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The influence of various combinations of residual stress, composition and grain

interaction gradients in polycrystalline materials with cubic symmetry on

energy-dispersive X-ray stress analysis is theoretically investigated. For the

evaluation of the simulated sin2 distributions, two different strategies are

compared with regard to their suitability for separating the individual gradients.

It is shown that the separation of depth gradients of the strain-free lattice

parameter a0(z) from residual stress gradients �(z) is only possible if the data

analysis is carried out in section planes parallel to the surface. The impact of a

surface layer z* that is characterized by a direction-dependent grain interaction

model in contrast to the volume of the material is quantified by comparing a

ferritic and an austenitic steel, which feature different elastic anisotropy. It is

shown to be of minor influence on the resulting residual stress depth profiles if

the data evaluation is restricted to reflections hkl with orientation factors � hkl

close to the model-independent orientation � *. Finally, a method is proposed

that allows the thickness of the anisotropic surface layer z* to be estimated on

the basis of an optimization procedure.

1. Introduction

X-ray stress analysis (XSA) on polycrystalline materials is

based on the experimental determination of lattice strains "hkl
’ 

for one or more reflections hkl in various directions (’,  )

with respect to the sample reference system, from which

individual components of the stress tensor are then deter-

mined using Hooke’s law (Noyan & Cohen, 1987; Hauk, 1997).

The required diffraction elastic constants (DECs) usually

differ from the mechanical constants (Young’s modulus, shear

modulus, compression modulus etc.), since the lattice strains

determined on the simultaneously diffracting crystallites refer

to different crystal directions, which feature an anisotropic

elastic behavior. The DECs can be either determined experi-

mentally or calculated from the elastic single-crystal constants

using models that describe the elastic interaction between the

grains on the basis of various assumptions.

For materials with random crystallographic and morpholo-

gical texture, the grain interaction models range between the

limiting assumptions of homogeneous strain (Voigt, 1910) and

homogeneous stress (Reuss, 1929) in all crystallites. Fre-

quently used approaches go back to Eshelby–Kröner [elastic

polarizability of the crystallites (Eshelby, 1957; Kröner, 1958)]

and Hill/Neerfeld [arithmetic mean of Reuss and Voigt

(Neerfeld, 1942; Hill, 1952)]. The DECs obtained with these

models and usually denoted by Shkl
1 and 1

2
Shkl

2 are character-

ized by their different behavior on different length scales. On

the microscopic (grain) scale they depend (except the Voigt

model) on the measured reflection hkl and, therefore, reflect

https://doi.org/10.1107/S1600576724003996
https://journals.iucr.org/j
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20stress%20analysis&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=energy-dispersive%20diffraction&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=energy-dispersive%20diffraction&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=grain%20interaction&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=composition%20gradients&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=stress%20gradients&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:genzel@helmholtz-berlin.de
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576724003996&domain=pdf&date_stamp=2024-06-07


the elastic single-crystal anisotropy. Within the volume probed

by the X-ray beam, the DECs do not depend on the measure-

ment direction (’,  ), thus reflecting the (quasi-)isotropic

material behavior on the macroscopic scale.

Materials with pronounced crystallographic texture are

elastically anisotropic on the macroscopic scale as well and

therefore require a different treatment in the context of XSA.

In order to link the measured lattice strains "hkl
’ in these cases

in a linear way with the components �ij of the macroscopic

stress tensor, the concept of stress factors Fij[hkl, ’,  , f(g)]

was introduced by Dölle & Hauk (1978, 1979b), where the

function f(g) takes into account the orientation distribution of

the crystallites in the material [see also Brakman (1987)]. In

various publications, the stress factor approach was used to

determine residual stresses (Marciszko-Wiackowska et al.,

2019) and their depth distribution (Klaus & Genzel, 2017;

Klaus et al., 2017; Marciszko et al., 2018) separately from the

strain-free lattice parameter by means of multi-reflection

methods performed in the angle-dispersive (AD) and energy-

dispersive (ED) diffraction mode, respectively.

Macroscopic anisotropy in polycrystalline materials can

occur even in the absence of crystallographic texture. This

phenomenon has been observed in (very) thin films experi-

mentally (Kumar et al., 2006; Welzel et al., 2002, 2009) and was

studied theoretically (van Leeuwen et al., 1999; Kamminga et

al., 2000; Leoni et al., 2001; Koch et al., 2004) [see also Welzel et

al. (2003) and Welzel & Mittemeijer (2003)] on the basis of the

direction-dependent grain interaction model proposed by

Vook and Witt (Vook & Witt, 1965; Witt & Vook, 1968). The

reason for this material behavior is considered to be that the

crystallites in thin layers are only surrounded by other crys-

tallites in two dimensions, which can result in an (extremely)

unconstrained expansion in the film normal direction (Reuss

case) and a (completely) constrained, i.e. identical, deforma-

tion of all crystallites in the film plane (Voigt case).

An extension of the concept of anisotropic grain interaction

to the near-surface region of bulk materials was introduced by

Baczmanski et al. (2003, 2008). The ‘self-consistent free-

surface model’ is based on the assumption that the crystallites

in the uppermost surface layer behave elastically, similar to the

model proposed by Vook & Witt (1965). Within this layer this

model supposes free expansion according to Reuss in the out-

of-plane direction and partially constrained in-plane defor-

mation according to Eshelby–Kröner. In the material volume

below a quasi-isotropic elastic behavior is assumed, which is

described by the Eshelby–Kröner model. Crystallographic

texture is taken into account by means of the orientation

distribution function f(g).

Experimental studies indicate that the Eshelby–Kröner

model does not always fully describe the grain interaction in

bulk materials. Thus, the example in Fig. 1 reveals that the

formalism proposed by Klaus & Genzel (2019) for deter-

mining the grain interaction model only leads to a smooth

profile of the discrete residual stress depth distribution

without large jumps between neighboring data points [here

between ���ð�
111
0 Þ and ���ð�

200
0 Þ in diagram (c)] if the

weighting factor r, which denotes the Reuss part in the model

[see equations (16a), (16b) and Fig. 18 in Appendix A], is

different from that valid for the Eshelby–Kröner model. The

analysis was performed using high-energy ED diffraction [the

details are given by Genzel et al. (2023)]. This finding suggests

that grain interaction in the topmost surface layer may be

different from that in the volume below, emphasizing the need

for further investigation of depth-dependent grain interaction.

Very recently a modification of the free-surface model was

suggested by Marciszko-Wiackowska et al. (2022). The

‘tunable free-surface model’ explicitly considers the depth

dependency of the grain interaction by introducing two weight

functions which describe the variation of grain interaction

with depth below the surface. In the same publication the new

approach was experimentally verified and applied to the non-

destructive and depth-resolved analysis of the residual stress

state in a mechanically polished austenitic stainless steel

specimen in order to simultaneously determine depth profiles

of the in-plane residual stresses and grain interaction.

The present paper ties in with the considerations of

Marciszko-Wiackowska et al. (2022) and raises further ques-

tions arising in this context (see Fig. 2). We assume a poly-

crystalline material with random crystallographic and

morphological (shape) texture, whose near-surface layer with

a thickness z� should behave as elastically anisotropic in the

sense of the model proposed by Vook & Witt (1965), while the

bulk should be characterized by a quasi-isotropic material

behavior according to the Eshelby–Kröner model. Note that

the term anisotropy in the present work refers exclusively to

the direction-dependent grain interaction, but not to a crys-

tallographic or morphological texture of the crystallites.

Furthermore, various combinations of the in-plane residual

stress state and the chemical composition (the latter repre-

sented, for example, by the carbon content in steel) in the
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Figure 1
Optimization procedure for refining the residual stress depth profile and
the grain interaction model in the near-surface region of an austenitic
stainless steel of type TP347H (ASTM A213), which is commercially
applied for superheaters in thermal power plants. Example taken from
Genzel et al. (2023). (a) Minimization of the total path length between the
individual stress values shown in diagram (b). The diagrams (c) [stress
depth profile determined for the Eshelby–Kröner (K) grain interaction
model] and (d) [depth profile obtained for the optimized (O) grain
interaction model] represent section enlargements of the area closest to
the surface. See text for further details.



form of �(z) and a0(z) gradients are considered in the surface

area covered by the X-ray beam.

For these complex material states, normalized ahkl
 –sin2  

distributions are generated on the basis of simulated ED-XSA

experiments, which are then evaluated by means of the

modified multi-wavelength plot method (Genzel et al., 2004)

and the constant-� method (Klaus & Genzel, 2017). However,

as the extension z� of the anisotropic surface layer is not known

in reality, the evaluation starts with the worst-case scenario, in

which the z� layer is not taken into account. The matrix of

investigated scenarios is completed by the application to dif-

ferent steel modifications (ferrite and austenite), which differ

significantly from each other with regard to elastic single-

crystal anisotropy A ¼ 2c44=ðc11 � c12Þ ¼ ½2 s11 � s12ð Þ�=s44 (cij

and sij are the single-crystal elastic constants and moduli,

respectively). Finally, it is shown that an optimization proce-

dure introduced by Klaus & Genzel (2019) to refine the DEC

model for the case of homogeneous grain interaction (see Fig.

1) is also applicable to the depth-dependent case, where it can

be used to estimate the depth z�. The strategy outlined here

allows us to answer the following questions:

(i) How strongly does the grain interaction influence

energy-dispersive X-ray stress analysis?

(ii) How can the influence of elastic single-crystal aniso-

tropy be minimized in the data evaluation?

(iii) To what extent does an inhomogeneous chemical

composition influence the results obtained with the evaluation

methods considered here?

2. Modeling direction- and depth-dependent grain

interaction

2.1. Near-surface and volume stress factors

The following considerations refer to a near-surface mate-

rial condition as shown in Fig. 2. The residual stress state,

which is assumed to be biaxial and rotationally symmetric (i.e.

�11 = �22� �k, �i3� 0 for i = 1, 2, 3), the chemical composition

represented by the strain-free lattice parameter a0 and the

grain interaction are supposed to be depth dependent. Using

the stress factor concept the fundamental equation of XSA

can be written as follows:

ahkl
 zð Þ ¼ Fk  ; �

hkl; z
� �

a0 zð Þ�k zð Þ þ a0 zð Þ: ð1Þ

(� hkl is the orientation factor, see Appendix A.) In the above

equation and all following equations ahkl
 ¼ dhkl

 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ l2
p

are the lattice spacings normalized to the edge length of the

cubic unit cell, a100. Owing to Beer’s exponential attenuation

law for X-rays passing through matter, the experimentally

accessible quantities g (here g can stand for the lattice

spacings, stress factors and stresses) are not the actual depth

profiles in real space, g(z), but their Laplace transforms, g(�).

The correlation between the g(z) and the g(�) profiles is given

by (Dölle & Hauk, 1979a)

g �ð Þ ¼
1

�

Z

g zð Þ exp �
z

�

� �
dz: ð2Þ

� is the ‘1/e information depth’ valid for thick (bulk) material,

where 1 � 1=e ¼ 63% of the total diffracted power P1

originates from (Klaus & Genzel, 2013).

Assuming a macroscopically anisotropic surface layer of

thickness z� (see Fig. 2), we define the depth-dependent stress

factors as follows:

F�k ð ; �
hkl; zÞ ¼

FD
k ð ; �

hklÞ for 0 � z � z�

FK
k ð ; �

hklÞ for z�< z

�

ð3Þ

with

FD
k ð ; �

hklÞ ¼ 1
2

SD
2 ð ; �

hklÞ sin2  þ 2SD
1 ð ; �

hklÞ; ð4aÞ

FK
k ð ; �

hklÞ ¼ 1
2

SK
2 ð�

hklÞ sin2  þ 2SK
1 ð�

hklÞ: ð4bÞ
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Figure 2
Schematic of the superposition of depth-dependent grain interaction, residual stress distribution and composition in a polycrystalline material. The
diffraction elastic constants 1

2
Shkl

2 in the diagrams refer to ferritic steel.



In the above equations D and K stand for the direction-

dependent (near-surface) and the Eshelby–Kröner (volume)

grain interaction model, respectively (see Appendices A

and B).

2.2. Depth and direction dependence of the stress factors

The Laplace transform of F�k ð ; �
hkl; zÞ is given by

F�k ð ; �
hkl; �Þ ¼ 1 � exp �

z�

�

� �� �

FD
k ð ; �

hklÞ

þ exp �
z�

�

� �

FK
k ð ; �

hklÞ: ð5Þ

The information depth � refers to XSA measurements in ED

diffraction mode, where each reflection hkl has to be assigned

to a different photon energy Ehkl. For measurements

performed in the symmetric � mode, one finds

� ¼ �hkl
 ¼

sin �

2� Ehklð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � sin2  

q

; ð6Þ

where � is the Bragg angle, which is fixed during the

measurement, and � denotes the energy-dependent linear

absorption coefficient. Fig. 3 shows the corresponding infor-

mation depths � for ferritic and austenitic steel according to

equation (6).

Equation (5) reveals that the stress factors depend on the

information depth � as well as on the measurement direction

 in the sample reference coordinate system and on the crystal

direction hkl. The depth dependence of the stress factor

F�k ð ; �
hkl; �Þ is demonstrated in Fig. 4. It can be seen that the

anisotropic near-surface grain interaction model has a signif-

icant influence on the stress factor depth profile if the orien-

tation factor � hkl of the considered reflection hkl is far away

from the model-independent orientation � � (here the 200

reflection, see also Appendix A). However, if � hkl ’ � � (here

the 220 reflection), the depth profile taking into account the

surface layer z� almost coincides with that obtained for the

isotropic volume grain interaction model. It is also noticeable

that the curves for both grain interaction models touch at a

depth of �0

ffiffiffiffiffiffiffi
1=3
p

, where �0 is the maximum information depth

achieved for  = 0.

The reason for the latter finding becomes clear if one

considers the directional dependence of the stress factors (see

Fig. 5). There, all stress factors intersect at the same point

f2
3
; 2

3
s11 þ 2s12ð Þg regardless of the orientation factor � hkl.

[This result is obtained by equating the stress factors F�k and

FK
k from equations (5) and (4b) and expressing the DECs

contained therein by the single-crystal moduli sij (see

Appendix A).] Since s11 + 2s12 = (3K)� 1 applies to cubic

materials (K is the identical compression modulus for cubic
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Figure 3
Information depth � for (a) ferritic and (b) austenitic steel which would be achieved in ED-XSA measurements performed under a diffraction angle 2� =
16�.

Figure 4
Depth dependence of the stress factor F�k ð ; �

hkl; �Þ for austenitic steel according to equation (5), calculated for two reflections (a) far from and (b)
close to the model-independent orientation � �. The solid line describes the case z� = 10 mm, while the dashed line was calculated for z� = 0 and thus
represents the Eshelby–Kröner (volume) case.



and isotropic materials), the ordinate of the intersection can

be regarded as the ‘plane compression modulus’ for the biaxial

rotationally symmetrical stress state assumed here. The F�k
versus sin2  curves further reveal a more linear behavior, the

closer the corresponding reflections hkl are to the model-

independent orientation � �. Finally, the stronger anisotropy of

austenite becomes apparent from the significantly larger

spread of the curves for sin2  ¼ 0, which corresponds to the

Reuss case of the direction-dependent surface layer model.

3. Data evaluation strategies

The simulation strategy is based on the following assumptions.

A depth-dependent grain interaction model as shown in Fig. 2,

consisting of a surface layer of thickness z� with a direction-

dependent DEC model and an isotropic DEC model in the

volume below, is assumed for the generation of the

‘measurement data’. For the data analysis, i.e. the evaluation

of the residual stress and composition depth profiles, the

‘wrong’ volume grain interaction model is used. In this way,

the deviations that arise when the (generally unknown) depth-

dependent grain interaction model is not taken into account

can be quantified and assessed. Finally, this approach allows us

to derive recommendations on how to minimize the influence

of the grain interaction model on the ED-XSA.

3.1. The modified multi-wavelength plot method

The modified multi-wavelength plot (MMWP) method is an

extension of the sin2  method (Macherauch & Müller, 1961)

to depth-resolved analyses. Originally developed for the AD

case of diffraction (Eigenmann et al., 1990), the approach was

transferred to the ED diffraction mode by Genzel et al. (2004)

[see also Ruppersberg (1997)] and later extended to include

the possibility of refining a depth-independent DEC model in

addition to the stress–depth profiles (Klaus & Genzel, 2019;

Genzel et al., 2023). The simulation strategy for applying the

MMWP approach is depicted in Fig. 6. The underlying

ahkl
 –sin2  distributions in Fig. 6(a) were generated for the

actual (i.e. assumed) depth-dependent DEC model by

ahkl
 

�
�
�
¼ F�k

�
 ; � hkl; �

�
a0 �ð Þ�k �ð Þ þ a0 �ð Þ ð7Þ

with F�k ð ; �
hkl; �Þ defined by equation (5).

The data analysis (i.e. the evaluation of the residual stress

and composition depth profiles) is carried out under the

assumption that the volume (Eshelby–Kröner) grain interac-

tion model is valid for the entire material:

ahkl
 ¼

1
2 SK

2

�
� hkl

�
a0 �k sin2  þ 2SK

1

�
� hkl

�
a0 �k þ a0; ð8Þ

with the DECs SK
1 ð�

hklÞ and 1
2

SK
2 ð�

hklÞ defined by equations

(16a) and (16b) (see Appendix A). Applying the sin2  

method according to equation (8) to the approximately linear

part of the individual ahkl
 –sin2  distributions up to

sin2  ’ 0:5 [Fig. 6(a)] provides discrete depth profiles of the

residual stress, �k [Fig. 6(b)], and the strain-free lattice para-

meter, a0 ¼ a �� [Fig. 6(c)], if the respective values are

assigned to the maximum information depth �hkl
0 achieved for

 = 0 (for the stresses) and to the information depth �hkl
 �� (for

the lattice parameter). Tthe latter corresponds to the strain-

free direction  ��;hkl of the biaxial stress state defined by

sin2  ��;hkl = � 2S1ð�
hklÞ= 1

2
S2ð�

hklÞ.

3.2. The constant-s method

The constant-� method is based on the stress factor concept

that was developed (Dölle & Hauk, 1978, 1979b) and applied

[see e.g. Baczmanski et al. (2003)] for XSA in highly textured

materials. It allows the separation of residual stress and

composition depth gradients in thin films (Klaus & Genzel,

2017; Klaus et al., 2017) and bulk materials (Marciszko-

Wiackowska et al., 2019). The principal procedure for data

evaluation is shown in Fig. 7. We consider the same data as in
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Figure 5
Direction dependence of the stress factor F�k ð ; �

hkl; �Þ for (a) ferritic and (b) austenitic steel according to equation (5), calculated for the case z� =
10 mm. � denotes the difference between the limiting cases 3� hhh = 1 and 3� h00 = 0. The framed indices hkl mark the crystal directions close to the
model-independent orientation � � (see Appendix A).
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Figure 6
Principle of the modified multi-wavelength method. The different pictograms in this and all following figures are intended to indicate that the actual
DEC models (i.e. directional in the surface layer, isotropic in volume) are used for data generation, while the volume model is assumed for data analysis
(i.e. stress evaluation). The simulated sin2 curves in (a) refer to the case of an austenitic steel and a diffraction angle 2� = 16�. (b) and (c) Depth profiles
obtained for the in-plane stress and the strain-free lattice parameter, respectively. For the surface layer a thickness z� = 10 mm was assumed. See text for
further details.

Figure 7
Data analysis by means of the constant-� method. The underlying sin2 data are the same as in Fig. 6(a). For reasons of clarity, only selected points hkl
are indexed in diagram (a). The notation hkl + . . . in diagrams (c) and (d) is intended to indicate that, in addition to the reflection hkl, all other
reflections with higher photon energy >Ehkl also contribute to the evaluation of the associated data point. See text for further details.



Fig. 6(a). The generation of data sets at constant depths �hkl
0

shall be explained using the example of the 400 reflection [cf.

Fig. 7(a)]. In order for all higher-energy reflections hkl (i.e.

Ehkl > E400) to originate from the same depth �400
0 , the

following condition must be met:

�400
0 ¼

sin �

2� E400ð Þ
¼ �hkl

 ¼
sin �

2� Ehklð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � sin2  hkl

q

: ð9Þ

This provides the  hkl values for which the (normalized) d

spacing ahkl originates from the predefined information depth

�400
0 :

 hkl ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
� Ehklð Þ

� E400ð Þ

� �2
s

: ð10Þ

In this way, a data set fFkð 
hkl; � hkl; �400

0 Þ; ahkl
 hkl g can be

generated, from which the in-plane residual stress �k and the

strain-free lattice parameter a0 for the depth �400
0 can be

determined using linear regression according to equation (7)

[cf. Fig. 7(b)]. In this evaluation, instead of the actual (depth-

dependent) stress factors F�k [cf. equation (5)], we use the

volume stress factors FK
k according to equation (4b) as argu-

ments for the fit function in order to quantify the influence of

the grain interaction model, and to calculate the differences

from the default stress and composition depth profiles,

�default
k ð�Þ and adefault

0 ð�Þ, respectively. For our example with the

400 reflection, the fit function therefore reads

ahkl
 

�
�400

0

�
¼ a0

�
�400

0

�
�k
�
�400

0

�

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
m

FK
k

�
 ; � hkl; �400

0

�

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
x

þ a0

�
�400

0

�

|fflfflfflffl{zfflfflfflffl}
n

:

ð11Þ

The value a0ð�
400
0 Þ can thus be determined directly from the

ordinate intercept n of the regression line and the value for the

stress �kð�
400
0 Þ can then also be determined from the slope m. If

this procedure is continued for all other evaluable section

depths �hkl
0 , the discrete depth profiles shown in diagrams (c)

and (d) of Fig. 7 are obtained.

4. Case studies

4.1. Objective and approach

In the following, the influence of near-surface grain inter-

action and material composition on the X-ray residual stress

analysis will be investigated. The aim of this study is in

particular to show how the influence of the generally unknown

depth-dependent grain interaction, which is difficult to

determine experimentally, on the results of the analyses can be

bypassed. For this purpose, the elastically anisotropic surface

layer z� (see Fig. 2) assumed in the generation of the sin2 

distributions is neglected in the evaluation using the methods

considered here. The broad matrix of parameters that could be

varied for this purpose (thickness z�, diffraction angle 2�,

information depth �, steepness and presence or absence of the

stress and composition depth gradients etc.) will be limited to a

few particularly important cases which are marked in Fig. 8 by
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Figure 8
Normalized ahkl

 –sin2  plots for different scenarios concerning the superposition of uniform and non-uniform depth distributions of stress, composition
and grain interaction in the near-surface region of a ferritic steel. The calculations are based on the depth profiles for the stress and the strain-free lattice
parameter shown in Fig. 9, and were carried out for a diffraction angle 2� = 16� (cf. Table 1) and z� = 20 mm for the cases (e)–(h).



thick borders. The sin2  distributions are based on the resi-

dual stress and lattice parameter depth profiles shown in Fig.

9. We emphasize that the specific form of the gradients for

stress and composition has no impact on the key messages of

the paper, which aim to show the impact of gradients in

general on the results of the two XSA methods. Other

combinations of depth profiles, for example, an increase in

compressive stresses at depth with a simultaneous decrease in

the strain-free lattice parameter, which is also an important

case from a practical point of view, will therefore not be

considered here.

From cases (a) to (d), in which a homogeneous grain

interaction model according to Eshelby–Kröner is assumed,

only case (c) is investigated in more detail, as it allows

important conclusions to be drawn about the applicability of

the two data evaluation methods considered in the present

paper. The ‘trivial’ cases (a) (analysis by the conventional

sin2 method) and (b) [evaluation possible using the stress

gradient methods that have been described in the literature;

see e.g. Genzel et al. (2013)], on the other hand, are not

considered in detail. The same applies to cases (d) and (g),

which can be discussed in connection with the related cases (h)

and (c), respectively.

All simulations were carried out for a diffraction angle 2� =

16�, since for this angle the highest-intensity reflections hkl for

both ferrite and austenite are in an energy range that can also

be realized with laboratory X-ray sources (see Table 1). The

relationship between the position of the diffraction lines Ehkl

on the energy scale, the diffraction angle 2� and the normal-

ized lattice spacings ahkl = dhkl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ l2
p

(for cubic crystal

symmetry) is given by Bragg’s equation for ED diffraction

(Giessen & Gordon, 1968; Buras et al., 1968):

Ehkl keVð Þ ¼
6:199

sin �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ l2
p

a100ðÅÞ
: ð12Þ

Double-indexed reflections (e.g. 330/411 for ferrite or 333/511

for austenite) (for reasons of clarity, only the first index is

given in all graphs in this paper) cannot be included in the

evaluation without further consideration, as the respective

lattice directions differ in their elastic behavior (i.e. their

orientation 3� hkl, see Table 1). Appendix C shows that these

diffraction lines split on the energy scale in addition to the

stress-induced absolute shift and thus get an asymmetric

shape.

4.2. Ferritic steel, stress gradient without and with super-

imposed composition gradient

The first example refers to the case shown in Fig. 8(c). Since

an influence of both stress and grain interaction gradient on

the ahkl
 –sin2  distributions has been excluded because �k =

constant and z� = 0, the curvatures in diagram (c) at large  

angles and increasing photon energies Ehkl are solely due to

the influence of the composition (i.e. a0) gradient. The results

of the data analysis by the methods described in Sections 3.1

and 3.2 are summarized in Fig. 10.

For this scenario, the MMWP method provides a discrete

depth profile for the in-plane residual stress that is system-

atically shifted compared with the specifications [Fig. 10(a)].

This finding can be explained by the fact that the MMWP

method is an integrating method that derives its information

content from exponentially weighted averaging. Therefore, it

is not possible to distinguish whether the slope and the

nonlinearities of the ahkl
 –sin2  distributions originate from a

stress or the a0 gradient. Note that the deviation of the stresses

from the default scales directly with the absolute stress level.
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Table 1
Diffraction line position Ehkl, maximum information depth sin2 and the
triple orientation factor 3� hkl for ferritic (�) and austenitic (�) steel for
2� = 16�.

The bold values of 3� hkl refer to reflections close to the model-independent
orientations 3� �, which are 0.79 and 0.84 for ferritic and austenitic steel,
respectively (cf. Fig. 18).

hkl�

Ehkl
�

(MPa)
�hkl

0;�

(mm) 3� hkl
� hkl�

Ehkl
�

(MPa)
�hkl

0;�

(mm) 3� hkl
�

110 22.0 4.5 0.75 111 21.4 4.2 1.00
200 31.1 12.0 0.00 200 24.7 6.3 0.00

211 38.1 21.5 0.75 220 35.0 16.9 0.75
220 43.9 32.3 0.75 311 41.0 26.3 0.47
310 49.1 43.9 0.27 222 42.9 30.1 1.00
222 53.8 56.1 1.00 400 49.5 44.7 0.00
321 58.1 68.9 0.75 331 53.9 56.5 0.82
400 62.1 81.9 0.00 420 55.3 60.5 0.48

330/411 65.9 94.7 0.75/0.31 422 60.6 76.5 0.75
420 69.5 107.6 0.48 333/511 64.3 88.8 1.00/0.21
332 72.9 120.7 0.95 440 70.0 109.5 0.75
422 76.1 134.0 0.75 531 73.2 121.9 0.63
431/510 79.2 146.3 0.75/0.11 442/600 74.2 125.9 0.89/0.00

Figure 9
Residual stress (a) and lattice parameter depth profiles (b), on which the
sin2 distributions in Fig. 8 are based. For the depth profiles assumed to
be homogeneous with depth (dash–dotted lines), the real- and Laplace-
space distributions coincide.



This means that the smaller the stresses are in the accessible

depth range, the larger the relative error becomes. The stress

difference ��k ¼ �
default
k � �kð�

hklÞ may be regarded as ‘ghost

stresses’ which have been extensively reported in the litera-

ture. An AD diffraction method based on stepwise layer

removal that allows one to separate residual stress and

composition depth gradients and to quantify the ghost stresses

was introduced by Somers & Mittemeijer (1990) and later

compared with the classical sin2 -based evaluation approach

by Christiansen & Somers (2006). In the latter paper, as in the

present work, the authors used simulations to demonstrate

that a sin2 -based evaluation may only be applied if there are

no a0(z) gradients within the depth range covered by the X-ray

beam.

In contrast, the results of the constant-� method in Fig.

10(b) match the specifications very well. This result can also be

attributed to the nature of the method, which consists of

analyzing data sets from well defined, constant depths below

the surface, where the gradient nature of the stress and

composition profiles does not have any influence. The suit-

ability of constant-�-based measuring and data evaluation

techniques for a nondestructive separation of stress and

composition depth gradients has also been confirmed by other

authors. Using an AD grazing-incidence diffraction technique

(Fernandes et al., 2017) and high-energy ED diffraction in

combination with the scattering vector method (Jegou et al.,

2013), respectively, ak(z) and a0(z) gradients could be separated

successfully in the near-surface region of expanded austenite.

Finally, the depth profile for the strain-free lattice para-

meter a0 is correctly reproduced for both methods. For the

constant-� method, this result is obvious since the influence of

the a0 gradient is eliminated by evaluating predefined depths.

In the case of the MMWP method, this finding can be

explained by the fact that the sin2 distributions remain linear

even in the presence of steep gradients up to about sin2 = 0.5

(Klaus & Genzel, 2019). For a biaxial stress state, a0 can

therefore be determined to a good approximation from the

strain-free direction  ��. Moderate deviations from the

default a0 profile only occur if there is a grain interaction

gradient in the near-surface zone, but this is not taken into

account in the analysis (see Fig. 6). In the example shown

there the maximum deviation observed for the reflection 200 is

�a=adefault ¼ 0:0053%.

The reverse case in the form of a pronounced stress depth

gradient but a constant strain-free lattice parameter is

considered in Fig. 11 [cf. diagram ( f) in Fig. 8]. In addition, a
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Figure 10
Analysis of the sin2 data shown in Fig. 8(c) by (a) the modified multi-wavelength plot method and (b) the constant-� method. The default profiles in
Laplace space are indicated by dashed lines in the diagrams above and all the following diagrams. The insets show the depth profiles obtained for the
strain-free lattice parameter.

Figure 11
Analysis of the sin2 data shown in Fig. 8( f ) by (a) the modified multi-wavelength plot method and (b) the constant-� method. The thickness of the
anisotropic surface layer (gray area) was assumed to be z� = 20 mm. The circled data points denote reflections whose orientations 3� hkl are close to the
model-independent orientation 3� � (see Table 1).



20 mm-thick surface layer z� with anisotropic grain interaction

was assumed. The results reveal for both methods a very good

agreement of the evaluated discrete stress and composition

depth profiles with the default profiles. The only exception is

the 200 reflection, whose orientation 3� 200 = 0 is furthest away

from 3� �� ¼ 0:79 (cf. Fig. 18). In addition, because �200
0;� =

12 mm, its information content originates largely from the

anisotropic surface layer z�, which was neglected in the

evaluation.

The results for the superposition of all three depth gradients

[stress, composition, grain interaction; cf. diagram (h) in Fig. 8]

are shown in Fig. 12. The comparison of the two evaluation

methods confirms the finding from Fig. 10 that a correct

separation of stress and composition gradients is only possible

using the constant-� method. In addition, the systematic shift

of the stress values determined with the MMWP method

parallel to the abscissa axis indicates that they may only be

plotted versus �hkl
0 if the strain-free lattice parameter a0 is not

depth dependent (Klaus & Genzel, 2019), which is not the case

in the present example.

4.3. Comparison of ferritic and austenitic steel, impact of

grain interaction

In this section, we investigate the impact of elastic single-

crystal anisotropy and depth-dependent grain interaction on

the results of the stress analysis. To illustrate the influence of

these two factors, ahkl
 –sin2  distributions are considered for a

ferritic and an austenitic steel, which result for a residual stress

and composition state which is homogeneous within the

information depth of the X-rays. Under these conditions, the

curvature of the sin2 distributions is solely caused by the

anisotropic surface layer (see Fig. 13). Note that the high

(constant) stress level of � 1000 MPa was only selected for

comparison with the other examples considered in the

previous section. It may be realistic for ferrite/martensite but

should be too high for austenite in most cases.

The results of the data analysis obtained by means of the

MMWP method and the constant-� method are compared in

Figs. 14 (ferrite) and 15 (austenite). Since depth gradients

were excluded for both the residual stresses and the compo-

sition, the deviations of both depth profiles, �kð�
hkl
0 Þ and

a0ð�
hkl
0 Þ, from the default values can be attributed solely to the

influence of the depth-dependent grain interaction. The

evaluation for both materials reveals that the maximum

deviations occur in the region of the anisotropic surface layer

z� and there especially for the 200 reflection. The reason for

this is that, on the one hand, the information depths �200
0 are

smaller than z� for both materials (see Table 1) and that, on

the other hand, the DECs in this crystal direction feature the

strongest differences between the grain interaction models

according to Voigt, Eshelby–Kröner and Reuss because

3� 200 = 0 (cf. Fig. 18).
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Figure 12
Analysis of the sin2 data shown in Fig. 8(h) by (a) the modified multi-wavelength plot method and (b) the constant-� method. See Fig. 11 for an
explanation of the symbols.

Figure 13
ahkl
 –sin2  distributions for (a) ferritic and (b) austenitic steel which correspond to an in-plane residual stress �k = � 1000 MPa and uniform strain-free

lattice parameters a0. The gray areas mark the range of angles  ��;hkl under which the strain-free lattice parameters ahkl
 �� are obtained for the biaxial

stress state. The thickness of the anisotropic surface layer was assumed to be z� = 20 mm.



On the absolute scale, due to the larger single-crystal

anisotropy ratio of austenite (A� = 3.5) compared with ferrite

(A� = 2.4), significantly larger deviations of the evaluated

stress depth profiles, �kð�
hkl
0 Þ, from the default value are

observed for austenite. What both materials and XSA

evaluation methods have in common is that reflections with a

higher information depth provide results that are closer to the

default, as the influence of the anisotropic surface layer

becomes increasingly smaller with increasing depth. It is in

addition characteristic that reflections with hkl close to the

model-independent orientation � � invariably yield stress

values close to the specification. This also applies to the

diffraction lines with small information depths, 110� and 211�
for ferrite, and 220� in the case of austenite.

Regardless of the material, the simulations also show

characteristic differences between the two approaches used

for the evaluation. The �kð�
hkl
0 Þ depth distributions reveal that

the constant-� method provides results that are closer to the

default on average. The reason for this finding is that the

constant-� method derives its information content from the

evaluation of lattice strains which originate from a constant

depth below the surface. For each predefined depth, various

reflections hkl contribute to the regression line, some of which

are also close to the model-independent orientation � � [see

Fig. 7(b)]. As a result, the influence of the ‘incorrect’ volume

grain interaction model used in the evaluation is partially or

even completely averaged out. In contrast, the MMWP

method averages over a more or less large depth range for

only one single diffraction line. If these reflections hkl are

linked to crystal lattice directions with an unfavorable orien-

tation � hkl far from the model-independent orientation, the

stress values calculated from the corresponding sin2 

regression line will feature a larger deviation from the default

value.

Concerning the depth profiles a0(�), the maximum differ-

ences between the defaults and the values obtained in the data

evaluation are rather small for both methods considered here.

Even under the worst-case conditions [constant-� method,

200+ reflection, see inset in Fig. 15(b) and Fig. 17] the shift

�a/adefault does not exceed 0.14%.

4.4. Refinement of the depth-dependent grain interaction

model

We apply the optimization method introduced by Klaus &

Genzel (2019) to determine a homogeneous DEC model to

the case of depth-dependent grain interaction. The procedure

is illustrated in Fig. 16. The example refers to austenitic steel

which should feature a homogeneous in-plane residual stress

and depth-dependent grain interaction such as that introduced

in Fig. 2. The thickness of the anisotropic surface layer is
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Figure 14
Analysis of the sin2 data for the ferritic steel shown in Fig. 13(a) by (a) the MMWP method and (b) the constant-� method. The evaluation was carried
out under the assumption that the Eshelby–Kröner grain interaction model is valid within the entire depth range covered by the X-ray beam.

Figure 15
Analysis of the sin2 data for the austenitic steel shown in Fig. 13(b) by (a) the MMWP method and (b) the constant-� method, based on the Eshelby–
Kröner grain interaction model (cf. Fig. 14).



assumed to be z� = 20 mm. The data analysis is based on the

constant-� method, because, as shown in the previous section,

it provides correct results for the stress depth profiles, �kð�
hkl
0 Þ,

also if composition depth gradients are present in the mate-

rial’s near-surface region (cf. Fig. 7).

In contrast to the analysis outlined in the previous sections,

data evaluation is now performed by taking into account the

depth dependency of the grain interaction model. The para-

meter that is varied during the optimization procedure is the

thickness of the anisotropic surface layer. Thus, if one

performs data analysis for a set of values z�var taken for z� in

equation (5), the obtained �kð�
hkl
0 Þ profiles will feature more or

less strong jumps between neighboring points when z�var is far

away from the actual z� [diagrams (a) and (e) in Fig. 16]. The

closer z�var approaches z�, the smoother the stress depth

profiles will become [diagrams (b) and (d)], until the point

z�var ¼ z� is reached [diagram (c)]. This point corresponds to

the minimum path length �� defined by equation (13), which

describes the sum of straight lines connecting neighboring

points of the �kð�
hkl
0 Þ profile,

�� ¼
X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��k �
hkl
0

� �� �2
þ ��hkl

0

� �2
q

¼ min : ð13Þ

The procedure outlined above is based on the assumption that

stresses �(r) in the Laplace space should feature no jumps but

rather smooth profiles as they are the exponentially weighted

response to the actual �(z) profiles in the real space. The

search for the minimum of �� therefore means finding the

value of z� that best describes the depth-dependent grain

interaction in the material region close to the surface. Genzel

et al. (2023) applied this formalism to experimental data

obtained for an austenitic steel in order to refine the weighting

factor r which describes a homogeneous grain interaction

model between the Voigt and Reuss limits according to

equations (16a) and (16b). Therefore, the study of Genzel et

al. (2023) (see Fig. 1) and the case shown in Fig. 16 differ

because the latter assumes that the grain interaction models in

the surface layer and the volume are known and the parameter

to be refined is the thickness of the anisotropic surface layer.

5. Discussion

In the present work, simulated data were used in order to

evaluate the suitability of two different XSA methods for

separating the influence of various combinations of stress,

composition and grain interaction gradients in the near-

surface material region. The advantage of simulations is that

the correct solution is known, which is not the case with real

experiments. This approach seems justified since the methods

investigated here for analyzing ED diffraction data sets are

already being used successfully in practice. This work there-

fore addresses other issues. The focus is on the important

question from the user’s perspective of the extent to which the

non-consideration of influencing factors that are difficult to

check, such as a depth-dependent grain interaction, leads to

errors in stress analysis and to show ways in which these

uncertainty factors can be bypassed. Table 2 summarizes the

findings in this regard.
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Figure 16
The optimization procedure for the refinement of the grain interaction model. See text for details.



The methods compared in the table both access the same

sin2 measurements. However, they differ fundamentally in

their evaluation strategy. According to equation (6) the

MMWP method derives its information content from the

evaluation of data originating from different depths �hkl
 of the

total depth range covered by the X-ray beam. Therefore, it

might be considered an ‘integral method’ that fails if a

(significant) depth gradient of the strain-free lattice parameter

a0 is superimposed on the stress (gradient) [cases a0 = f(z) in

Table 2] since its contribution to the slope of the sin2 

distributions is (mis)interpreted as stress. The constant-�

method might be considered a ‘local method’ since the data

used for the analysis of the stress and the strain-free lattice

parameter originate from predefined depths below the

surface. Thus, the two superimposed gradients can be sepa-

rated.

In general it holds true that the larger the information

depth, the better both the �k(�) and the a0(�) depth profiles

are reproduced by both methods, because the high-energy

reflections are less affected by the anisotropic surface layer z�.

However, it is striking that the a0 values determined using the

constant-� method feature larger deviations from the standard

profile for <z�. There are two reasons for this finding, which

are explained in Fig. 17. (i) The information for small �

originates completely from depths where the ‘wrong’ grain

interaction model is used for the analysis. This leads to the

nonlinearity in the ahkl
 –Fhkl

k plot marked in the diagram. (ii)

For small information depths there is only one negative stress

factor compared with many positive factors on the other side

in the ahkl
 –Fhkl

k plots, which leads to an unfavorable ‘leverage

effect’ in the least-squares fit.

The issue of depth-dependent grain interaction [cases Fk =

f(z) in Table 2] can be bypassed with the constant-� method

and the MMWP method [the latter only for the case a0 6¼ f(z)],

if the analysis is confined to reflections hkl with orientation

factors � hkl close to the model-independent orientation � �.

However, this is at the expense of the number of nodes in the

stress depth profile, which is more problematic for austenitic

steel compared with ferrite, as the two near-surface reflections

111� and 200� do not fulfill the condition � hkl’ � � [see Fig. 15

but also Fig. 1(c)]. One way of estimating the thickness z� of

the anisotropic surface layer was outlined in Fig. 16.

Note that the optimization procedure in Fig. 16 was not

used to refine grain interaction models themselves. With the

Eshelby–Kröner model for the volume, however, an assump-

tion was made that appears reasonable for materials with a

random texture and has often been confirmed experimentally

by load–stress measurements. For the anisotropic surface

layer, extreme assumptions according to Reuss (Voigt) were

made with the free (fully constrained) deformation perpen-

dicular (parallel) to the surface. These critical assumptions

aimed to demonstrate the maximum impact of a depth-

dependent grain interaction on the ED X-ray stress analysis.

Some further points that are important from the user’s point

of view should be noted. All considerations in this paper were

made for a biaxial, rotationally symmetrical stress state.

However, this is not a limitation, as in the case of a non-

rotationally symmetric stress state only measurements under

two azimuths ’ = 0� and ’ = 90� need to be combined [see e.g.

Genzel et al. (2013)]. The answer to the question of which of

the two XSA methods discussed here is the more appropriate

depends on the material condition in the near-surface region.

If gradients of the strain-free lattice parameter can be

excluded, the MMWP method should be applied, as sin2 

measurements up to about  = 45� are usually sufficient for

data analysis. The constant-� method, on the other hand,

requires measurements up to very large  angles and should

therefore only be used if a superposition of stress and

(pronounced) composition gradients is to be expected.
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Figure 17
ahkl
 –Fhkl

k plot, the evaluation of which provides the data points 200 + . . .
in Fig. 15(b).

Table 2
Assessment of the XSA methods considered in this work concerning their suitability for analyzing various near-surface material conditions.

The order of the investigated states is identical to cases (a)–(h) in Fig. 8.

Near-surface material condition XSA method

�k a0 Fk MMWP Constant-� Remarks

Constant Constant Constant ++ ++ Evaluable without restrictions with both methods

f(z) Constant Constant ++ ++

Constant f(z) Constant � ++ Evaluable without restrictions only with the constant-� method
f(z) f(z) Constant � ++

Constant Constant f(z) + + Evaluable with both methods if the analysis is confined to hkl near � �

f(z) Constant f(z) + +

Constant f(z) f(z) � + Evaluable only with the constant-� method if the analysis is confined to hkl near � �

f(z) f(z) f(z) � +



Finally, the analysis in this paper was restricted to the

determination of the discrete stress depth profiles in the

Laplace space, �kð�
hkl
0 Þ. For the inverse transform into the real

space, which provides the actual depth profiles �k(z), the

reader is referred to the literature. Methods often used in

practice in this respect are based on the description of the real-

space profiles by polynomial functions with (Hauk & Krug,

1988) and without (Ruppersberg et al., 1991; Denks et al.,

2009) exponential damping, whose Laplace transforms are

adapted to the experimental depth profiles employing a least-

squares fit. An approach based on the inverse numerical

Laplace transform that allows the direct calculation of the

�k(z) profiles from the discrete �kð�
hkl
0 Þ distributions was

suggested by Genzel (1996).

APPENDIX A

Direction-independent diffraction elastic constants

We express the DECs for both the Reuss (R) and the Voigt

(V) in terms of single-crystal elastic moduli sij. For the Reuss

case (homogeneous stress in all crystallites) we obtain for

materials possessing cubic symmetry (Möller & Martin, 1939)

SR
1 ð�

hklÞ ¼ s12 þ � hkls0; ð14aÞ

1
2 SR

2 ð�
hklÞ ¼ s11 � s12 � 3� hkls0 ð14bÞ

with s0 ¼ s11 � s12 �
1
2

s44 and the orientation factor � hkl =

ðh2k2 þ k2l2 þ l2h2Þ/ðh2 þ k2 þ l2Þ2. The DECs according to

Voigt (homogeneous strain) do not depend on the orientation

hkl:

SV
1 ¼

2s2
11 þ 2s11s12 � 4s2

12 � s11s44 þ 3s12s44

2 3s11 � 3s12 þ s44ð Þ
; ð15aÞ

1
2
SV

2 ¼
5 s11 � s12ð Þs44

2 3s11 � 3s12 þ s44ð Þ
: ð15bÞ

The DECs according to the Eshelby–Kröner (K) model lie

between the Voigt and Reuss limits. Since they also depend

linearly on � hkl, they can be expressed by a weighting factor rK

using the Voigt and Reuss constants:

SK
1 ð�

hklÞ ¼ rKSR
1 ð�

hklÞ þ ð1 � rKÞSV
1 ; ð16aÞ

1
2

SK
2 ð�

hklÞ ¼ rK 1
2

SR
2 ð�

hklÞ þ ð1 � rKÞ 1
2

SV
2 : ð16bÞ

Fig. 18 reveals that the model functions intersect at a point

3� �. � � is referred to as the model-independent orientation

and can be obtained from the single-crystal elastic moduli by

(Klaus & Genzel, 2019)

� � ¼
s11 � s12 �

1
2

SV
2

3s0

¼
s11 � s12

3ðs0 þ
5
6

s44Þ
: ð17Þ

APPENDIX B

Direction-dependent diffraction elastic constants

We define direction-dependent (D) DECs according to the

assumptions made for the surface layer z� in Fig. 2 and write

SD
1 ð ; �

hklÞ ¼ 1 �
 

90�

� �

SR
1 ð�

hklÞ þ
 

90�
SV

1 ; ð18aÞ

1
2
SD

2 ð ; �
hklÞ ¼ 1 �

 

90�

� �
1
2
SR

2 ð�
hklÞ þ

 

90�
1
2

SV
2 : ð18bÞ

The dashed framed areas in Fig. 19 show that the DECs vary

less with the inclination angle  the closer the associated hkl

are to the model-independent orientation � �. Note also that

the conditions in this respect are more favorable for ferritic

steel than for austenitic steel. One reason for this is that the

elastic single-crystal anisotropy of ferrite (A� = 2.5) is less

pronounced than that for austenite (A� = 3.5). On the other

hand, ferrite has more reflections (all those with 3� = 0.75)

close to the model-independent orientation than austenite.
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Figure 18
Diffraction elastic constant 1

2
S2 for (a) ferritic and (b) austenitic steel, calculated by means of equations (14a), (14b)–(16a) and (16b) for the grain

interaction models of Reuss (R), Voigt (V) and Eshelby–Kröner (K). The framed reflections hkl lie in the vicinity of the model-independent orientation
� �. rK denotes the Reuss fraction in the Eshelby–Kröner DEC model. The single-crystal elastic moduli sij were taken from Landoldt–Börnstein (1984).



APPENDIX C

Strain in double-indexed lattice planes

Two lattice planes hikili and hjkjlj in crystals with cubic

symmetry whose Miller indices fulfill the condition

h2
i þ k2

i þ l2
i ¼ h2

j þ k2
j þ l2

j diffract at the same diffraction

angle 2� (AD case) or at the same energy Ehkl (ED case).

However, since these lattice planes differ concerning their

elastic behavior due to anisotropy, they will deform differently

under the influence of a (residual) stress �k. In a polycrystal-

line material with a random crystallographic texture, there will

therefore be a ‘shift as well as a splitting’ of the diffraction line.

For experiments in ED diffraction mode assuming a biaxial

stress state of rotational symmetry, the absolute shift of each

diffraction line is given by

�Ehkl
 ¼ Ehkl

0 � Ehkl
 ¼ � Ehkl

0
1
2
S2ð�

hklÞ sin2  þ 2S1ð�
hklÞ

� �
�k:

ð19Þ

The relative displacement of the diffraction lines, referred to

as i and j for brevity, is only dependent on s0, the weighting

factor r and the difference between the orientation factors,

�3� (i, j) (see also Genzel et al., 2023):

�E
i;jð Þ
 ¼ �E

hikili
 � �E

hjkjlj
 

¼ Ehkl
0 s0 r �3� i;jð Þ 2

3 � sin2  
� �

�k: ð20Þ

hkl in the above equation can stand for both hikili and hjkjlj.

Fig. 20 shows the situation with the example of the diffraction

line 333/511 for an austenitic steel. Due to the multiplicity

factor (H511 = 24), the intensity of the 511 contribution to the
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Figure 19
Direction dependency of the diffraction elastic constant 1

2
SD

2 ð ; �
hklÞ according to equation (18b) for (a) ferritic and (b) austenitic steel. The framed hkl

denote reflections featuring a � hkl close to the model-independent orientation � � (cf. Fig. 18).

Figure 20
(a)–(c) Absolute shift (filled arrows) and splitting (empty arrows) of the 333/511 diffraction line for an austenitic steel. The line position E

333=511
0 =

64.3 keV for the strain-free lattice corresponds to a diffraction angle 2� = 16� (cf. Table 1). Diagram (d) shows the absolute shift of the 333 and 511
contributions as a function of sin2 according to equation (19) and their relative shift against each other (gray area between the straight lines) according
to equation (20). The calculation was done assuming the Eshelby–Kröner grain interaction model.



total diffraction line is three times as high as the 333 contri-

bution with a multiplicity factor H333 = 8. A prominent point

for the rotationally symmetric in-plane stress state considered

here is sin2  ¼ 2
3
. At this point, the stress factors coincide

independently of the grain interaction model (cf. Fig. 5), which

means that the double-indexed diffraction lines do not split

[Fig. 20(b)]. For smaller (larger)  angles, both line compo-

nents shift towards smaller (larger) energies, whereby the shift

of the 511 component (‘soft’ crystal direction) is always larger

than that of the 333 component (‘hard’ direction).
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Baczmański, A., Braham, C. & Seiler, W. (2003). Philos. Mag. 83,
3225–3246.

Baczmanski, A., Lipinski, P., Tidu, A., Wierzbanowski, K. & Pathiraj,
B. (2008). J. Appl. Cryst. 41, 854–867.

Brakman, C. M. (1987). Philos. Mag. A, 55, 39–58.
Buras, B., Chwaszczewska, J., Szarras, S. & Szmid, Z. (1968). Fixed

Angle Scattering/FAS/Method for X-ray Crystal Structure Deter-
mination. Report 894/II/PS. Institute of Nuclear Research, Warsaw,
Poland.

Christiansen, T. & Somers, M. A. J. (2006). Mater. Sci. Eng. A, 424,
181–189.

Denks, I. A., Manns, T., Genzel, C. & Scholtes, B. (2009). Z. Kris-
tallogr. Suppl. 2009, 69–74.

Dölle, H. & Hauk, V. (1978). Z. Metallkd. 69, 410–417.
Dölle, H. & Hauk, V. (1979a). Härterei-Tech. Mitt. 34, 272–277.
Dölle, H. & Hauk, V. (1979b). Z. Metallkd. 70, 682–685.
Eigenmann, B., Scholtes, B. & Macherauch, E. (1990). Materialwiss.

Werkst. 21, 257–265.
Eshelby, J. D. (1957). Proc. R. Soc. London Ser. A, 241, 376–396.
Fernandes, F. A. P., Christiansen, T. L., Winther, G. & Somers, M. A. J.

(2017). Mater. Sci. Eng. A, 701, 167–173.
Genzel, C. (1996). Phys. Status Solidi A, 156, 353–363.
Genzel, C., Denks, I. A. & Klaus, M. (2013). Modern Diffraction

Methods, edited by E. J. Mittemeijer & U. Welzel, ch. 5, pp. 127–
154. Weinheim: Wiley-VCH.

Genzel, C., Klaus, M., Hempel, N., Nitschke-Pagel, T. & Pantleon, K.
(2023). J. Appl. Cryst. 56, 526–538.

Genzel, C., Stock, C. & Reimers, W. (2004). Mater. Sci. Eng. A, 372,
28–43.

Giessen, B. C. & Gordon, G. E. (1968). Science, 159, 973–975.

Hauk, V. (1997). Structural and Residual Stress Analysis by Non-
destructive Methods. Amsterdam: Elsevier.

Hauk, V. & Krug, W. (1988). Härterei-Tech. Mitt. 43, 164–170.

Hill, R. (1952). Proc. Phys. Soc. A, 65, 349–354.

Jegou, S., Christiansen, T. L., Klaus, M., Genzel, C. & Somers, M. A. J.
(2013). Thin Solid Fims, 530, 71–76.

Kamminga, J.-D., Leoni, M., Welzel, U., Lamparter, P. & Mittemeijer,
E. J. (2000). Mater. Sci. Forum, 347–349, 42–47.

Klaus, M. & Genzel, Ch. (2013). J. Appl. Cryst. 46, 1266–1276.

Klaus, M. & Genzel, Ch. (2017). J. Appl. Cryst. 50, 252–264.

Klaus, M. & Genzel, C. (2019). J. Appl. Cryst. 52, 94–105.

Klaus, M., Genzel, Ch. & Garcı́a, J. (2017). J. Appl. Cryst. 50, 265–277.

Koch, N., Welzel, U., Wern, H. & Mittemeijer, E. J. (2004). Philos.
Mag. 84, 3547–3570.
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A., Wroński, S., Wróbel, M., Braham, C., Sidhom, H. & Wawszczak,
R. (2018). J. Appl. Cryst. 51, 732–745.

Marciszko-Wiackowska, M., Oponowicz, A., Baczmanski, A.,
Braham, C., Watroba, M., Wrobel, M., Klaus, M. & Genzel, C.
(2022). Measurement, 194, 111016.
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Wróbel, M., Braham, C. & Wawszczak, R. (2019). J. Appl. Cryst. 52,
1409–1421.
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