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Here, it is investigated how optical properties of single scatterers in interacting

multi-particle systems influence measurable structure factors. Both particles

with linear gradients of their scattering length density and core–shell structures

evoke characteristic deviations between the weighted sum hS(Q)i of partial

structure factors in a multi-component system and experimentally accessible

measurable structure factors SM(Q). While hS(Q)i contains only the structural

information of self-organizing systems, SM(Q) is additionally influenced by the

optical properties of their constituents, resulting in features such as changing

amplitudes, additional peaks in the low-wavevector region or splitting of higher-

order maxima, which are not related to structural reasons. It is shown that these

effects can be systematically categorized according to the qualitative behaviour

of the form factor in the Guinier region, which enables assessing the suitability

of experimentally obtained structure factors to genuinely represent the micro-

structure of complex systems free from any particular model assumption. Hence,

a careful data analysis regarding size distribution and optical properties of single

scatterers is mandatory to avoid a misinterpretation of measurable structure

factors.

1. Introduction

Colloidal dispersions attract wide interest in condensed matter

physics as highly tunable model systems, mimicking atoms and

molecules on the much larger mesoscopic scale with typical

length scales between 10 and 1000 nm. Studying these systems

enabled major advances in the comprehension of the char-

acteristics of simple fluids and solids, which stimulated the

progress of significant theoretical developments towards the

understanding of complex systems and materials (Lu & Weitz,

2013).

Scattering experiments serve as essential methods for

structural and dynamical investigations in colloidal many-

particle systems (Li et al., 2016). Small-angle scattering (SANS

with neutrons or SAXS with X-rays as a probe) enables the

characterization of colloidal suspensions across the entire

range of relevant scattering vector magnitudes Q (Glatter,

2018). By employing visible light, which is also a natural choice

since its wavelength is of the same order of magnitude as the

typical size of a colloidal particle, the same type of analysis is

in principle also possible in a simpler laboratory setup. This is

however connected with the cost of a limited resolution and,

as a consequence thereof, the restriction to comparatively

large structures (Bohren & Huffmann, 2008).

In non-interacting systems, the positions and orientations of

the colloidal particles are completely uncorrelated. Thus, the

scattered intensity results solely from the superposition of the
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scattering functions of the single constituents. However, when

the particles do interact, higher-level structures emerge from

inherent self-organization due to interparticle forces, such as

electrostatic and steric interactions or van der Waals attrac-

tions. The intensity is then influenced both by the optical

properties of the scatterers themselves and by the spatial

correlations between them. For idealized radially symmetric

and monodisperse systems, where all particles are assumed to

be identical, the two contributions can be rigorously separated

into the form factor P(Q), containing the single-particle

properties, and the structure factor S(Q), which encodes the

structural correlations, employing the well known factoriza-

tion I(Q) / P(Q) S(Q) (Hansen et al., 1991).

Realistic dispersions typically exhibit a distribution of

characteristics, prominently through particle size. In poly-

disperse interacting systems, the characterization via scat-

tering experiments is in general significantly more

complicated, as the factorization of the intensity into form

factor and structure factor can no longer be employed in a

straightforward way (Salgi & Rajagopalan, 1993). Addition-

ally, the observed diffraction patterns become increasingly

featureless for broader size distributions, further obstructing

the interpretation of experimental intensities. The analysis of

multi-component systems thus requires a thorough under-

standing of the underlying distributions of scattering proper-

ties and particle interactions. Insights can be gained through

contrast-variation techniques (Ballauff, 2001); selectively

altering the contrast between specific particle types or

between particles and the surrounding medium allows for the

isolation and probing of distinct species, aiding the validation

of theoretical models.

From an experimental standpoint, it is useful to analyse the

measurable structure factor SM(Q), which is defined in such a

way that the factorization property I(Q) / P(Q) SM(Q) is also

recovered in the polydisperse case (Hansen et al., 1991).

SM(Q) is comparatively easy to access experimentally from the

ratio between the intensities of an interacting suspension and

a highly diluted non-interacting one. It is as such also widely

used as a measure for structural correlations in polydisperse

systems, where the height of the principal peak is especially

well established as an order parameter (Banchio et al., 1998).

Under specific circumstances, this type of analysis can

however turn into a serious pitfall: SM(Q) is also fundamen-

tally affected by optical properties of the particles and not

only by their interactions (Salgi & Rajagopalan, 1993).

For certain types of dispersions, some simplifying assump-

tions can be employed. In dilute suspensions of strongly

interacting charged particles, for example, the interparticle

distances typically are about an order of magnitude larger

than the particle sizes because of the large electrostatic

repulsion (Hayter & Penfold, 1981). In such a case, the

correlation between the particle positions and the scattering

amplitudes can be neglected. This neglect of correlations leads

to the ‘decoupling approximation’, under which SM(Q) can be

decomposed into a structure factor that genuinely represents

the averaged structural correlations and weighting factors

solely dependent on the scattering amplitudes (Pusey et al.,

1982; Kotlarchyk & Chen, 1983). This type of analysis was also

recently used in a SANS study of moderately concentrated

poly(N-isopropylacrylamide) microgels (Zhou et al., 2023),

where again the importance of an accurate treatment of

polydispersity was stressed. Non-spherical particles cause

effects in scattering patterns that appear quite similar to those

introduced by size dispersity in systems of spherical particles

(Pusey et al., 1982). These effects can to a certain degree also

be treated within the decoupling approximation (Kotlarchyk

& Chen, 1983), whose range of validity has been extensively

characterized (Greene et al., 2016). In highly concentrated

suspensions, where particles are in close contact, the accuracy

of the decoupling approximation is strongly diminished, as in

these systems the correlation lengths of the particles’ centres

of mass are comparable to the correlation lengths inside the

particles themselves (Pedersen, 1997). At such high particle

volume fractions, excluded volume effects are the predomi-

nant contribution to the total interaction potential.

The fundamental interactions in dense colloidal dispersions

consisting of spherical particles can to a good approximation

be theoretically described with the hard-sphere model (Kirk-

wood & Boggs, 1942; Widom, 1967). The radial distribution

functions of an n-component mixture of hard spheres can be

calculated within the Percus–Yevick closure of the Ornstein–

Zernike equation (Percus & Yevick, 1958) using Baxter’s

technique (Baxter, 1970), giving access to the corresponding

partial structure factors (Vrij, 1978, 1979; Blum & Stell, 1979,

1980). Building on Vrij’s work (Vrij, 1979; van Beurten & Vrij,

1981), Griffith et al. (1987) presented an analytical scattering

function of a polydisperse hard-sphere fluid with a Schulz–

Flory distribution (Flory, 1936; Schulz, 1939) of particle

diameters. Despite their helpfulness, these expressions are not

widely used because of their perceived complexity. Nayeri et

al. (2009) later extended this approach to core–shell struc-

tured hard spheres and used their expressions to describe

experimental intensities of a hard-sphere-like microemulsion

system. Only recently, Botet et al. (2020) provided expressions

for SM(Q) in a simple accessible form and for a number of

commonly encountered size distributions. Their analytical

expressions are valid for hard optically homogeneous spheres.

This resurgence of interest is an incentive to systematically

examine how different form-factor models affect the char-

acteristics of measurable structure factors. It is a well known

fact that, especially in dense dispersions, SM(Q) is generally

not equal to the structure factor hS(Q)i representing the

averaged spatial correlations of the entire system (Salgi &

Rajagopalan, 1993; Frenkel et al., 1986). The mismatch

between SM(Q) and hS(Q)i is precisely the reason why in

many past studies an extraction of SM(Q) is deliberately not

attempted. By describing the scattered intensity of concen-

trated suspensions with sophisticated models, a thorough

characterization of particle properties is possible without

calculating SM(Q), as performed, for example, by Stieger,

Pedersen et al. (2004); Stieger, Richtering et al. (2004);

Zackrisson et al. (2005); Balogh et al. (2007); or Scotti (2021).

Certainly, however, for many applications in condensed

matter science, gaining an accurate approximation of the
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structure factor is still highly desired. This is especially the

case when employing computer simulations or many-body

theory to model structural phenomena and wanting to

compare detailed facets of particle self-organization directly

with experimental outcomes (Dekker et al., 2020; Peláez-

Fernández et al., 2011; Anta & Madden, 1999; Krause et al.,

1991; Stellbrink et al., 2002). Beyond using structure factors to

deduct structural patterns from experimental scattering data

(Mohanty et al., 2017; Phalakornkul et al., 1996; Scheffold &

Mason, 2009; Mason et al., 2006), these quantities are used in

theoretical approaches to calculate short- and long-time

dynamics in many-particle systems. Two notable examples in

this context are the ��-expansion by Beenakker & Mazur

(1983, 1984) used to model hydrodynamic effects during short-

time diffusion (Genz & Klein, 1991) and the widely known

mode-coupling theory of the glass transition (Janssen, 2018),

which both need the static structure factor as an input for

calculations. In these theories, a popular method is to

circumvent computationally expensive multi-component

calculations by considering an effective one-component

analysis using the experimentally obtained structure factor

SM(Q) directly, assuming this quantity to be an accurate

representation of the average structure factor hS(Q)i (Robert

et al., 2008; Di Cola et al., 2009).

For a number of specialized cases, deviations between

hS(Q)i and SM(Q) and the general influence of varying optical

properties on SM(Q) have already been assessed (Banchio et

al., 1998; Pedersen, 2001). The purpose of this contribution is

to raise further awareness on how particles’ optical properties

influence the shape of SM(Q) while the underlying interactions

remain unchanged and to show that these observations can be

model-independently systematized on the basis of quite

universal principles. This enables practitioners to make

informed judgements under which circumstances such an

experimentally obtained structure factor can still serve as a

valid order parameter. We show typical examples of shapes

that can be realistically encountered during contrast-variation

experiments, so even without explicitly employing established

theoretical models [see e.g. Pedersen (1997) for a large

collection of scattering functions], a qualitative assessment of

experimental findings is possible. We also analyse two

simplified models for optically inhomogeneous particles: those

with a linear gradient of the scattering contrast and spheres

with a core–shell structure. Nevertheless, the approach is

readily adaptable to any model and provides a toolbox for the

modelling of measurable structure factors for hard-sphere

suspensions with arbitrary form factors, as demonstrated in

several past studies (Vrij, 1979; Frenkel et al., 1986; Pedersen,

2001; Nayeri et al., 2009; Botet et al., 2020; Diaz Maier &

Wagner, 2024).

2. Scattering of hard-sphere mixtures

We consider a mixture of spherical particles, where each

particle can be categorized into one of n species. The

composition of the mixture is specified by the number frac-

tions x� = N�/N, where N is the total number of particles and

N� is the number of particles belonging to species �. We

further restrict ourselves to elastic single scattering events

where the Born approximation is applicable. In such a case,

the mean intensity

IðQÞ /
P

�;�

ðx�x�Þ
1=2

f�ðQÞf�ðQÞS��ðQÞ ð1Þ

is proportional to the weighted sum of the single-particle

scattering amplitudes f�(Q) and the partial structure factors

S��(Q) (Salgi & Rajagopalan, 1993). Herein, the scattering

amplitude

f�ðQÞ ¼ 4�

Z1

0

��ðrÞr
2 sinðQrÞ

Qr
dr ð2Þ

is the Fourier–Bessel transform of the scattering contrast

��(r), whereas the partial structure factors S��(Q) are

obtained from the solution of the multi-component Ornstein–

Zernike equation. Expressions for S��(Q) of the hard-sphere

fluid within the Percus–Yevick closure are given by Vrij (1979)

but, for the convenience of the reader, the solution is re-

articulated in Appendix A, and presented in a manner that

is accessible and easily applicable. This genuine multi-

component approach involving partial structure factors is a

general and versatile formalism, from which both the decou-

pling approximation (Kotlarchyk & Chen, 1983) and the local

monodisperse approximation (Pedersen, 1994), serving as a

localized effective one-component approach suited for very

polydisperse systems, can be derived.

For non-interacting particles, the partial structure factors

are simply S��(Q) = ���, where ��� denotes the Kronecker

symbol. Equation (1) then reduces to the size average of the

squared scattering amplitudes,

IðQÞ / hf 2ðQÞi ¼
P

�

x� f 2
� ðQÞ: ð3Þ

The average form factor

PðQÞ ¼
hf 2ðQÞi

hf 2ð0Þi
ð4Þ

is familiarly obtained from the normalization to forward

scattering. As the measurable structure factor should satisfy

the relation I(Q) / P(Q) SM(Q), the expression

SMðQÞ ¼ hf
2ðQÞi

� �� 1P

�;�

ðx�x�Þ
1=2

f�ðQÞf�ðQÞS��ðQÞ ð5Þ

results from the combination of equations (1) and (3). The

averaged structure factor

hSðQÞi ¼
P

�;�

ðx�x�Þ
1=2

S��ðQÞ ð6Þ

provides information about the total spatial correlations

between all present particles, regardless of their species labels.

It represents a true thermodynamic average independent of

any optical properties. Any deviation between SM(Q) and

hS(Q)i is thus a measure for the perturbation of hS(Q)i caused

by the scattering amplitudes.
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We now want to explore the influence of the scattering

amplitudes on the shape of SM(Q). The aim is to gain a

qualitative understanding of generic patterns; so to keep the

analysis tractable, only a single representative size distribution

is considered. For this purpose, the Schulz–Flory distribution

with probability density

cðRÞ ¼
1

� ðZ þ 1Þ

Z þ 1

hRi

� �Zþ1

RZ exp �
Z þ 1

hRi
R

� �

ð7Þ

is chosen. Here, R is the particle radius with mean hRi and

� (x) represents the gamma function. The polydispersity p

of the system is specified by the shape parameter Z via

p2 = (hR2i � hRi2)/hRi2 = 1/(Z + 1). The idea is now to

discretize the distribution to a representative n-component

mixture. For the Schulz–Flory distribution, an efficient way to

achieve this is by exploiting the generalized Gauss–Laguerre

quadrature rule, specifically used to calculate integrals with a

weighting function like equation (7) (D’Aguanno & Klein,

1992; D’Aguanno, 1993; Olver et al., 2010). The nodes and

weights generated by such a procedure are equivalent to the

particle radii and number fractions of a discrete mixture which

shares the first 2n � 1 moments hRni with the original

continuous distribution. For each calculated scattering func-

tion, we carefully checked that the number of nodes necessary

for convergence was reached. The numerical scheme was

further tested against the analytical SM(Q) for homogeneous

spheres provided by Botet et al. (2020), where excellent

agreement was found.

3. Measurable structure factors of polydisperse systems

3.1. General remarks

Fig. 1 provides a general introductory overview of the

influence of polydispersity on P(Q), SM(Q) and hS(Q)i,

discussed for a dense suspension of homogeneous spheres,

serving as a reiteration of well known phenomenology (Botet

et al., 2020). Concerning the form factors, only those corre-

sponding to polydispersities of less than 10% appear struc-

tured. Familiarly, the characteristic minima in P(Q) become

increasingly smeared out for broader size distributions.

Polydispersity also causes a change in the initial slope of

P(Q) in the Guinier region. Reflecting the distribution of

particle sizes when calculating the Taylor expansion of P(Q),

the slope is now given by � Q2hR2
Gi=3, where the familiar

radius of gyration RG is substituted by an apparent radius of

gyration hR2
Gi

1=2 (Glatter, 2018; Tomchuk et al., 2014). For

homogeneous spheres,

hR2
Gi ¼

3

5

hR8i

hR6i
ð8Þ
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Figure 1
Comparative analysis of scattering functions for an ensemble of optically homogeneous hard spheres with varying degrees of polydispersity. (a)
Probability density function illustrating the Schulz–Flory distributed radius R. (b) Form factor P(Q). (c) Average structure factor hS(Q)i. (d) Measurable
structure factor SM(Q). All evaluated at a total volume fraction of ’ = 0.5, spanning polydispersities from 5 to 25%. hRi denotes the mean radius of the
spheres.



is obtained, which reduces to the well known result of

R2
G ¼ ð3=5ÞR2 for monodisperse systems.

Similarly to P(Q), both the measurable structure factor

SM(Q) and the average structure factor hS(Q)i become

increasingly featureless at high polydispersities, which is

distinctively noticeable as the principal peak’s amplitude

decreases and the secondary oscillations gradually disappear.

Shifting the focus to direct comparison between the two

structure factors SM(Q) and hS(Q)i, multiple observations are

apparent. While the amplitude of the principal peak is similar

for both functions, differences appear at larger wavevectors,

where secondary peaks in SM(Q) appear at roughly the loca-

tions of the form-factor minima, as similarly noticed by Ginoza

& Yasutomi (1999). With increasing polydispersity, these

maxima evolve into broad shoulders that get smeared out

eventually. As also noted by Ginoza & Yasutomi (1999), sharp

secondary maxima are hard to observe experimentally

because a very narrow size distribution in combination with a

homogenous distribution of the scattering length density

(SLD) inside the particles is required. On the other hand,

shoulder-like features in experimentally determined structure

factors are well documented [see, as an example, Di Cola et al.

(2009)]. In the low-Q region, a striking observation is the

significant increase of hS(0)i at elevated polydispersities

in comparison with SM(0). According to the fluctuation-

dissipation theorem from statistical mechanics, the isothermal

compressibility �T is for monodisperse systems connected to

the zero-wavevector limit of S(Q) via S(0) = �kBT�T, where �

denotes the number density and kBT is the thermal energy.

The extension of this concept to mixtures must however be

treated with caution because, for multi-component systems,

the connection between structure and thermodynamics is not

simply given by the size average hS(0)i. According to the

Kirkwood–Buff theory of solutions, it is instead given by the

relation ð�kBT�TÞ
� 1 ¼

P
x�x�S� 1

�� ð0Þ, where S� 1
�� ðQÞ is the ��

element of the inverse structure-factor matrix (Hansen &

McDonald, 2013).

3.2. Linear contrast gradient

As a prototypical example for particles with inhomoge-

neous scattering strength, particles with a linear gradient of

the SLD are investigated. This is particularly relevant for

swellable particles into which the suspension medium can

diffuse. This can occur with microgel particles (Karg et al.,

2019), for example. Under certain reaction conditions, an

inhomogeneous degree of cross-linking arises, which also leads

to inhomogeneous scattering properties. Particles with

intrinsic material gradients are also plausible, obtained for

example by continuously changing the monomer composition

in a feed process during synthesis. Then, in principle, a

suspension in which the contrast within a particle changes its

sign can also be realized. The form of a linear gradient is

assumed for the sake of simplicity in order to investigate the

phenomenology of continuous contrasts as an example.

The scattering contrast as a function of the distance r from

the centre can for a single particle be parametrized as

�ðrÞ ¼
�0 þ ð�R � �0Þ

r

R
if 0 � r � R;

0 otherwise;

(

ð9Þ

where R is the particle radius, �0 is the contrast in the centre

and �R is the contrast at the interface to the surrounding

medium. Accordingly, the resulting single-particle scattering

amplitude is given by

f ðQÞ ¼ 4�

�

�0

sinðQRÞ � QR cosðQRÞ

Q3
þ
�R � �0

R

�
2QR sinðQRÞ � ½ðQRÞ

2
� 2� cosðQRÞ � 2

Q4

�

; ð10Þ

which reduces to

f ð0Þ ¼ �R3 �0

3
þ �R

� �
ð11Þ

in the forward-scattering limit. A closer look at equation (11)

reveals that the forward-scattering contribution disappears if

the condition �R/�0 = � 1/3 is fulfilled. In particular, when the

maximum accessible scattering vector is limited, as in the case

of light scattering, forward scattering contributes significantly

to the total scattering cross section. If the forward scattering is

zero, the sample appears almost optically transparent.

Refractive-index matching can be achieved for particles with a

homogeneous scattering capacity if the SLD of the suspension

medium is adapted to that of the particles. If the scattering

capacity is inhomogeneous, index matching can only minimize

the total scattering cross section, which is often achieved by

making the forward scattering almost zero. In the following,

the condition when the forward scattering power is minimal is

referred to as the index match point.

To gain a systematic understanding of the behaviour of the

measurable structure factor SM(Q) as a function of the

contrast ratio �R/�0, it will prove advantageous to investigate

the Guinier region of the form factor. Using the contrast

profile from equation (9), for a single particle with radius R,

R2
G ¼

2

5

�0 þ 5�R

�0 þ 3�R

R2 ð12Þ

is obtained for the effective squared radius of gyration, which

depends not only on the particle’s radius but also on the two

contrast parameters �0 and �R. For polydisperse suspensions, a

similar expression emerges:

hR2
Gi ¼

2

5

�0 þ 5�R

�0 þ 3�R

hR8i

hR6i
: ð13Þ

As such, the contrast dependence of the prefactor is not

altered by polydispersity and the qualitative discussion can

instead be based on monodisperse suspensions. We will thus

refer to the prefactor simply as R2
G=R2, even in the poly-

disperse case.

Inspecting equation (12), several characteristic ratios �R/�0

are apparent: R2
G becomes zero for �R/�0 = � 1/5; exhibits a

pole at �R/�0 = � 1/3, incident with the index match point; and

has an asymptotic limit of R2
G=R2 ¼ 2=3 for �R/�0 ! �1.

Here, it will be shown that the behaviour of the scattering

research papers

J. Appl. Cryst. (2024). 57, 1503–1513 Joel Diaz Maier et al. � Measurable structure factors of dense dispersions 1507



functions can be divided into three qualitatively distinct

classes, and that form factors and measurable structure factors

within each domain share unique features. The classification

based on the behaviour of R2
G, together with form factors P(Q)

and measurable structure factors SM(Q) representative of

each region, is visualized in Fig. 2. The regions are char-

acterized as follows:

(I) For �R/�0 > � 1/5, R2
G is positive and the form factors

have the familiar decaying shape known from homogeneous

spheres. With decreasing contrast ratio, the decay becomes

increasingly gradual until R2
G ¼ 0 is reached for �R/�0 = � 1/5.

Around the principal peak of SM(Q) and for lower wavevec-

tors, changes in the contrast have a negligible influence on the

measurable structure factors. However, at wavevectors

beyond the principal peak’s location, SM(Q) is greatly affected

by contrast variation. Depending on the specific location of

the first form-factor minimum, which shifts to larger wave-

vectors with lower contrast ratios, the shoulder-like artefact

also visible in Fig. 1 moves through SM(Q) towards larger

wavevectors and therein most prominently affects the shape of

the first local minimum and the following secondary

maximum.

(II) For the contrast ratios � 1/3 < �R/�0 < � 1/5, R2
G

becomes negative, which implies an imaginary radius of

gyration RG leading to a positive initial slope of P(Q). Form

factors in this region therefore initially increase from P(0) = 1

until a global maximum is reached at QR’ 4, after which they

decay. The height of the maximum increases as the contrast

ratio moves towards the index match point at �R/�0 = � 1/3.

Curiously, the measurable structure factors in this domain are

almost indistinguishable, even though the variation of R2
G is

much more pronounced in comparison with region (I), where

the span of R2
G is small but SM(Q) shows a much more diverse

behaviour. Also, the distorting artefacts from region (I)

disappear almost completely.

(III) Contrast ratios of �R/�0 < � 1/3 again result in positive

R2
G and negative initial slopes. Close to the index match point,

where R2
G is comparatively large, P(Q) exhibits an intriguing

shape. At small wavevectors, a pronounced minimum occurs

even in very polydisperse suspensions. Beyond the minimum,

P(Q) rises to a global maximum reminiscent of region (II). For

contrasts in this range, an additional local maximum in SM(Q)

appears at low wavevectors, caused by the presence of the first

form-factor minimum. Such secondary maxima are often
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Figure 2
An illustrative breakdown of the classification of the scattering functions of spheres with a linear contrast gradient into the three regimes discussed in the
main text, where each column corresponds to a unique region. In the top row, the reduced squared radius of gyration R2

G=R2 as a function of the contrast
ratio �R/�0 is depicted. The location of the respective regions labelled (I), (II) or (III) is indicated by the darker shaded area. The middle and bottom
rows display selected form factors P(Q) and measurable structure factors SM(Q) that exemplify each region’s variability in the shape observed during
contrast variation. hRi indicates the mean radius of the particles. Note the shared axes of P(Q) and SM(Q) between rows and columns.



discussed in the literature as an indication of self-organization

on length scales beyond the distance of nearest neighbours, i.e.

the formation of correlated clusters (Sciortino et al., 2004; Liu

et al., 2005). The secondary maxima occurring here are

exclusively caused by the scattering amplitudes and cannot be

attributed to structural properties of the sample. This consti-

tutes a valuable example of a situation where a careless

inspection of experimentally determined SM(Q) can in the

worst case lead to unjustified assumptions about the structure

of a system. Moving further away from the index match point,

the first form-factor minimum moves towards larger wave-

vectors and gets shallower. At the same time, the following

maximum declines and, as such, the shape of P(Q) morphs

back into the familiar decaying shape from region (I).

Simultaneously, the location of the secondary maximum in

SM(Q) drifts towards higher wavevectors. Fig. 2 also displays a

situation where the form-factor minimum exactly coincides

with the location where the principal peak of SM(Q) would

normally occur. In this case, the main peak is drastically

diminished, which is again not an indicator for a less

pronounced short-range order in this particular instance, but

can certainly be mistaken as such.

The principal-peak height of a structure factor is an often

employed structural order parameter. Scheffold & Mason

(2009) noticed in their investigation of highly concentrated

nanoemulsions that the peak amplitude in SM(Q) is deeply

affected by polydispersity. As such, the evolution of this height

during contrast variation is also of special interest. Fig. 3

compares the peak height of the average structure factor

hS(Qmax)i with the value of SM(Qmax) at the same wavevector

as a function of the contrast ratio �R/�0 and for different

degrees of polydispersity. Overall, it is clearly shown that

SM(Qmax) is deeply affected by changes in the contrast. There

exist two contrast ratios where SM(Qmax) and hS(Qmax)i

coincide. One of them is to a good approximation given by

�R/�0 ’ � 1/5, the location where the apparent radius of

gyration disappears and P(Q) decays very slowly. The other

location is at a positive contrast ratio and drifts towards higher

�R/�0 with increasing polydispersity. Bounded by those two

ratios is a regime where SM(Qmax) exceeds hS(Qmax)i, while

for all other contrast ratios, the peak height from SM(Qmax)

underestimates the actual height. For comparatively small

polydispersities around 5%, the deviation from hS(Qmax)i is

small and only amounts to a few per cent, as long as the

contrast ratio is larger than �R/�0 ’ � 1/5. For lower ratios,

SM(Qmax) is strongly diminished, most pronouncedly at

contrast ratios of �R/�0 ’ � 1. For higher polydispersities, the

deviations become even more severe, as best visualized in Fig.

3(b), where the relative deviation between hS(Qmax)i and

SM(Qmax) is depicted. Even in the immediate vicinity of

hS(Qmax)i = SM(Qmax), already deviations of the order of 5–

10% appear for the highest shown polydispersities. This

demonstrates that, no matter what the actual degree of poly-

dispersity, SM(Qmax) can only serve as a reliable order para-

meter for very specific contrast ratios.

3.3. Core–shell particles

Core–shell models are commonly employed to describe

particles consisting of different layers of material, e.g. nano-

particles with grafted stabilizer shells (Hallett et al., 2020; Diaz

Maier & Wagner, 2024) or micellar structures (Szymusiak et

al., 2017). As core and shell naturally differ in their material

properties, in principle both positive and negative contrast

differences with respect to the surrounding medium can occur,

similarly to particles with continuous material gradients.

For Schulz–Flory-distributed core–shell particles, analytical

expressions for the form factor P(Q) exist in the case of a

polydisperse core and a shell of constant thickness (Bartlett &

Ottewill, 1992), for a polydisperse total diameter and a

constant core-to-shell ratio (Wagner, 2004), and for both core

radius and shell thickness independently distributed (Wagner,

2012). Moreover, an analytical solution for the problem of

correlated hard-sphere core–shell systems was provided by

Nayeri et al. (2009).

The scattering amplitude of a single core–shell particle,
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Figure 3
(a) The influence of the contrast ratio �R/�0 on the principal-peak value SM(Qmax) for spheres with a linear contrast gradient, for polydispersities in a
range between 5 and 25% at a total volume fraction of ’ = 0.5. The horizontal dashed lines mark, for comparison, the height of the principal peak of the
average structure factor hS(Qmax)i. The distinction between the different introduced contrast regimes from Fig. 2 is indicated by the vertical dashed lines.
(b) Relative deviation between SM(Qmax) and hS(Qmax)i for an enlarged region.



f ðQÞ ¼ 4�

�

ð�c � �sÞ
sinðQRcÞ � QRc cosðQRcÞ

Q3

þ �s

sinðQRÞ � QR cosðQRÞ

Q3

�

; ð14Þ

is the sum of the amplitudes of a sphere and a spherical shell,

weighted by their respective contrasts, �c and �s. Rc and R are

the core radius and the total radius of the particle, respec-

tively, and we specifically consider the case where the core

radius and the total radius are connected by a constant

species-independent size ratio � = Rc/R.

Similar to the gradient model, the forward-scattering

contribution

f ð0Þ ¼
4

3
�R3 �3ð�c � �sÞ þ �s

� �
ð15Þ

disappears for specific contrast combinations of the ratio of

contrasts �s/�c = �3/(�3 � 1), which now additionally depends

on the size ratio �. For the effective radius of gyration of a

polydisperse system, an expression with similar structure to

equation (13) emerges:

hR2
Gi ¼

3

5

�5�c þ ð1 � �
5Þ�s

�3�c þ ð1 � �
3Þ�s

hR8i

hR6i
: ð16Þ

That, again, a prefactor containing the contrasts can be

decoupled from the size average is a peculiarity of this model

with constant size ratio and a key reason why this assumption

was made for this investigation.

In Fig. 4, the contrast dependence of R2
G=R2 is visualized for

different size ratios �. As in the case of spheres with a linear

gradient of the SLD, this results in hyperbola-like curves,

where the location of the pole is now influenced by �; an

increasing ratio of core diameter to total diameter shifts the

location of the pole to more negative contrast ratios (�s/�c).

The contrast ratio where R2
G ¼ 0 is, in comparison, only

slightly altered by �. This leads to a larger range of contrast

ratios with negative R2
G as the shell thickness decreases.

This shows that core–shell particles exhibit qualitatively

comparable optical characteristics to particles with a linear

density gradient. As such, the form factors P(Q) of core–shell

systems can likewise be categorized into three classes based on

their behaviour at low wavevectors. Example form factors for

each class are also visualized in Fig. 4.

Because of these similarities, we focus the remainder of the

discussion on aspects that are unique to core–shell particles,

i.e. how measurable structure factors are influenced by
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Figure 4
The influence of the contrast ratio �s/�c on the reduced squared radius of
gyration R2

G=R2 for core–shell particles with different ratios � between
core radius and total radius, along with three representative sets of form
factors, each sharing the same radius of gyration for different size ratios.

Figure 5
Comparison between measurable structure factor SM(Q) and size-
averaged structure factor hS(Q)i of core–shell particles for different core-
to-total ratios (�), contrast ratios (�s/�c) and polydispersities as indicated
in the figure. The total volume fraction for all shown structure factors is
’ = 0.5.



different core-to-shell ratios. For this purpose, structure

factors corresponding to two important edge cases, particles

with a small core and particles with a thin shell, are compared

in Fig. 5 for different degrees of polydispersity and chosen

contrast ratios �s/�c. Core–shell models with thin shells are

often encountered when characterizing particles stabilized by

a grafted polymer layer, which are prototypical colloidal

model particles displaying hard-sphere behaviour (Royall et

al., 2013). The case of hard spheres with a strongly scattering

small core and a weakly scattering comparatively large shell is

equally of interest. Under these conditions, essentially, the

behaviour of highly charged strongly repelling particles whose

interparticle distance is several times larger than their

diameter is artificially mimicked. For these systems, the

measurable structure factor SM(Q) should in theory to a good

approximation coincide with the average structure factor

hS(Q)i. To reasonably compare models with different size

ratios (�), two specific contrast ratios (�s/�c) are depicted: the

ratio �s/�c = �3/(�3 � 1) at the index matching point, where for-

ward scattering is minimized; and the ratio �s/�c = �5/(�5 � 1),

where hR2
Gi ¼ 0 and P(Q) shows the weakest decay. In the

case of �� 1, both conditions basically lead to the same

result: the shell is virtually hidden with �s ’ 0.

As can be observed in Fig. 5, for moderate polydispersities

of 5–10%, the small core-to-total ratio � = 0.1 indeed yields

measurable structure factors SM(Q) that are indistinguishable

from hS(Q)i for both depicted contrast ratios. For particles

with thin shells (� = 0.9), SM(Q) and hS(Q)i also agree well in

the vicinity of the principal peak. However, differences arise

around the secondary maxima, where the peak amplitudes in

SM(Q) are diminished because of the interference of the

scattering amplitudes. With increasing polydispersity, this

deviation becomes more pronounced. Still, even for particles

that are seemingly quite close to homogeneous spheres,

artefacts in SM(Q) can be significantly reduced by careful

contrast variation.

Looking at highly polydisperse systems, it is evident that,

even for rather small cores with � = 0.1, hS(Q)i cannot be

accurately represented by any SM(Q). Only the height of the

principle peak is correctly estimated. This stresses again the

importance of an accurate treatment of very broad size

distributions, where any kind of approximation must be

carefully checked for validity.

4. Conclusions

Colloidal dispersions generally exhibit a particle size distri-

bution, which needs to be taken into account when inter-

preting results from scattering experiments. The measurable

structure factor SM(Q) is an experimental, comparatively

easily accessible measure for the interparticle structure in

interacting systems. However, in polydisperse systems, SM(Q)

is, beyond the structural correlations, also decisively affected

by the optical properties of the individual particles. To this

end, we systematically investigated the influence of different

form-factor models on the shape of SM(Q) of dense disper-

sions with hard-sphere interactions. The characterization of

measurable structure factors was extended to two classes of

spherical particles with inhomogeneous scattering capacity:

first, spheres with a linear SLD profile as a general model for

particles with continuous contrast gradients and, second, a core–

shell system as a prototype for particles with layered structures.

For both models, we find that the structure factors can be

categorized into three distinctive classes of shared qualitative

features, based on the behaviour of the form factor P(Q) in

the Guinier region. SM(Q) can, for these optically inhomo-

geneous model particles, be significantly influenced by the

variation of the scattering contrasts relative to the surrounding

medium. Depending on the specific contrast combination,

shoulder-like features emerge, maxima are diminished or split,

and even secondary maxima in the low-wavevector region,

reminiscent of cluster peaks, can be observed. These effects

are solely due to the optical properties of the particles and are

not caused by structural changes in the sample. We further

showed that the height of the principal peak of SM(Q) can only

be regarded as a representative order parameter in a very

restricted range of contrasts, especially for broad size distri-

butions.

These observations emphasize the need to properly address

the distribution of particle size (and possibly also other char-

acteristics) in the interpretation of static scattering experi-

ments. Actually, for many applications, deliberately broad size

distributions are a desired feature; an academically relevant

example is studies of deeply supercooled glass-forming

systems (Ninarello et al., 2017), where crystallization needs to

be suppressed and where polydispersity effects in any form

certainly cannot be neglected (Zaccarelli et al., 2015; Pihla-

jamaa et al., 2023).

Beyond providing an enhanced qualitative understanding

of features that can possibly be encountered when analysing

experimentally extracted measurable structure factors, the

numerical scheme presented in this contribution in principle

provides a means to model the scattered intensity of any

polydisperse hard-sphere system, provided a model for the

single-particle scattering amplitude and an appropriate size

distribution is available. Performing fits with such advanced

models directly on experimentally observed intensities gives

access to the underlying partial structure factors, enabling a

characterization and possible further theoretical analysis on a

genuine multi-component foundation, rather than employing

effective one-component approaches. The current restriction

to hard-sphere interactions is a major incentive to promote

advancements in the analytical evaluation of partial structure

factors for other interaction potentials, since numerically

solving integral equations or employing computer simulations

with reasonable statistics are currently only realistically

feasible for a restricted number of components, especially in

mixtures with large size disparities (Allahyarov et al., 2022).

APPENDIX A

Percus–Yevick structure factors for hard-sphere mixtures

The analytical solution of the Ornstein–Zernike equation for

the hard-sphere potential within the Percus–Yevick closure in
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terms of the partial structure factors S��(Q), presented by Vrij

(1979) and reformulated by Voigtmann (2003), is restated

here. In short, an expression for the partial direct correlation

functions c��(r) in real space can be found using Baxter’s

factorization technique (Baxter, 1970). The transformed

solution in wavevector space c��(Q) can subsequently be used

to obtain the partial structure factors S��(Q).

Let ’ be the total volume fraction of all spheres, d� be the

diameter and x� be the number fraction of the spheres of

species �. The total number density � of the system is related

to the volume fraction by ’ ¼ ð�=6Þ�
P

x�d3
�. With the

abbreviations

d�� ¼
d� þ d�

2
ð17Þ

and

�x ¼
�

6
�
X

�

x�dx
�; ð18Þ

the set of coefficients

a� ¼
1 � �3 þ 3d��2

1 � �3ð Þ
2

; ð19Þ

~a2 ¼
P

�

��a2
�; ð20Þ

�̂0 ¼
9�2

2 þ 3�1ð1 � �3Þ

ð1 � �3Þ
3

; ð21Þ

A�� ¼
d��ð1 � �3Þ þ

3
2 d�d��2

ð1 � �3Þ
2

; ð22Þ

B�� ¼
1

1 � �3

� �̂0d�d� ð23Þ

and

D�� ¼
6�2 þ 12d��½�1 þ 3�2

2=ð1 � �3Þ�

ð1 � �3Þ
2

ð24Þ

can be determined. Furthermore, by introducing

S� ¼ sinðQd�=2Þ and C� ¼ cosðQd�=2Þ, the terms

�A ¼ A��

S�S� � C�C�

Q2
; ð25Þ

�B ¼ B��

C�S� þ C�S�

Q3
; ð26Þ

�D ¼ D��

S�S�

Q4
ð27Þ

and

~� ¼
4�

Q4
~a2

�
C�C�d�d�

4
þ

S�S�

Q2
�

C�S�d� þ C�S�d�

2Q

�

ð28Þ

can be calculated, which finally leads to

c��ðqÞ ¼ � 4� ð�A þ �B þ �D þ ~�Þ: ð29Þ

The partial direct correlation functions form the matrix C with

elements C�� = (x�x�)1/2c��, which is related to the matrix of

partial structure factors S by the Ornstein–Zernike relation

S ¼ 1 � �C½ �
� 1
: ð30Þ

The partial structure factors here are defined within the

convention limQ!1 S��ðQÞ ¼ ���, where ��� is the Kronecker

delta.
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