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Coherent diffractive imaging with X-ray free-electron lasers could enable

structural studies of macromolecules at room temperature. This type of

experiment could provide a means to study structural dynamics on the femto-

second timescale. However, the diffraction from a single protein is weak

compared with the incoherent scattering from background sources, which

negatively affects the reconstruction analysis. This work evaluates the effects of

the presence of background on the analysis pipeline. Background measurements

from the European X-ray Free-Electron Laser were combined with simulated

diffraction patterns and treated by a standard reconstruction procedure,

including orientation recovery with the expand, maximize and compress algo-

rithm and 3D phase retrieval. Background scattering did have an adverse effect

on the estimated resolution of the reconstructed density maps. Still, the

reconstructions generally worked when the signal-to-background ratio was 0.6

or better, in the momentum transfer shell of the highest reconstructed resolu-

tion. The results also suggest that the signal-to-background requirement

increases at higher resolution. This study gives an indication of what is possible

at current setups at X-ray free-electron lasers with regards to expected back-

ground strength and establishes a target for experimental optimization of the

background.

1. Introduction

1.1. Coherent diffractive imaging of single particles

With the extremely bright and short pulses produced by an

X-ray free-electron laser (XFEL), it can be possible to

measure diffraction from a single biological particle, such as a

protein or virus. The particle will be severely photo-ionized,

and the remaining positive charges will repel each other,

which causes the particle to explode. The femtosecond pulses

of the XFEL are, however, short enough that the X-rays will

have left the sample before the time it takes for this damage

to affect the structure. The measurement represents the

undamaged particle—this is known as diffraction before

destruction (Neutze et al., 2000).

To inject the particles into the X-ray beam with precision,

an electrospray injector (ESI) is commonly used (Bielecki et

al., 2019). An ESI works by applying a high voltage over the

particle solution as it exits a capillary, and the excess charge

will drive the formation of small droplets. Most of the buffer

evaporates as the particle droplets travel toward the X-ray

beam, leaving only a stream of dry particles. To protect the

droplets from discharge, the capillary is surrounded by a

constant flow of inert gases, like nitrogen and carbon dioxide.

Some of this gas also enters the interaction region, and scat-

tering from this gas is a major source of photon background

and significantly harms the data analysis process. Scattering
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from the beamline elements, such as the apertures, is another

source of background scattering.

Most proteins are small and weak scatterers, and even

though the X-ray pulses are very bright the diffracted signal is

still weak. The noisy background often overpowers the signal,

especially at high scattering angles where high-resolution

information is encoded. Structural reconstructions of small

particles remain elusive, but there have been some successes

with reconstructions of viruses and cells (Ekeberg et al., 2015;

Reddy et al., 2017; van der Schot et al., 2015; Ayyer et al., 2021)

and measurements of proteins (Ekeberg et al., 2024).

In this paper, we test how the strength of this background

and the strength of the signal itself affect the reconstruction

pipeline, including orientation recovery and phase retrieval.

The goal is that this should help us understand the require-

ments for future experiments.

1.2. The analysis pipeline

Coherent diffractive imaging is a lensless technique, and the

real-space view of the particle is therefore not immediately

available in the measured image, as it would be in, for

example, cryogenic electron microscopy (cryo-EM). Rather,

we measure the diffracted photons directly, similarly to X-ray

crystallography. In X-ray crystallography, the repeated cells in

the crystal structure amplify the signal in Bragg spots but

cancel it elsewhere. This leads to a very high diffracted signal

that is only sampled at a limited number of points. However,

diffraction from a single particle would not have Bragg spots,

so, provided that the signal is strong enough to be measurable

without the amplification from the crystal, the diffraction

signal can be measured at a much higher sampling density.

This property can actually allow for the phase problem to be

solved directly, using only constraints about the extent of the

particle, as opposed to crystallography where redundant data

or prior information about the structure is usually required

(Sayre, 1991).

The phase problem is the task of performing an inverse

Fourier transform without access to the complex phases and is

found in many disparate fields like astronomy and X-ray

crystallography. The task of reconstructing the electron

density from only an intensity measurement falls into this

category (Fienup, 1982). Because the object is limited in extent

in real space and we sample the diffraction space at a suffi-

ciently high sampling density, we can use iterative projection

algorithms to recover the phases and overcome the phase

problem. These are iterative algorithms that alternately apply

constraints in real and Fourier space, thereby approaching

phases that approximately satisfy both constraints. The

simplest algorithm of this class is error reduction (ER)

(Fienup, 1978), while other more involved approaches include

hybrid input–output (Fienup, 1982) and relaxed averaged

alternating reflections (RAAR) (Luke, 2005).

To recover a 3D electron density we need a series of

diffraction measurements of the particle from different

orientations. Each of these measurements contains informa-

tion on the Ewald sphere surface that cuts through the Fourier

transform of the particle, and many measurements, with the

particle in different orientations, are needed to build the full

3D Fourier transform. If the particle orientations were known

for each measurement, one could assemble a 3D intensity map

directly, but in single-particle experiments, the particles are in

random and unknown orientations. We therefore use an

orientation recovery algorithm called expand, maximize and

compress (EMC) to recover the orientations from the

diffraction patterns (Loh & Elser, 2009).

EMC is based on expectation maximization and iteratively

builds a 3D diffraction intensity model to infer relative

orientations of the diffraction patterns. Initially, an intensity

model is assembled from the diffraction patterns at random

orientations, and then the diffraction patterns are exhaustively

compared with the model at orientations taken from a uniform

sampling of the 3D rotation group. This is done by first

expanding the model into slices corresponding to the respec-

tive Ewald sphere for each considered orientation. One then

calculates the conditional probability for each diffraction

pattern to be measured given every specific slice in the

expanded model. The next iterate is created by compressing

the patterns into a new 3D intensity map, using the conditional

probability as a weight for each orientation. This process is

repeated for several iterations, either producing a model of

increasing quality or sometimes collapsing into a model

identifiable as a distinct fail-state such as all patterns being

distributed equally across all orientations.

The output of EMC is the 3D diffraction intensity map. We

can perform an iterative phase retrieval algorithm on this

intensity map to recover a model of the electron density of the

particle. In this paper, we investigate how the background

strength impacts the resolution of the final electron-density

map.

2. Methods

2.1. Experimental background and simulated diffraction

To test the impact of background noise on the orientation

recovery and phase retrieval, we simulated diffraction images

at different signal strengths. These were combined with

measurements of the background obtained with the AGIPD

detector (Henrich et al., 2011) at the Single Particles, Clusters

and Biomolecules (SPB) beamline at the European XFEL.

The data were collected as part of a community experiment in

October 2019.

An ESI was used without particles in the solution. There-

fore, the sources of the scattering were solely the evaporated

buffer, the carrier gas, a mix of nitrogen and carbon dioxide,

and beamline elements. The detector data were corrected for

gain and offset with the standard processing pipeline provided

by the European XFEL, and the measurements were weak

enough for the AGIPD to be in the high-gain mode for all

pixels and patterns. We fitted a function consisting of two bell

curves to the zero and first photon peaks of the histogram of

the detector output. We then used the centres of the two bell

curves as the scale to convert the detector units to photon

counts

research papers

J. Appl. Cryst. (2024). 57, 1384–1391 Wollter and Ekeberg � Coherent X-ray diffraction imaging of single particles 1385



In this study, we wanted to cover a range of background

strengths significantly weaker than the measured background,

which was, on average, too high for our reconstruction. To

downscale the backgrounds while preserving Poisson statistics,

we randomly kept or discarded each photon in the back-

ground data set according to the desired intensity reduction.

In this manner, we created 20 sets of background patterns of

different strengths, ranging from 37 to 746 average photons

per pattern in uniform steps, cropped to a 10242 pixel array.

We simulated 9900 diffraction patterns of bacterial phyto-

chrome, PDB entry 4o01 (Takala et al., 2014), using the

Condor software package (Hantke et al., 2016). We used a

photon energy of 8 keV and generated four data sets with

different average signal strengths, ranging from 457 to 1826

photons per diffraction pattern. The detector had 10242 pixels,

with a pixel size of 110 mm, and a distance of 13 cm from the

interaction region, which gives a full-period resolution of

3.84 Å at the edge of the detector. These patterns were

masked to match the geometry of the AGIPD detector, which

has gaps between panels.

We thus created 84 synthetic data sets, combining the four

different signal strengths with the 20 different background

strengths and an additional case without background.

2.2. Orientation recovery

We ran 45 iterations of EMC on our data sets after down-

sampling to 1282 pixels to strike a good balance between

computational time and oversampling. The orientation

recovery was repeated ten times for each data set, each time

with a unique random starting map, to check for potential

effects on the reproducibility of the algorithm. The orientation

sampling included 50 100 possible orientations taken from the

3D rotation group as described by Loh & Elser (2009).

We also used a deterministic annealing scheme applied to

the conditional probabilities, similar to the approach

described by Ayyer et al. (2016) and Wollter et al. (2024). The

conditional probabilities Rd for diffraction pattern d were

exponentiated by �,

Rd ! R
�
d; ð1Þ

and the value of � was increased from 0.065 in the first

iteration by 1.2% per iteration to 0.01 at iteration 38 and then

remained constant. This was done to keep patterns from

getting stuck in local maxima and to encourage EMC to

converge more smoothly.

To evaluate each EMC run we compared the recovered

orientations with the ground truth orientations in our simu-

lations. Although the orientations that EMC recovers are

internally consistent in a successful reconstruction, the

recovered orientations can typically differ from the ground

truth orientations by an unknown overall rotation, precluding

a direct comparison. Instead, we considered the average

relative orientation error, previously described by Wollter et

al. (2024), but in this case including particle symmetry as well.

The average relative orientation error is an error metric for

EMC that takes advantage of the fact that relative orientations

are preserved over the global rotation between the recovered

and ground truth orientations. For a pair of patterns with

recovered orientations a and b, their relative rotation r = ba� 1

would be identical to the relative rotation of the corre-

sponding ground truth orientations, r0 = b0a0� 1, if the orien-

tation recovery was perfect. We therefore used the difference

between r and r0 as a quality measurement for the orientation

recovery,

r0r� 1 ¼ b0a0� 1 ba� 1
� �� 1

¼ b0a0� 1ab� 1: ð2Þ

The twofold rotational symmetry of bacterial phytochrome

had to be taken into account because EMC could recover the

symmetric partner of any rotations. The metric therefore

includes checking all permutations to find the one that mini-

mizes the error. We calculated the average of the angle of the

relative orientation error for k randomly selected pairs of

orientations:

�rot ¼
1

k

Xk pairs

a;b

min
s2C2

angleðr0ðsrÞ
� 1
Þ: ð3Þ

We get the average relative orientation error, �rot, where

angleðaÞ ¼ cos� 1ð2a0Þ, a0 is the first element of a quaternion

describing rotation a and s is an element of the symmetry

group of the particle, which for bacterial phytochrome is C2.

We considered k = 1000 pairs of orientations.

The recovered orientations that achieved the lowest �rot in

EMC, out of the ten independent reconstructions, were

selected for phase retrieval. This was done to give all phase

retrievals a good starting point, so comparisons between the

reconstructions would be more meaningful. The results thus

represent an ideal outcome from a data set, rather than an

average.

2.3. Phase retrieval

For phase retrieval, we used the recovered orientations

from EMC and assembled patterns which were only down-

sampled to 2562 pixels into more detailed 3D intensity maps

compared with the direct output from EMC. We found that,

when keeping the original sampling of 1282 pixels from EMC,

the results of the phase retrieval never converged to reason-

able orientations. Since phase retrieval is significantly cheaper

computationally, the larger patterns did not pose a problem

for this analysis.

Because the background noise was incoherently added to

the signal patterns, the background photons contributed a

spherically symmetric function to the 3D intensity. All

attempts to run the phase retrieval algorithm without taking

this background noise into account failed. Therefore we

subtracted the radial average of the background from the 3D

intensity before phase retrieval, which did allow for successful

phase retrieval. In our case, this background distribution was

known exactly, but during an experiment it could be measured

separately, either by running the injector without sample or by

averaging diffraction patterns classified as containing no

sample. Ayyer et al. (2019) demonstrated how the background

function can be estimated iteratively during phase retrieval, so
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even if the background distribution is not measured it can be

possible to deduce and subtract it after the experiment.

For each combination of background and signal strength,

we performed 100 independent phase retrievals. We started

with 10 000 iterations of RAAR using the shrinkwrap algo-

rithm to optimize the real-space constraint (Marchesini et al.,

2003). Every 100 iterations we updated the real-space support

area, using a linear interpolation starting from 1% of the total

area to 0.2% at the final iteration. The standard deviation of

the Gaussian blur was similarly interpolated from 2 to 1 pixels.

After RAAR, we refined with 2500 iterations of ER, using the

final support from shrinkwrap as a static real-space support.

To evaluate the phase retrieval we considered the phase

retrieval transfer function (PRTF) (Chapman et al., 2006). The

PRTF is a measure of the reproducibility of the recovered

phases. If the 100 independent phase retrievals are in agree-

ment for a given pixel then the value of the PRTF in that pixel

will be one, and if the phases are uncorrelated the value will be

closer to zero. To estimate the resolution of a reconstruction

the radial average of the PRTF is calculated, and the

momentum transfer at which this radial average falls below

the threshold e� 1 is identified. The resolution is then said to be

the inverse of this momentum transfer.

We validate the resolution from the PRTF by calculating the

Fourier shell correlation (FSC) between the Fourier transform

of the average density map from the 100 reconstructions and

the Fourier transform of the ground truth density. The FSC is a

normalized correlation factor between two complex maps and

is normally used to compare reconstructions from two

different subsets of a data set. Instead, we compare the

average map with the ground truth density, after aligning the

average map using ChimeraX’s fit-in-map feature (Goddard et

al., 2018), to measure how close the reconstructions were to

the actual density.

The resolution estimate from an FSC is usually defined as

where it falls below the 1
2
-bit threshold. The 1

2
-bit threshold

depends on the number of voxels in the considered shell and is

derived by assuming that both data subsets have a noise and a

signal contribution (van Heel & Schatz, 2005). In our case, we

have no noise contribution in the ground truth and the 1
2
-bit

threshold is therefore slightly stricter than for the half-data-set

comparison. Because of the differences, the resolution we

report here is not directly comparable with the resolution from

a PRTF or the FSC from a cryo-EM experiment, but they

would be expected to be in a similar range and follow similar

trends.

3. Results

To evaluate each of the 840 independent EMC reconstructions

we compared their average rotation errors, �rot, defined in

equation (3). The lowest achieved �rot out of the ten runs is

shown in Fig. 1(a), for all of the combinations of background

and signal strength. We compare the lowest achieved �rot to

avoid including failed runs, and Fig. 1 thus represents the best

result we achieved with each data set. We see that for the

weakest signal �rot is consistently high, indicating that EMC

did not converge to the correct solution regardless of back-

ground strength. For the other cases, we see a clear trend,

where �rot is low for weak backgrounds but increases rapidly at

a certain background strength.

To investigate the stability of EMC we checked how many

of the ten independent intensity reconstructions achieved

�rot < 10� [see Fig. 1(b)]. The ten independent EMC recon-

structions usually either all pass or all fail the threshold. EMC

thus seems remarkably stable to changes in the random start,

even in the presence of background.

After background subtraction, the phase retrieval algorithm

converged to reasonable density maps in most cases. We have

two different ways of estimating the resolution of these maps,

the PRTF and the FSC. In Fig. 2 we show the radial average of

the PRTF and the FSC, as well as their respective resolutions,

for four data sets.

The resolution estimated from the FSC, RFSC, is shown in

Fig. 3(a). The best achieved resolution is 3.84 Å, in the low-to-

medium-background regime, which corresponds to the reso-

lution at the edge of the detector This explains why we see a

lower bound at this value. In the low-background regime RFSC

is stable around 4 Å, indicating that background subtraction

seems to work well. As the background increases the resolu-

tion deteriorates, and for the data sets with weak signal phase

retrieval breaks down. Background subtraction also seems less

efficient when the signal is weaker.
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Figure 1
(a) The lowest average rotation error �rot out of ten independent EMC
reconstructions, for each combination of signal and background. The
dashed line at 10� is the threshold where we consider the intensity
reconstruction a success. Both the background strength and the signal
strength are measured in average number of photons per diffraction
pattern. (b) Number of EMC reconstructions that failed to reach
�rot < ; 10�. In most cases, reconstructions either failed or succeeded
together for a data set, with a small transition region. This shows how
remarkably stable EMC is with regard to changes to the random start.



The resolution estimated from the PRTF, RPRTF, is shown in

Fig. 3(b). It starts at 4 Å and gets progressively worse with

increased background up to around 9 Å. After that, phase

retrieval fails. Note the unexpected improvement of RPRTF of

the lower-signal cases with high background. Since we do not

see the same improvement in RFSC for these cases, we

conclude that this is an example of the limitation of the PRTF

method where high reproducibility can be achieved without

reaching the correct phases.

An interesting comparison can be made between RPRTF and

RFSC, because RFSC remains at 4 Å for a range of background

strengths, while RPRTF slowly increases. One interpretation is

that there is an offset between RPRTF and RFSC of around 2–

3 Å, which is partially obscured because we are limited to the

edge resolution of 3.84 Å in both metrics. If we were to collect

data up to a wider scattering angle it could be possible to

verify that this trend continues below the 4 Å detector-edge

limit. An analogous offset was also observed between RPRTF

and RFSC by Ekeberg et al. (2015).

Since RFSC is a measure of how accurately the object was

recovered, while RPRTF is a measure of reproducibility, RFSC is

a better measure of success. The fact that RFSC is flat is

therefore a strong indication that the background subtraction

works well. Except for the two outliers with much lower

resolution, both estimates stay below 10 Å.

We visualized the average density maps for a few combi-

nations of background and signal strength in Fig. 4 to illustrate

what the different numerical resolutions correspond to. Note

the similarity between Figs. 4(b) and 4(d), and their identical

resolutions as seen in Fig. 2. The low-resolution reconstruction

in Fig. 4(e) corresponds to one of the outliers discussed above.

It is difficult to provide a single number for how many signal

photons we need to compensate for a given background

strength. Depending on the size of the central mask and the

distribution of signal and background, the actual number of

signal photons can vary by a huge amount. It is more inter-

esting to investigate how the ratio of signal-to-background

photons behaves for specific momentum transfers, especially

for the high-resolution elements of the reconstruction.

In Fig. 5 we show the signal-to-background ratio at the

momentum transfer for which a given reconstruction’s FSC

passed below the 1
2
-bit threshold, which we call the resolution

limit according to the FSC. The two dots to the left correspond

to the outliers with low-resolution reconstructions. The
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Figure 3
(a) The resolution based on the Fourier shell correlation between the
average map and the ground truth map, using the 1

2
-bit threshold. (b) The

resolution based on the PRTF, using the e� 1 threshold. For both
measures, the resolution gets worse with increasing background. Note the
sudden improvement in RPRTF with increasing background for the
weaker-signal cases. These correspond to poor reconstructions in (a), with
high RFSC, illustrating a situation where the PRTF suggests an exag-
gerated resolution.

Figure 2
The radial average of the FSC and the PRTF for four different data sets.
The signal and background strength are indicated in the average number
of signal or background photons per diffraction pattern. The estimated
resolution of the reconstruction is shown in the top right of each plot. For
the first two plots there is only a minuscule difference between the two
signal cases, whereas for the third and fourth plots, with background, the
difference between strong and weak signals is clearly apparent. In the
final plot, we see a low-resolution reconstruction with an RPRTF that is
much better than the corresponding RFSC.



vertical column of dots on the right corresponds to recon-

structions that reached the maximum possible resolution of

3.84 Å. Since the achieved resolution remains constant, but

the signal-to-background ratio varies, our interpretation is

that s/(s + b) � 0.6 is enough for the resolution limit of the

detector’s edge, but more signal does not hurt.

In between these edge cases, we see a weak linear depen-

dence, where higher-resolution reconstructions require a

higher signal-to-background ratio at the resolution limit. In

other words, to achieve a higher resolution, we not only

needed a better signal-to-background ratio, in general, to

make the signal clear at higher momentum transfers but also

needed it higher still to compensate for this increased signal

requirement. We interpret the amount of signal to background

we require in a region of the detector as the limiting factor for

the resolution of our reconstructions.

4. Discussion

We found that for reconstructions to be successful up to a

certain resolution the signal-to-background ratio needs to be

above 0.6 at the momentum transfer of the target resolution.

Somewhat surprisingly, this ratio seems to increase at higher

momentum transfers, as can be seen in Fig. 5. Therefore, in

addition to needing more data to compensate for the weaker

signal at higher scattering angles, we need a further increase to

compensate for these stricter demands that the background

places on the analysis. A possible explanation for the need for

a higher signal at higher resolutions could be that the signal

is partitioned into more reciprocal-space voxels in higher-

resolution shells.

A weakness of this investigation is that we consider a

specific experimental case in terms of the sample, number of

patterns and detector setup. We believe that if the total

amount of signal remains constant—distributed over more or

fewer patterns—we should see similar results, as long as the

number of patterns and photons per pattern are in the

hundreds or above. Verifying this assumption could be an

interesting future study. If we were to consider a different-

sized protein, the study would usually be combined with a

modified experimental setup where the choice of photon

energy, detector distance and pixel downsampling combine to

give speckles of comparable size to what is used in this study.

We therefore think that our results are robust to these types of

changes.

We also note that the strongest background strength

considered is ten times weaker than the experimental

measurements, and the signal strength is ten times stronger

than what it would be with the fluence currently measured at

the European XFEL. The ranges were chosen to expose

interesting effects in a setup that would permit structural

studies. Improved injector systems where the carrier gas is

partially replaced by helium are predicted to provide the

needed tenfold decrease in gas background. A background

reduction of 80% has already been observed (Yenupuri et al.,

2024). Furthermore, one could reach a ten-times-higher signal

strength by studying a heavier particle such as the ribosome.

Another observation is that almost all combinations of

signal and background for which EMC converged could also

be phased after appropriate background subtraction, although

research papers

J. Appl. Cryst. (2024). 57, 1384–1391 Wollter and Ekeberg � Coherent X-ray diffraction imaging of single particles 1389

Figure 5
Scatter plot of the signal-to-background ratio s/(s + b) in the resolution
shell for which the given reconstruction passes the 1

2
-bit threshold, or the

edge of the detector if the FSC never reaches the threshold. Higher-
resolution reconstructions require a higher signal-to-background ratio at
the maximum recovered resolution. To achieve higher-resolution recon-
structions we, therefore, need a stronger signal in general, so that there
are data at higher momentum transfers, and the signal needs to be even
higher still to compensate for the increase in signal requirement at higher
resolutions.

Figure 4
(a) The ground truth density of phytochrome, which was used in the
calculation of RFSC, followed by the real-space models of the same
reconstructions as in Fig. 2. (b) and (c) correspond to the strong-signal
case, with an average of 1407 signal photons per pattern, and (d) and (e)
to the weak-signal case, with an average of 1056 signal photons per
pattern. (b) and (d) are from data sets with no background, and (c) and
(e) are from data sets with an average of 448 background photons per
pattern. (b) and (d) look very similar, which matches the similarity in Fig.
2: both of these had an RFSC of 3.84 Å. (c) looks significantly worse, with
an RFSC of 6.1 Å, and (e) has a very low resolution of RFSC = 20.86 Å.



sometimes to a poor resolution. This is somewhat contra-

dictory to our earlier experience that phase retrieval was more

challenging than EMC (Lundholm et al., 2018). A possible

explanation would be that the experimental background used

here is more stable than the one measured by Lundholm et al.

or that we have a better knowledge of the average back-

ground, which allows a more precise background subtraction.

For phase retrieval, we needed a higher sampling density of

the patterns than what was required for a successful orienta-

tion recovery. This result was somewhat surprising since both

sampling densities were above the theoretical limit of

containing twice as many voxels as the size of the sample. It is

possible that the phase retrieval failed at sampling densities

that are too close to the theoretical limit, owing to imperfec-

tions caused by the background noise and inaccurate orien-

tations. It cannot be ruled out that using the same 2562 pixel

array for orientation recovery would have produced even

better results. However, since many reconstructions reached

resolutions corresponding to the detector edge, we do not

think that any precision lost in this step affects our conclu-

sions.

If readers are judging the feasibility of an experiment, they

should consider the expected signal-to-background ratio at the

target resolution and estimate if this could be above 0.6. We

barely saw any failed EMC runs that passed this condition,

and we show in Fig. 5 that phase retrieval also works here.

5. Conclusions

In this paper, we tested how the combination of background

and signal strength affects the single-particle imaging analysis

pipeline. We found that EMC and phase retrieval were

surprisingly robust to the background and that the achieved

resolution was only slightly diminished as background

strength increased. We also saw that the signal-to-background

ratio s/(s + b) was a reasonable measure to predict success and

should generally be above 0.6 in any given resolution shell to

permit phase retrieval to that resolution. Furthermore, this

limit increased slightly in higher-resolution shells. To estimate

the signal-to-background ratio in an experiment one can

compare data where sample was being injected and data with

only buffer, or compare hits with non-hits.

This work highlights the need for improved background

environments at XFELs, to take single-particle imaging to the

molecular realm. However, background handling should also

be a priority for algorithm development, where a deeper

understanding of the background might enhance the algo-

rithms, further improving reconstructions.
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