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Predicting crystal symmetry simply from chemical composition has remained

challenging. Several machine-learning approaches can be employed, but the

predictive value of popular crystallographic databases is relatively modest due

to the paucity of data and uneven distribution across the 230 space groups. In

this work, virtually all crystallographic information available to science has been

compiled and used to train and test multiple machine-learning models.

Composition-driven random-forest classification relying on a large set of

descriptors showed the best performance. The predictive models for crystal

system, Bravais lattice, point group and space group of inorganic compounds are

made publicly available as easy-to-use software downloadable from https://

gitlab.com/vishsoft/cosy.

1. Introduction

Exhaustive screening via experimentation is prohibitive and

identification of interesting compounds is increasingly reliant

on efficient computational methods, such as high-throughput

ab initio simulations (Hautier, 2019; Marzari et al., 2021; Sun et

al., 2021) and machine learning (ML) (Axelrod et al., 2022;

Kusaba et al., 2022; Venkatraman & Carvalho, 2022). Yet,

establishing crystallographic information from first principles

remains computationally expensive and requires an educated

guess on candidate structures (Oganov et al., 2019). On the

other hand, ML methods demand large amounts of data and,

although popular crystallographic databases have been used

before, the predictions do not meet the expectations for

practical use (Venkatraman & Carvalho, 2022).

Various strategies for structural representation have been

adopted within ML, ranging from graph-based methodologies

(Chen et al., 2019) to atomic pair distribution functions (PDFs)

(Liu et al., 2019). In the latter approach, a convolutional

neural network model achieved top-6 prediction accuracy of

’90% for 45 heavily populated space groups (Liu et al., 2019).

Others have relied directly on powder X-ray diffraction

patterns combined with data augmentation through simula-

tion (Park et al., 2017; Oviedo et al., 2019; Suzuki et al., 2020).

In this context, the ensemble decision-tree model proposed by

Suzuki et al. (2020) attained accuracies exceeding 90% for

crystal system classification and surpassed 80% top-5 accuracy

for space-group prediction. Structure-agnostic methodologies

attempting to learn patterns/associations purely from com-

pound composition have also been employed, often through

deep learning (Liang et al., 2020; Goodall & Lee, 2020; Kong et

al., 2021; Li et al., 2021a,b). Against this background, Venka-

traman & Carvalho (2022) have shown that, for sufficiently

large and well represented databases, random-forest (RF)

models using composition-based descriptors trained on the 50
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most frequent space groups consistently result in better

predictions than those obtained by deep learning, with 0.75–

0.34 versus 0.65–0.25 F1 scores, respectively, depending on the

particular crystallographic database employed to train the

models.

All previous ML studies have used very limited data sets or

focused on only around 50 heavily populated space groups due

to paucity of data and class skewness of the existing crystal-

lographic databases (Venkatraman & Carvalho, 2022; Liu et

al., 2019). In this work, we have augmented the data and

enhanced class coverage by compiling virtually all crystal-

lographic information available to science on inorganic

compounds. Composition-driven models based on demon-

strated ML approaches (Saal et al., 2020; Alsaui et al., 2022;

Venkatraman & Carvalho, 2022) have been trained on this

merged database (MERGED) and tested for predicting

crystal system, cell centering, Bravais lattice, point group and

space group. The models have been integrated into user-

friendly public domain software to facilitate fast prediction of

crystal symmetry.

2. Data sets

Data were compiled from three experimental databases,

namely, the Crystallography Open Database (COD) (Vaitkus

et al., 2021), Pearson’s Crystal Data (PEARSON) (ASM

International, 2021) and the Inorganic Crystal Structure

Database (ICSD) (Zagorac et al., 2019), and combined with

data from two databases containing structures calculated with

density functional theory (DFT), namely, Open Quantum

Materials Database (OQMD) (Saal et al., 2013) and Materials

Project (MP) (Jain et al., 2013).

For each of the primary data sets, the numbers in the

chemical formulas have been normalized to 1 and rounded to

the fourth decimal position. Compounds for which the

formulas could not be parsed, as well as duplicate entries, were

eliminated. Structures comprising only a single element or

noble gas(es) were also excluded.

Polymorphism is exhibited by fewer than 8% of the

compounds in experimental databases. Therefore, meaningful

predictions for these multi-labeled entries are hindered by

data scarcity, and thus compounds crystallizing in multiple

space groups have been excluded from the experimental data

sets. A comprehensive treatment of multi-labeled data in the

context of polymorphism can be found elsewhere (Venka-

traman & Carvalho, 2022).

Given the high proportion of poorly represented space

groups across all repositories, experimental and theoretical

databases were merged to augment the data. While stability

conditions for compounds in experimental repositories are

often not readily available, it can generally be assumed that

compounds adopting a single structure have been solved

under standard atmospheric conditions of temperature and

pressure, rendering them stable or prevalent at such condi-

tions. For theoretical databases, only entries with a stability

indicator of Ehull = 0 were retained. The decision to exclude
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Figure 1
(a) Distribution of unique compounds in the databases. (b) Pairwise intersections. (c1) Element-containing compounds in each database, where O|H|C|N
represents compounds containing at least one of these elements and /O/H/C/N represents compounds containing none of these elements. (c2) Magnified
detail of (c1).



compounds with multiple stability domains from experimental

repositories and those lying above the DFT convex hull from

theoretical repositories enhanced the proportion of

compounds stable at moderate temperatures. This approach

established a common foundation for both types of data.

Fig. 1(a) represents the number of unique compounds in

each database. After duplicate removal, the merged database

comprised 527 508 unique compounds spanning 87 elements

[see Table S1 in the supporting information (SI)]. Most data

originate from the experimental databases, with the theore-

tical repositories offering less than 12% of the total number of

compounds. Fig. 1(b) lists the pairwise intersections between

the different data sets. Significant overlap exists between the

experimental commercial data sets (PEARSON contains 63%

of ICSD and ICSD contains 39% of PEARSON) and between

these and OQMD (ICSD contains 65% of OQMD and

PEARSON contains 64% of OQMD).

Actinium and polonium are the least common of the 87

elements present in MERGED (respectively, 0.06 and 0.006%

of compounds). On the other hand, most compounds contain

light elements such as oxygen (64%), hydrogen (60%), carbon

(56%) and nitrogen (45%). Their distribution across the

different databases is shown in Figs. 1(c1) and 1(c2). Com-

pounds with at least one of the frequent light elements, i.e. O|

H|C|N, account for 95% of the entries in COD, 59% in

PEARSON, 55% in ICSD, 37% in MP and 32% in OQMD

which, after duplicate removal, yielded 80% in MERGED.

This proportion, significantly lower than that in COD, reflects

the contribution to diversity imparted by the smaller data-

bases with higher fractions of compounds without the frequent

light elements [/O/H/C/N, see Figs. 1(c1) and 1(c2)]. Indeed,

the large COD repository comprises a high fraction of mineral

structures, which typically contain light elements, whereas the

other primary databases seem more application oriented.
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Figure 2
(a) Compound distribution across the crystal systems in all databases. (b) Distribution of compounds across the Bravais lattices and lattice centering
types in MERGED. (c) Contribution of each primary database to each point-group class.



Fig. 2 breaks down the compound distribution across (a) the

seven crystal systems for all databases, (b) the 14 Bravais

lattices and five lattice centering types for MERGED, and (c)

the 32 point groups for the primary databases. The monoclinic

crystal system is the dominant class in MERGED, followed by

the orthorhombic and triclinic systems. The predominance of

these systems is essentially inherited from COD [see Fig. 2(a)].

The other primary databases show more balanced crystal

system distributions and therefore contribute to enhancing the

tetragonal, trigonal, hexagonal and cubic classes in MERGED

[see Fig. 2(a)]. The dominant centering type in MERGED is P

due to the high number of compounds with triclinic, mono-

clinic and orthorhombic primitive lattices, while the remaining

centering types show more balanced proportions [see Fig.

2(b)]. In the primary databases each crystal system exhibits a

clearly preponderant point group: 1 for triclinic, 2/m for

monoclinic, mmm for orthorhombic, 4=mmm for tetragonal,

32=m for trigonal, 6/mmm for hexagonal and m3m for cubic

[see Fig. 2(c); a similar overall point-group distribution was

obtained for MERGED (as shown in Fig. F1 of the SI), i.e.

duplicate removal did not change the preponderant point

groups in each crystal system].

The heatmap in Fig. 3 reveals important differences

between the primary databases in terms of space-group
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Figure 3
Distribution of unique compounds across the 230 space groups in the data sets.



representation. MERGED shows an overall improved

coverage, with nearly 75% of the space groups comprising

more than 100 compounds. Nonetheless, five space groups,

namely, 93, 101, 105, 153 and 207, still contain fewer than ten

compounds in the merged database. Meanwhile, space group

14 is the most populated, with over 100 000 compounds

originating mostly from COD, but with significant contribu-

tions from PEARSON and ICSD. Despite the variations, all

primary databases show highly frequent 2, 14, 15, 62, 225 and

227 space groups (see Fig. 3). The histogram in Fig. 4 further

illustrates the uneven class occupation in MERGED. The

striking preference of crystallization for specific space groups,

leading to extremely frequent versus rare space groups, is a

well known fact but a complex problem in crystallography

and, to the best of the authors’ knowledge, clear space-group

filling rules are yet to be defined for inorganic compounds [see

the review by Urusov & Nadezhina (2009)].

3. Modeling

In a previous study (Venkatraman & Carvalho, 2022), the

predictive performance of an ensemble decision-tree RF

approach was compared against a deep-learning framework

named Roost (Representation Learning from Stoichiometry),

reported by Goodall & Lee (2020) to outperform even

ElemNet, an alternative neural network method (Jha et al.,

2018). For each of the primary databases, the RF approach

showed an overall better performance in multi-class classifi-

cation (Venkatraman & Carvalho, 2022). Notably, Roost

yielded disappointing results except for OQMD, which is

severely skewed towards cubic structures, fostering cubic

predictions and thereby justifying the earlier reports [only

OQMD was employed by Goodall & Lee (2020) to test Roost

and by Jha et al. (2018) to test ElemNet]. Here, for the

augmented data set MERGED, we expand the palette of tools

and analyze the prediction performance of

(i) the ensemble decision-tree RF approach relying on a

large set of composition-based descriptors, which has been

effectively tested in previous studies (Venkatraman, 2021,

2023; Venkatraman & Carvalho, 2022),

against two other ML approaches:

(ii) DUET, which combines bagging with boosting decision-

tree methods via two classifiers (Vargaftik & Ben-Itzhak,

2022). A bagging model (RF-based) is trained on the entire

training data set and, subsequently, a boosting model

(XGBoost) is trained on a fraction of the data set for which

the bagging model underperformed. To rank how valuable a

given labeled sample is to training the boosting classifier, a

heuristic called ‘data instance predictability’ is used to define

the data set fraction for training the boosting model. The

predictability-driven fraction of the training data set was set to

the recommended value of 6% (Vargaftik & Ben-Itzhak,

2022).

(iii) TabNet, a deep-learning architecture for tabular data

(such as a matrix of descriptor vectors) that uses sequential

attention to select features from which to reason at each

decision step (Arik & Pfister, 2019).

For each of the three approaches employed, the compounds

were split into calibration (80%) and test (20%) sets. For each

compound, a descriptor vector based on maximum, minimum,

fraction-weighted mean and mode, as well as average devia-

tions of the elemental properties (such as electronegativity,

atomic weight, polarizability and number of filled/unfilled

valence orbitals), was calculated using software written in Java

(available from https://github.com/vvishwesh/MaterialDescriptors).

The descriptor set includes other variables derived from

element properties, such as specific heat and atomic packing

efficiency (Guo et al., 2011), as well as different electro-

negativity scales (Rahm et al., 2019), not included in the

original Magpie set (Ward et al., 2016). The descriptor vector

contained missing values due to the non-availability of

complete sets of elemental attributes. Thus, a cleaning step

was applied where descriptors with missing values were

removed. This was followed by a correlation-based variable

reduction step to exclude highly correlated variables (a pair-

wise squared correlation cutoff of 0.90 was used), which

resulted in data sets with 126–129 descriptors (the variation

stems from the random selection of the train/test sets). Finally,

a fivefold cross-validation was carried out to assess the

generalizability of the models (potential performance on
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Figure 4
Space-group distribution in MERGED. The labels over frequent classes indicate the space-group number followed by the corresponding percentage. The
number of compounds for each space group is listed in Table S2 in the SI.

https://github.com/vvishwesh/MaterialDescriptors


unseen data). This was repeated three times with independent

train/test splits to examine performance variability.

Space-group classes with less than 100 compounds have

been excluded from the evaluation. The number of classes was

hence seven for crystal systems, five for lattice centering, 14 for

Bravais lattices, 32 for point groups and 172 for space groups

(since in MERGED still 58 of the 230 space groups comprised

less than 100 compounds). The assessment of the models was

based on top-k accuracy, i.e. on the proportion of compounds

for which a correct answer is present in the top-k results. Here,

we have evaluated the accuracy for k = 1, 2, 3, 5.

4. Results and discussion

4.1. Cross-validation

Fig. 5 provides a visual summary of the models’ perfor-

mance in predicting lattice centering, crystal system, Bravais

lattice, point group and space group for the test sets. As

expected, the overall prediction quality decreases with the

number of classes (in brackets). The RF model achieved the

highest top-k accuracies, followed by DUET. The accuracies

for TabNet were considerably lower, except for crystal system

prediction where the values are marginally close to those of

the other approaches. The performance gaps are more

significant for space-group prediction, with top-5 accuracy of

only 0.43 � 0.03 for TabNet. In contrast, RF achieved top-3

accuracy of 0.81 � 0.001 and above in all symmetry classifi-

cations (see labels in Fig. 5; the standard deviations for each

response can be found in Table S4 in the SI). Baseline

performance (wherein no predictors were used and instead

the target values were averaged in some way) was assessed

using the basemodels package in R through dummy classifiers

on the following basis: (i) the most frequent class in the

training set was selected for all instances, and (ii) class labels

were assigned according to the class distribution in the

training set. The multi-class Cohen’s kappa (Artstein &

Poesio, 2008) values for these two dummy models across all

training data sets were found to be close to 0. In comparison,

the RF models exhibited values in the 0.5 to 0.6 range,

confirming their robustness and generalization capability.

In order to understand the reasons behind the relatively low

top-1 accuracy for space-group prediction, we examined the

class-wise performance of the RF model. The per-class sensi-

tivity and specificity variations (Fig. 6) show that the model

typically has high specificity but low sensitivity. This variability

in performance is seen, in particular, for the monoclinic

(space-group numbers 3–9), orthorhombic (18–23, 29, 52, 56,

60, 61) and tetragonal (76–82, 96, 118, 119) crystal systems.

The poor discrimination power can be attributed to the

paucity of data for some space groups (less than 200

compounds for space groups 3, 6 and 32, for instance). Class

imbalance is also an issue for accuracy which, as an evaluation

metric, is more meaningful when the class labels are uniformly

distributed.

Overall, both the TabNet and DUET models yielded poorer

predictive performance than the RF-based models. For the
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Figure 5
Top-k accuracies for the test set (averaged over three independent splits)
obtained by the different ML approaches. Values in brackets indicate the
number of classes associated with each response.



TabNet models in particular, studies by Kadra et al. (2021),

Shwartz-Ziv & Armon (2022) and Grinsztajn et al. (2022) have

shown that methods such as TabNet or other deep tabular data

modeling approaches do not outperform popular ensemble

approaches such as XGBoost and other tree-based models.

Importantly, Kadra et al. report that, for almost 40 different

types of tabular data sets, decision-tree models were seen to

perform strongly even against specialized neural architectures.

4.2. External validation

While the RF models exhibit high accuracy when predicting

the symmetry of test sets, the performance for completely

unseen data may provide more realistic estimates. To this end,

we compiled two independent data sets: (i) compounds

extracted from the American Mineralogist crystal structure

database (AMCSD) (Downs & Hall-Wallace, 2003) and (ii)

data on high-entropy alloys and compounds (HEAC) collated

from multiple sources (see Table S3 in the SI). The validation

data sets were prepared as described for the primary data-

bases.

AMCSD comprises 8253 compounds not present in

MERGED that could be employed for external validation.

However, since 85 of them belong to space groups outside the

172 classes on which the model was trained, only 8168

compounds (distributed across 160 space groups) have been

used for validation of space-group prediction. Nevertheless,

the entire disjoint set has been considered for the other

symmetry categories. The HEAC set is limited to 125 novel

compounds restricted to 15 space groups (albeit highly skewed

towards 194 and 225, see Table S3 in the SI), all of which are

included in the 172 classes used to train the space-group

model.

The top-k accuracies achieved in predicting the symmetry of

the external data sets are presented in Fig. 7. For lattice

centering, crystal system, Bravais lattice and point group, the

predictions are highly accurate. Yet, the top-1 and top-2

performances are typically better for AMCSD than for

HEAC. The space-group model yielded excellent metrics for

AMCSD, with top-k accuracies exceeding 0.9 for all outcomes,

while consistently lower performance was obtained for

HEAC. Rather than only per se or against each other, the

results achieved with external validations should also be

evaluated in terms of the performance attained with the test

sets (compare Fig. 7 with Fig. 5). In this scenario, several

aspects are worth consideration:

(i) In the HEAC data set, each entry consists of five or more

elements. The results achieved suggest that this characteristic

is sufficiently well represented in the models. Indeed,

MERGED comprises a relatively high fraction of compounds

with more than four elements (55%, see Fig. F2 in the SI).

(ii) The AMCSD and HEAC data sets are comprised of,

respectively, 10 and 83% of compounds without the prevalent

light elements, while MERGED contains 20% of the /O/H/C/

N compounds (see Fig. 1). The external validation shows that

the amount of training data allowed the models to capture the

crystallization behavior of both extremes, although this factor

is likely to have contributed to the poorer prediction of the

HEAC symmetries.

(iii) The external validation was carried out by training the

models on all the data in MERGED, while only 80% was

employed for internal validation. However, as demonstrated

by the small standard deviations obtained for the three test

splits (see Table S4 in the SI), the improvements with the

training set augmentation are expected to be residual.

(iv) The AMCSD data set comprises more cubic and

hexagonal and fewer triclinic compounds than MERGED,

while the other crystal systems show similar distributions (see

Fig. F5 in the SI). The HEAC data set consists essentially of

high-symmetry compounds (89% cubic and hexagonal, see

Table S3 in the SI). The better performance achieved with

external data than with the test sets, particularly for HEAC,

suggests that the models may better recognize the descriptor

patterns associated with high symmetry.

(v) The very high accuracies obtained for AMCSD, parti-

cularly for space-group classification, indicate that the

external compounds may be stoichiometrically similar to those

present in MERGED. The effects of data augmentation on

AMCSD prediction can clearly be appreciated by comparing

the confusion matrices (top-1 accuracy) when training the
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Figure 6
Heatmap showing the per-class sensitivity and specificity of the RF model for the 172 space-group test set.



models on the different primary databases and on MERGED

(see Fig. 8). The performance of models trained on COD and

MERGED is high and similar as expected for mineral data.

The stoichiometry similarity was further tested by changing

the decimal position when rounding the numbers in the

chemical formulas during the data preparation step. Rounding

to the third decimal position reduced the AMCSD compounds

not present in MERGED to 4374, while rounding to the

second decimal position reduced the number of dissimilar

compounds to 1320. The decimal position of rounding is

however not a trivial matter since, for critical elements,

precision is required to define the crystal structure adopted.

Clearly, much work remains to be done in crystallographic

data curation.

In summary, this work shows that high accuracy in

symmetry prediction can be achieved by a decision-tree-based

approach using solely elemental composition and the crystal-

lographic information already available to science. In fact, the

quality of the composition-driven prediction is notably higher

than that obtained with models based on X-ray diffraction

data (Suzuki et al., 2020; Aguiar et al., 2020; Corriero et al.,

2023) and atomic PDFs (Liu et al., 2019), and also higher than

for other descriptor-based ML approaches (Liang et al., 2020;

Zhao et al., 2020; Li et al., 2021a). In the context of poly-

morphism, the predicted symmetry is expected to correspond

to polymorph(s) (meta)stable at atmospheric conditions, since

these are the standard circumstances for the entries in crys-

tallographic databases.

4.3. Variable importance

The influence of each variable was evaluated from the

decrease in accuracy upon its removal from the descriptor set.
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Figure 7
Top-k accuracies of the RF-based models for two independent test sets:
(i) the AMCSD (Downs & Hall-Wallace, 2003) data set containing 8253
compounds and (ii) the HEAC data set comprising 125 compounds.

Figure 8
Confusion matrices for symmetry prediction using RF-based models
trained on all databases (top-1 accuracy). (a) Point groups of the
compounds in AMCSD. (b) Space groups of the compounds in AMCSD
(for visualization clarity the RF-based models were trained only on the
top 46 space groups of each database). Additional details can be found in
Figs. F3 and F4 in the SI.



Fig. 9 shows the variable importance for the five different

symmetry categories (for brevity only the top-ten variables are

shown). Several top-ranking variables are shared between the

symmetry categories, albeit with varying impacts on the

response as revealed by the different lengths of the bars, while

some are specific to the symmetry category. Important

descriptors include the fwtmean_dipole and the fwtmean-

dev_NpUnfValence that point to the weighted mean values of

the atomic dipole and unfilled p orbitals, respectively. The

atomicPackingMisfit is an indicator of the atomic packing

efficiency (Guo et al., 2011; Wang et al., 2015). Another vari-

able with a dominant influence on the model outcome is the

Mendeleev number (mendeleevnum), which can be seen as a

combination of important properties such as atomic size and

electronegativity into a single parameter (Allahyari &

Oganov, 2020). This information establishes the background

for a fundamental definition of the filling rules for space

groups in inorganic compounds.

5. Concluding remarks

The present work demonstrates that an ensemble decision-

tree-based approach can achieve high accuracy in the

symmetry prediction of new compounds using solely their

elemental composition and the crystallographic information

already available to science. Although class skewness is an

intrinsic property of crystallographic databases, we have

shown that reasonably accurate results can be achieved in

space-group prediction if the classes used to train the models

comprise more than 100 entries. Currently, the best ML

approaches are limited to about 172 space groups with suffi-

cient data out of the 230 classes. Therefore, specific efforts to

populate the sparse classes must be made to fulfill a sound

information goal and accelerate the discovery of materials

with unusual space groups. Another critical aspect is the

stoichiometric precision in chemical formulas, which requires

suitable curation so that unique compounds can be accurately

discriminated. On a final note, a meaningful contribution of

ML to crystallography in the context of polymorphism will

require the availability of significantly more data on poly-

morph structures, as well as suitably curated stability ranges in

terms of temperature and pressure.
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Figure 9
Variable importance in the RF models for lattice centering, crystal system, Bravais lattice, point group and space group. For brevity, only the ten most
influential variables are shown for each symmetry category. The length of the bars is a quantitative measure of the decrease in accuracy upon removal of
the variable from the set of descriptors. Gaps, i.e. absence, of a bar for a variable in a symmetry category indicate that the variable is not among the top-
ten contributors. More information on each descriptor can be found in the SI.

https://oqmd.org


Materials Project (https://materialsproject.org), COD (https://

www.crystallography.net/cod). The ICSD and Pearson data-

bases require commercial licenses. The prediction models

have been added to an easy-to-use graphical user interface for

public use. Instructions for software download and usage can

be viewed at https://gitlab.com/vishsoft/cozy.
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