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A procedure is presented to exactly obtain the apparent average crystallite size

(ACS) of powder samples using standard in-house powder diffraction experi-

ments without any restriction originating from the Scherrer equation. Addi-

tionally, the crystallite size distribution within the sample can be evaluated. To

achieve this, powder diffractograms are background corrected and long-range

radial distribution functions G(r) up to 300 nm are calculated from the

diffraction data. The envelope function fenv of G(r) is approximated by a

procedure determining the absolute maxima of G(r) in a certain interval (r

range). Fitting of an ACS distribution envelope function to this approximation

gives the ACS and its distribution. The method is tested on diffractograms of

LaB6 standard reference materials measured with different wavelengths to

demonstrate the validity of the approach and to clarify the influence of the

wavelength used. The latter results in a general description of the maximum

observable average crystallite size, which depends on the instrument and

wavelength used. The crystallite site distribution is compared with particle size

distributions based on transmission electron microscopy investigations,

providing an approximation of the average number of crystallites per particle.

1. Introduction

The determination of average crystallite sizes of synthesized

samples is an important tool to understand the physical

properties of materials, especially if their dimension deviates

from the microcrystalline state. The microcrystalline state

corresponds to bulk material, and it shifts to the nano- or the

quantum-crystalline state (Gesing et al., 2022) if the average

crystallite size is reduced and surface properties are of

increasing importance. Micro-, nano- and quantum-crystallites

can be obtained as thermodynamically stable phases ranging

from bulk- to surface-dominated, whereas metastable phases

can be obtained at larger dimensions as glasses (Warren, 1934)

or very small crystallites, which are obtained as meso-crystals

(Song & Cölfen, 2010). From the diffraction point of view,

quantum-crystalline and glassy materials are termed (X-ray)

amorphous, as pointed out in Fig. 1, and their diffraction

patterns do not allow a distinction between these two states.

On the other hand, micro- and meso-crystalline phases show

distinct Bragg diffraction (Friedrich et al., 1912; Bragg &

Bragg, 1913).

Concerning the average crystallite size and the possibility of

its determination using diffraction experiments, Max von Laue

wrote in 1926 (von Laue, 1926), ‘Es dürfte danach die

Möglichkeit gegeben sein, aus der Breite der Interferenzringe

die allgemeine Gestalt der Kristallteilchen zu ermitteln.’ The
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translation of this sentence is, ‘It should then be possible to

determine the general shape of the crystal particles from the

width of the interference rings.’ This introduces the expression

‘crystalline particle’ which must be defined to avoid nowadays

a general confusion about terms.

Size determination from diffraction data is only possible for

a single crystallite; a powder wide-angle X-ray scattering

experiment averages over all available crystallites, with all

their different morphologies, leading to an apparent average

crystallite size (ACS). The diffraction data therefore also

contain information about the distribution of these crystallites.

If several of these crystallites are agglomerated, being either

crystalline or amorphous, a particle is formed which could well

be determined using investigations like diffuse light scattering

(DLS), but not via the broadening (von Laue, 1926) of Bragg

reflections (Bragg & Bragg, 1913). The broadening effect was

approximated (Patterson, 1939) by Scherrer (1918) to be

h ¼ 2
ln 2

�

� �1=2
�

�

1

cos ð#=2Þ
; ð1Þ

where h is the half-width of the reflection (denoted B in the

following text) and # is the scattering angle (we will use � in

the following text). �=� is the ratio of the monochromatic

X-ray radiation wavelength (�) and the edge length of the

crystallite, which is assumed to be in the form of a cube

(hereinafter � will be replaced by "), resulting in

" ¼
�

B cos �
; ð2Þ

with B the integral breadth of the reflection (containing

contributions from the sample and the instrument used), � the

wavelength and " the size of the crystallites.

The constant 2ðln 2=�Þ1=2 ’ 0.9394 introduced by Scherrer is

an approximated correction term for cube-shaped crystals,

assuming all of them to be equivalent in size (no size distri-

bution). That means that the apparent average crystallite size

L relates to the true size " via a constant K (Langford &

Wilson, 1978):

L ¼ K": ð3Þ

Combining equations (2) and (3) and considering only the

reflection broadening caused by the ACS, denoted b, the

resulting equation is known as the Scherrer equation, which is

valid for a number of lattice planes in one direction and is

given in the form (Patterson, 1939; Guinier, 1963)

L ¼
K�

b cos �
: ð4Þ

K is often simply assumed to be 0.94 for cube-shaped crystals

and 0.89 for plate-like crystals, or even 0.9 for a general case

(Guinier, 1963). Nonetheless, K depends on the way the

reflection breadths are determined, on the shape of the crys-

tallites and on the distribution of crystallite sizes (Friedrich et

al., 1912). For example, the Miller indices of the diffraction

peaks must be considered in such a way that, depending on the

compound’s symmetry and the crystallites’ shapes, different

values of K must be applied to the different diffraction peaks

(Langford & Wilson, 1978). Additionally, the measured

material-dependent reflection broadening B must be reduced

by the instrumental contribution �.

Guinier (1963) pointed out that the crystallite broadening b

could be much better calculated from the measured reflection

broadening B using

b ¼ B2 � �2
� �1=2

ð5Þ

instead of a simple subtraction

b ¼ B � �: ð6Þ

Additionally, it is necessary that ‘in any case the correction

must be small if the result is to be valid’ (Guinier, 1963). That

means that, using the Scherrer equation, the ACS must be very

small compared with the standard material used for the

determination of the instrumental broadening.

These points make the ‘stand-alone’ application of the

Scherrer equation a complicated endeavor if all possible

influences are considered in the calculation of the crystallite

sizes. Besides these influences, the strain broadening of the

reflections also plays an important role in many samples. To

separate these two mechanisms, methods like Williamson–

Hall plots (Hall & Williamson, 1951a,b) or those of Warren &

Averbach (1952) have been applied to scattering data. Such

methods were developed to evaluate the internal structure

changes in e.g. cold-rolled metals, using all the boundary

conditions the materials impress on the scattering data, but

not the crystallite sizes of nanomaterial powders.

Ultimately, the correct determination of the average crys-

tallite size using the Scherrer equation directly is not that easy

and in a lot of cases diffraction data may not be good enough

to allow determination beyond the assumption of spherical

crystallites. The convolution of peak broadening functions

based on the Scherrer equation with a calculated diffraction
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Figure 1
Greimas semiotic square of atomic arrangements, with the pairs of
opposites thermodynamically stable (left-hand side) versus metastable
(right-hand side) and big (micrometres, top) versus small (nanoscale,
bottom), within X-ray diffraction.



pattern, as is realized in the common Rietveld programs, is a

much better approach in this respect, because it considers at

least the diffraction angle-dependent instrumental broad-

ening. However, Scardi & Leoni (2006) emphasized that Voigt

profiles are ‘not suitable to model the diffraction patterns of

lognormal dispersed nanocrystalline materials’ and that an ‘a

priori chosen profile functions can hardly adapt to profiles by

any possible combination of line broadening sources’. Never-

theless, the correct reflection treatment concerning K is still

not included and the evaluated ACS is still an estimation.

Considering the realm of nano-crystallites, Weidenthaler

(2011) collected common mistakes and pitfalls and pointed

out that only a combined approach with several methods is

able to obtain reliable information on the shape of nano-

materials. However, for nanomaterials a different approach is

often much better suited, because the diffraction peak breadth

increases so much that on one hand the instrumental broad-

ening corrections do not contribute much to the total peak

broadening, and on the other hand it becomes more and more

difficult to distinguish the sample’s diffraction from the noise

of the measurement (Krämer et al., 2023). Additionally, due to

the increasing influence of the surface atoms (Gesing et al.,

2022) changes from the bulk structure are obtained (Kirsch et

al., 2019). Thus, structure examinations of nanomaterials with

scattering methods are better carried out in real space using

the pair distribution function (PDF) calculated from reci-

procal-space scattering data. For this approach short wave-

length radiation is usually used to obtain a high absolute value

of the scattering vector Q [Q = (4�/�) sin �, where � is half the

scattering angle and � is the wavelength of the incident

radiation] and with this a high resolution � = 2�/Qmax. If the

nano-materials are small enough, structure models used for

real-space fitting procedures may be large enough to cover the

whole nano-crystallite or -particle (Teck et al., 2017) and hence

the area in which the correlation lengths are larger than the

dimensions of the material and crystallite–crystallite, crystal-

lite–particle or particle–particle interactions come into play.

The software DISCUS (Proffen & Neder, 1997) follows this

approach and models not just the internal structure of the

nanomaterial but also the whole ensemble of crystallites and

particles. Another approach, e.g. small-box refinements [see

e.g. ch. 6 of Egami & Billinge (2003)], is to multiply an ideal

infinite structure G(r) with an envelope function f (Howell et

al., 2006) which describes the shape and dimensions of the

nanomaterial,

GobsðrÞ ¼ GinfðrÞ f envðrÞ; ð7Þ

with Gobs(r) the observed PDF, Ginf(r) the PDF of the real

infinite crystallite and f env(r) the envelope function.

1.1. Different envelope functions fenv(r)

A good and widely used approximation for crystallite

shapes is a sphere, which is mostly assumed in crystallite size

determinations and close to the cube-shaped crystallite using

the Scherrer equation with k = 0.94. Howell et al. (2006) used

the assumption of spherical crystallites for their calculations

and gave envelope functions for (i) a single crystallite as

feðr; dÞ ¼ 1 �
3

2

r

d
þ

1

2

r

d

� �3
� �

�ðd � rÞ; ð8Þ

with d = 2R the crystallite diameter and �(d � r) the

Heaviside step function [equation (6) of Howell et al. (2006)],

and (ii) a distribution of such single spheres with a certain

breadth (Howell et al., 2006) as

fDEðr; d; nÞ ¼

exp �
r

D

� �Xn� 2

k¼0

1

k!
1 �

3k

2n
þ

kðk � 1Þ ðk � 2Þ

2nðn � 1Þ ðn � 2Þ

� �
r

D

� �k

ð9Þ

for n � 3.

A different approach followed by Beyer et al. (2022) starts

from the viewpoint of Bragg scattering using pseudo-Voigt-

type diffraction peaks, i.e. a linear combination of a Gaussian

and a Lorentzian peak function, in which each function has a

constant (crystallite size broadening) and a linear part (strain

broadening). They calculated the influence of changes in the

parameters of these functions on G(r) and thus on the

envelope function. This resulted in the observation that such

pseudo-Voigt functions are much better suited to reproducing

atomic displacement parameters (ADPs) obtained from reci-

procal-space refinements in total scattering experiments than

the simple Gaussian parameters Qdamp and Qbroad used for

example in PDFgui (Farrow et al., 2007). However, this

approach seems to be most probably limited to crystalline

samples combined with high-resolution total scattering data.

Furthermore, the determination of the ADPs depends

strongly on the used wavelength: the longer the wavelength

the smaller the influence of the ADPs on the atomic form

factor.

Keeping the Scherrer equation in mind, a crystallite is the

average volume of a sample in which the Bragg equation is

fulfilled and gives rise to diffraction. Consequently, the crys-

tallite size is the apparent average volume measure of the

diffraction when dealing with reciprocal-space data. When the

pair distribution function is considered, all contributions to

the scattering are included and this also means diffuse

contributions outside the Bragg reflections. Additionally,

symmetry considerations do not play any role. In this case it is

more reasonable to call such a volume an apparent average

(pair) correlation volume and the diameter of a spherical

crystallite obtaining the same volume the apparent average

crystallite size. The word ‘apparent’ is used intentionally,

because the peak broadening effects are not only caused by

the sample’s crystallite size but also depend on the ‘visibility’

of the crystallite size in the specific diffraction experiment,

particularly on the X-ray wavelength used.

1.2. ACS lower and upper limits

Besides all instrumental effects, nature sets the lower limit

for diffraction of solid materials to a minimum number of
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atoms allowing us to distinguish between inner (bulk) and

outer (surface) atoms. Assuming a close-packed arrangement

as the most condensed one, this is realized in a cubic or

hexagonal packing of 13 atoms, one inner and 12 outer atoms.

The size limit of such a quantum-crystallite is in the range of

�0.8 nm. Successful detection of diffraction from such a

material is ultimately a question of measurement time.

One point rarely discussed is the existence of an upper limit

for the determination of the ACS, stemming from the prop-

erties of the X-ray source used in the scattering experiments:

the ACS must be smaller than the maximum coherence length

of the radiation used. Thus, the ‘maximum observable ACS’

(MOACS) is an intrinsic property of the diffractometer used

and can be derived (Rafaja et al., 2000) as

MOACS ¼
�2

2��
; ð10Þ

with � the wavelength used and �� the natural spectral width

of the source. Therefore, the MOACS increases quadratically

with the used X-ray wavelength (Fig. 2), whereas the resolu-

tion in the PDF gets worse (Fig. 2). In-house standard X-ray

diffraction with Cu radiation gives a MOACS of�280 nm and,

in the best case, a PDF resolution of �50 pm (assuming a

maximum scattering angle 2� of 135�). Additionally, the

influence of the ACS on the profile breadth depends on the

scattering angle. Guinier [p. 146 of Guinier (1963)] gives the

relation ACS ’ 1000�= sin � as an estimator, resulting in a

MOACS of 180 nm at a 90� scattering angle 2� for Cu radia-

tion. The link between the intrinsic MOACS and the deter-

mined ACS, e.g. from Rietveld refinements, is only obvious in

everyday laboratory work when data from different diffract-

ometers (in-house and large-facility synchrotron data for

example) are compared. The assumption that the ACS is a

material property and as such a constant in all measurements

is true from the viewpoint of the material but not from the

point of view of the measurement, in which the ‘visibility’

could drastically be reduced.

To draw an intermediate conclusion: the longer the wave-

length, the more the focus of the diffraction shifts to large-

scale effects and vice versa. Another important consequence is

that, if the average crystallite size of the sample is larger than

the MOACS of a diffraction experiment, only the MOACS can

be observed and in this way determined.

These correlations were the starting point for the procedure

presented here. The G(r) calculated from in-house Cu (or

longer wavelength) diffraction data naturally does not have a

sufficient resolution for structure determinations. But if the

long-range information is considered it should contain details

about the crystallite size and the respective crystallite size

distribution in its envelope. By this means, the ACS could be

evaluated without dealing with the pitfalls of the Scherrer

equation. A problem to be solved in this respect is that the

observed G(r) has such a poor resolution that the corre-

sponding structure cannot be refined and therefore it is

practically impossible to use equation (7). A procedure named

EnvACS to overcome this obstacle is presented in the

following, meaning that no structural information is necessary.

Subsequently it is shown that this method works on computed

data, enabling the retrieval of input values for spherical

crystallites. Our own standard reference material diffraction

data, as well as such data generously provided by colleagues,

measured with different wavelengths and diffraction geome-

tries, were used to determine the MOACS and to show the

influence of the measurement properties on the data and the

ACS. The results provided by the EnvACS procedure are

compared with those of Rietveld refinements of the diffraction

data of commercial TiO2 with defined average particle sizes.

Finally, the obtained distributions are compared with

published distributions of core–shell nanomaterials.

2. Experimental

2.1. Diffraction data

Our own diffraction data from standard reference material

(SRM) LaB6 were collected using diffractometers with

different configurations:

(i) A Stoe Stadi-MP diffractometer, equipped with an Mo

tube and a primary Ge(111) monochromator, producing pure

�1 radiation, and a Dectris Mythen detector. For transmission

measurements the sample was prepared either in a glass

capillary (Debye–Scherrer, DS) or in a flat sample holder

(TR). The diffractometer can also be configured for reflection

measurements in Bragg–Brentano (BB) geometry.

(ii) A Bruker D8 Discover (D8D) diffractometer equipped

with a Cu tube and a LynxEye XE-T detector.

(iii) A Bruker D8 Advance (D8A) diffractometer equipped

with a Cu tube, a primary Johannson monochromator and a

LynxEye detector. Both Bruker diffractometers were oper-

ated in BB geometry.
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Figure 2
MOACS versus wavelength according to equation (10) using the natural
spectral width of Cu radiation �� = 3.615 � 10� 5 nm and PDF resolution
� assuming a maximum scattering angle 2� of 135�.



(iv) Finally, a Panalytical X’Pert MPD diffractometer,

equipped with a Cu tube, a Ni foil filter and an X’Celerator

detector, also operated in BB geometry.

(v) Synchrotron data were collected at DESY PETRA III

on the P02.1 station (within proposal I-20220093) using a

wavelength of 20.7311 (1) pm.

We gratefully thank the following colleagues for providing

LaB6 scattering data: Miriam Zobel, RWTH Aachen (Stadi-

MP multidetector system with monochromated Ag radiation);

Claudia Weidenthaler, MPI für Kohlenforschung Mühlheim

(Anton Paar XRDynamic 500, Bragg–Brentano, Co radia-

tion); and Bilal Gökce, University of Wuppertal [data from the

Advanced Photon Source BM-33-C, wavelength

77.4975 (1) pm, data presented by Nadarajah et al. (2021)].

2.1.1. Rietveld refinements

Rietveld refinements were carried out using the software

TOPAS (Coelho, 2018; Bruker AXS, Germany) or GSAS-II

(Toby & Von Dreele, 2013) The instrument profiles that

were used for both programs were fitted to LaB6 standard

measurements for the respective diffraction geometry using

the determined MOACS as the crystallite size of the SRM.

2.2. Data treatment and PDF generation

To calculate G(r) from measured diffraction data the soft-

ware pdfGetX3 (Juhás et al., 2013) was used. The pre-treat-

ment of the diffraction data is shown schematically in Fig. 3. If

non-monochromatic radiation was used, an �2-stripping based

on the method published by Rachinger (1948) was carried out.

If no background measurement was available, a manual

correction was performed. This was mainly the case if the data

were collected in BB geometry, for which a constant linear

background contribution plus a 1/X contribution due to air

scattering at low angles could be expected. If Rietveld

refinements were carried out the calculated background

curves from the final refinements were taken. Note that �2-

stripping would only be an acceptable tool for microcrystalline

(Gesing et al., 2022) samples when using the data for an

EnvACS analysis. This procedure should never be used for

small nanocrystalline or quantum-crystalline samples, or for

structure refinements at all, as it strongly reduces the data

quality.

2.3. Approximation of the envelope by extracting the maxima

G(r) contains information about the internal atomic

arrangement of the samples’ crystallites as well as information

about their size distribution, and with this their average size

and the crystallite–crystallite contacts. The experimentally

observed Gobs(r) can be described as a product of Ginf(r) and

f env(r) as given in equation (7). Ginf(r) is the reduced radial

distribution function of an infinite ideal crystal and f env(r) is

the envelope function. The envelope function describes the

form and distribution of the crystallites (Howell et al., 2006;

Neder & Korsunskiy, 2005). The EnvACS approach is to

approximate Gobs(r) by distinct points and thus finally to

extract the experimental f env(r) without using Ginf(r). The

distinct points of Gobs(r) are the absolute maxima in a certain r

range. To enable this, the following procedure and definitions

were used:

(i) The observed Gobs(r) is normalized using its absolute

maximum value max(Gobs(r)), GnormðrÞ ¼ GobsðrÞ=maxðGobsðrÞÞ:

(ii) Gnorm(r) is divided into N intervals between rstart and

rend designated with in and a length l.

(iii) Let max(in) be the maximum value of Gnorm(r) in the

interval in. Accordingly, the corresponding r value for this

maximum is rmax
n .

(iv) Finally, Gnorm(r) is approximated by the sequence

ðaiÞ
N
i¼0 with ai being the tuple rmax

n ;max inð Þ
� �� �

.

Thus equation (7) can now be written in terms of this

approximation: ðaiÞ
N
i¼0 ¼ 1� f envðrÞ. This approximation

enables the fitting of the parameters of f env(r) against the

values contained in the series ðaiÞ
N
i¼0. This procedure was

implemented in a Python script, which carries out all the steps

described above and fits the envelope parameters to the series

of ðaiÞ
N
i¼0 values.

3. Results and discussion

3.1. Proof of concept using synthetic data

To show the validity of the procedure, theoretical G(r) of

LaB6 up to 20, 40, 60 and 120 nm were calculated using

PDFgui (Farrow et al., 2007) and an X-ray wavelength of

100 pm. The spherical crystallite diameter (SCD) function
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Figure 3
Data treatment for the calculation of G(r) using PDFgetX3 for an
EnvACS analysis.



implemented in PDFGui was varied between 1 and 125 nm.

The envelope functions of the calculated G(r) were extracted

and fitted using three models:

(i) The model of Beyer et al. (2022) without consideration of

strain contributions (denoted Beyer et al.).

(ii) A model based on that of Howell et al. (2006) using a

mixture of a single spherical crystallite (smallest size distri-

bution) and a distribution with n = 3 (biggest size distribution)

using a mixing parameter [denoted Howell et al. (mix)].

(iii) A distribution based on that of Howell et al. (2006) in

which, besides D, n was also determined [denoted Howell et al.

(n/D)].

The best fitting results, as can be seen in Fig. 4, were

obtained using model (iii) [Howell et al. (n/D)]. Additionally,
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Figure 4
ACS determined using the three different models named in the top row from synthetic G(r) up to 20, 40, 60 and 120 nm. The red solid line is the 1:1 line
and the blue dot–dashed line is half the MOACS.
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Figure 5
(First and third columns) Determined Gnorm(r) (black), ai (green squares) and envelope function (red curves), and (second and fourth columns)
distribution function (red) and MOACS calculated using the coherence length value of Rafaja et al. (2004) (vertical blue line), for all wavelengths and
geometries of the LaB6 SRM measurements.



it can be seen that the deviations from the expected values and

the errors in the obtained ACS become smaller using a longer

r range in the calculation of G(r).

3.2. Determination of the ACS of LaB6 SRM using different

wavelengths and diffraction geometries

LaB6 is the most commonly used SRM [National Institute

of Standards and Technology (NIST), Maryland, USA;

SRM660c] in X-ray powder diffraction. One can safely assume

that the ACS and strain broadening do not play any role in

diffraction experiments using this material (Black et al., 2020).

Besides our own collected diffraction data, several colleagues

provided standard measurements on additional machines,

which are gratefully acknowledged. Using the EnvACS

procedure, the ACS of LaB6 was determined (Fig. 5). Data

sources and details and the results of the calculations are

collected in Table 1.

The results show that the MOACS depends, as expected, on

the used wavelength and diffraction geometry. Fitting D with a

logistic function (see Fig. 6),

D ¼
MOACS

1þ exp ½cð� � �0Þ�
; ð11Þ

results in MOACS = 184 (13) nm, �0 = 0.078 (5) nm and c =

56 (12) nm� 1. The results are consistent in themselves but also

show a strong influence of the diffraction geometry for Cu

radiation. There are in principle three effects which mainly

influence the MOACS:

(i) Using a monochromator will increase the MOACS due

to reduction of the coherence length of the radiation during

monochromatization.

(ii) The crystallinity of the sample itself could change the

coherence length. In particular, if the crystallites are bigger

than the MOACS, they act themselves like monochromators,

thus influencing the coherence length. The better crystallinity

the samples have, the stronger could this effect be. Never-

theless, such an effect can be excluded while always using the

same standard sample.

(iii) Data manipulation, like �2-stripping, additionally

influences the MOACS as the mathematical treatment influ-

ences not only the �2 reflections but also the remaining �1.

This is at first glance apparent not as a change in the coherence

length but as a narrowing of the �1 reflections themselves,

resulting in a bigger MOACS.

Further details of these effects are given by Rafaja et al.

(2004, 2000) and Guinier (1963). However, all beam-forming

elements in the radiation path (including the sample) could

affect the machine’s apparent coherence length, and the use of

a standard reference material and this procedure allows the

determination of this parameter of the diffractometer. With

regard to the remarks of Guinier (see Introduction), these

results confirm his estimation of an upper boundary of

�200 nm for the determination of the ACS ‘even with the best

instruments’ [p. 146–147 of Guinier (1963)].

3.3. ACS of commercial TiO2

As a reference test case commercial TiO2 samples (pure

anatase) were used, which were manufactured with different

average particle sizes. The ACS values were determined using

Rietveld refinements and the EnvACS procedure. The final

ACS values and the reference values are collected in Table 2,

and G(r), ai and the fitted envelopes of the five samples and

the obtained distribution functions are shown in Fig. 7.
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Figure 6
The D parameters from the envelope fitting collected for all wavelengths
and geometries considered. The red line shows the fit using a logistic
function.

Table 1
Data sources and details.

Used geometries: DS – Debye–Scherrer, TR – transmission (flat sample holder), BB – Bragg–Brentano, P-BB – pseudo-BB. D is the ACS and � the characteristic
width of the distribution obtained by Howell et al. (2006).

Source Device Wavelength/pm Geometry Monochromatic radiation? D/nm �/nm

DESY (our own data) P02.1 20.7311 (1) DS Yes 8.75 (22) 2.76 (1)
M. Zobel StadiMP 55.94218 (8) DS Yes 25 (2) 2.54 (1)
Own StadiMP 70.93171 (4) DS Yes 78.6 (6) 32.08 (4)

Own StadiMP 70.93171 (4) TR Yes 62.0 (6) 27.74 (5)
Own StadiMP 70.93171 (4) P-BB Yes 58 (2) 16.24 (4)
Advanced Photon Source (Gökce) BM-33-C 77.5 DS Yes 117 (2) 25.51 (1)
Own D8 Advance 154.05929 (5) BB Yes 203 (1) 101.6 (2)
Own D8 Discover 154.05929 (5) BB No 253 (8) 126 (1)
Own X’pert MPD 154.05929 (5) BB No 171 (3) 76.6 (4)

Weidenthaler Anton Paar XRDynmic 500 178.901 (1) BB No 162 (1) 72.61 (8)



Correlations between the manufacturer’s APS and the D

value obtained from the envelope fitting, as well as the ACS

and the strain obtained from Rietveld refinements, are shown

in Fig. 8. The ACS determined from Rietveld refinements is

always below the manufacturer’s average particle size. The

determined strain decreases with increasing crystallite or

particle size, showing the increasing bulk contribution to the

crystallite morphology (Gesing et al., 2022). The D parameter

of the fitted distribution agrees well with the average particle

size for all samples except PC 10, where D is approximately

half as large as the average particle size, which could hint that

these large particles do in fact consist of two crystallites. It is
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Figure 7
Determined Gnorm(r) (black), ai (green) and envelope function (red) for the five TiO2 materials. The bottom right panel gives the evaluated distribution
functions.

Table 2
Results from Rietveld refinements (ACS and strain) and EnvACS (ACS,
distribution width) for TiO2 materials (APS is the average particle size as
given by the manufacturer).

Properties Rietveld refinements EnvACS

Sample APS/nm ACS/nm Strain D/nm �/nm

PC 500 7 5.57 (8) 1.27 (7) 10.4 (8) 1.3 (1)
PC 105 26 17.0 (2) 0.53 (2) 26 (2) 3.35 (15)
PC 100 26 17.1 (2) 0.50 (2) 26 (2) 3.25 (15)
PC 50 40 24.3 (3) 0.31 (2) 37 (2) 4.6 (2)
PC 10 152 65 (1) 0.107 (6) 82 (2) 10.3 (2)

Figure 8
(Left) The obtained D values from the fitted envelopes of commercial anatase; (middle) the ACS and (right) the strain from Rietveld refinements plotted
versus the manufacturer’s APS. The red line is the 1:1 ratio line.



noteworthy that the ACS obtained from the Rietveld refine-

ments is quite close to the maximum position of the distri-

bution functions [which could be calculated by nD=ðn þ 1Þ].

This shows that the strong deviation of the ACS obtained from

the Rietveld refinements from the 1:1 line is caused by the

distribution of crystallite sizes in the samples [compare Scardi

& Leoni (2006)]. Additionally, the smaller the ACS is, the

smaller is the influence of the distribution, because the

distribution’s � must be small. The data show an increase in

the deviation with increasing ACS, while at the same time the

strain is reduced drastically and thus can be excluded as a

reason for this behavior (Fig. 8).

3.4. Crystallite versus particle size distributions

For the Fe–Ni alloy core–shell nanoparticles investigated by

Bilal Gökce and co-authors (Khairani et al., 2023), the particle

size distributions (PSDs) obtained using transmission electron

microscopy were compared with sizes recalculated from

synchrotron scattering data measured for three different

syntheses (Fig. 9), which were kindly provided for our inves-

tigation. The synchrotron data were measured using a wave-

length of 77.4975 (1) pm (beamline 33-BM-C at the Advanced

Photon Source, Argonne, Illinois, USA) and data were

collected in either glass or Kapton sample containers for the

purpose of Rietveld refinements. Due to the lack of a sample

container background measurement, the data were manually

corrected and only the glass container data were used, because

the container contributions seemed to be not as strong as

those from the Kapton containers. The final ACS distributions

are shown in Fig. 9 as black lines. For the ‘water’ synthesis the

maxima of the PSD and the ACS distribution fit quite well,

although for sizes above 30 nm the differences become quite

large. This discrepancy is caused by the difference in the shape

of the two distributions – the distribution used is not the log–

normal distribution generally used for the PSD and is not able

to be skewed to the same degree as a log–normal distribution.

The same effects (good fitting of the maxima, stronger

deviation for larger sizes) can be observed for the ‘dried

acetone’ sample. In the case of the ‘acetone’ sample the

maximum of the ACS distribution clearly seems to under-

estimate the real distribution. Ultimately, it can be concluded

that the overall agreement of the ACS distribution is quite

good, considering the rough background correction, the core–

shell character of the particles themselves and their variable

chemical composition, which could also not be considered in

the calculation of G(r) from the scattering data.

4. Summary and conclusion

A new approach to determine the apparent average crystallite

size from in-house diffraction data has been presented. In this
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Figure 9
(Upper row) Normalized Gnorm(r) (black), determined maxima (green squares) and fitted envelope (red), and (lower row) normalized particle size
distributions (purple bars, taken from the reference) and the determined ACS distributions (black lines, calculated by the new procedure using data
provided by B. Gökce, normalized), for the three different syntheses examined by Khairani et al. (2023).



approach the diffraction data are transformed to Gnorm(r)

which is then approximated by its maximum values in certain r

ranges. The maximum series is fitted by a distribution function

for spherical particles. This approach was tested using

synthetic data and three different distribution functions; the

best working approach by Howell et al. (2006) was used for

further evaluations.

Using the SRM LaB6 diffraction data measured on a variety

of diffraction geometries and at different wavelengths showed

that the maximal observable apparent average crystallite size

depends on the wavelength, with an upper limit around

approximately 200 nm for long wavelengths. However, this

approach easily allows the determination of the individual

machine MOACS.

Two test cases have been considered: commercial TiO2

anatase and Fe–Ni alloy nanoparticles. In the first case the new

method gives ACS values which correspond very well to the

ones given by the manufacturer. Respective values deter-

mined by Rietveld refinements deviate more strongly from the

given values the larger the ACS gets. This is caused by the

increasing influence of the distribution function, an effect

already noticed by Scardi & Leoni (2006). In the second case

[data provided by Khairani et al. (2023)] the new method

complies quite well with the observed average particle size

distributions but shows shortcomings because of the different

nature of the used and observed distribution functions.

However, in principle it is easily possible to use different

distribution functions adapted to the respective geometry of

the sample (Usher et al., 2018; Leonardi et al., 2022).

The biggest advantage of the method is that no profile

fitting or similar techniques of reciprocal-space diffraction

data are necessary, so all pitfalls of the Scherrer equation are

avoided. Secondly, it allows the determination of the average

crystallite distribution. Finally, this method could also be used

to determine the exact MOACS of an instrument, which could

then be used to parameterize exactly the instrumental func-

tion for any Rietveld approach.
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