) with the sign of b0 0 reversed; curves are
from the fitted coefficients. The respective residuals from the fits are
shown as blue and red lines close to zero.

Figure 3
Fits of equation (3) to Lynn & Seeger (1990) resonant neutron scattering
lengths for naturally abundant Eu with respect to energy; the real part
(b0 + b0) is in blue and the imaginary part (b0 0) is in red. Crosses mark
values from Lynn & Seeger (1990) with the sign of b0 0 reversed; curves are
from the fitted coefficients. The respective residuals from the fits are
shown as blue and red lines close to zero.



subsequent inclusion in GSAS-II, there have been a few

studies showing their use. One is a study of ErD2 thin films by

Rodriguez et al. (2006), which used GSAS to analyse neutron

TOF diffraction data. Over the wavelength range of this

experiment (0.48 < � < 4.8 Å), the resonant scattering lengths

of Er were � 0.129 < b0 < � 0.040 and � 0.74 < b00 < � 0.172

(b0 = 0.850 � 10� 12 cm). Magnetic structures of Sm3Ag4Sn4

and Gd3Ag4Sn4 were determined by Ryan & Cranswick

(2008) using GSAS. Since their interest was in magnetic

structures, they chose a long wavelength (2.37 Å) and a thin

flat-plate geometry to reduce the impact of absorption; correct

resonant scattering lengths are essential for these magnetic

structure determinations. More recent is a study of ErHO by

Zapp et al. (2021) using GSAS-II with constant wavelength

(� = 1.155 Å) neutron powder data. They noted that the

coherent scattering length of Er at this wavelength was �4%

higher than the value given by Sears (1992a) for � = 1.798 Å.

From these examples, it is evident that neutron powder

diffraction experiments involving these highly absorbing and

strongly resonant elements and isotopes are feasible and the

function and coefficients described in this work are useful.

However, to be successful, one must have good knowledge of

the neutron wavelength. This presents no problem for

constant-wavelength experiments but can be problematic for

neutron TOF, where the wavelength must be inferred from the

experimental TOF via the de Broglie relation and the total

neutron flight path. Most TOF powder diffractometers

arrange the detectors into ‘banks’ that cover a particular solid

angle with a particular range in the scattering angle, 2�. The

neutron events from the individual detector pixels in a bank

are collected onto a common TOF scale, compensating for the

differences in 2� by applying shifts in TOF (a process known

as ‘electronic time focusing’) so that Bragg peaks observed in

all detector pixels all fall at the same TOF in the combined

dataset reported at a nominal 2� assigned to that bank. This

combines the scattering of neutrons that have different

wavelengths. The wider the bank in scattering angle, the

greater these TOF shifts will be and the greater the span in

wavelength. The wavelength spread for a given d spacing will

depend on the angular range, ��, encompassed by the

detector bank and its nominal scattering angle, 2�:

�� ¼ ��� cot � ð4Þ

or, by substituting Bragg’s law for �,

�� ¼ 2d�� cos �: ð5Þ

These effects are negligible at high scattering angles but can be

quite significant at low angles and with detector banks that

cover a wide scattering angle; therefore, the inferred values of

b0 and b00 using the results of this work may be significantly

compromised. Similarly, this process of combining observa-

tions made at differing 2� values also interferes with the

treatment of other wavelength- and angle-dependent

phenomena, such as absorption and extinction. It may be

better for TOF instruments with wide-angle detector banks to

do electronic angle focusing to a narrow wavelength band,

thus creating a pseudo-constant-wavelength powder diffrac-

tion pattern with scattering angle as the independent variable.
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