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Ptychography is a powerful computational imaging technique with microscopic

imaging capability and adaptability to various specimens. To obtain an imaging

result, it requires a phase-retrieval algorithm whose performance directly

determines the imaging quality. Recently, deep neural network (DNN)-based

phase retrieval has been proposed to improve the imaging quality from the

ordinary model-based iterative algorithms. However, the DNN-based methods

have some limitations because of the sensitivity to changes in experimental

conditions and the difficulty of collecting enough measured specimen images for

training the DNN. To overcome these limitations, a ptychographic phase-

retrieval algorithm that combines model-based and DNN-based approaches is

proposed. This method exploits a DNN-based denoiser to assist an iterative

algorithm like ePIE in finding better reconstruction images. This combination of

DNN and iterative algorithms allows the measurement model to be explicitly

incorporated into the DNN-based approach, improving its robustness to

changes in experimental conditions. Furthermore, to circumvent the difficulty of

collecting the training data, it is proposed that the DNN-based denoiser be

trained without using actual measured specimen images but using a formula-

driven supervised approach that systemically generates synthetic images. In

experiments using simulation based on a hard X-ray ptychographic measure-

ment system, the imaging capability of the proposed method was evaluated by

comparing it with ePIE and rPIE. These results demonstrated that the proposed

method was able to reconstruct higher-spatial-resolution images with half the

number of iterations required by ePIE and rPIE, even for data with low illu-

mination intensity. Also, the proposed method was shown to be robust to its

hyperparameters. In addition, the proposed method was applied to ptycho-

graphic datasets of a Simens star chart and ink toner particles measured at

SPring-8 BL24XU, which confirmed that it can successfully reconstruct images

from measurement scans with a lower overlap ratio of the illumination regions

than is required by ePIE and rPIE.

1. Introduction

Ptychography is a computational imaging technique for

microscopic observation using a coherent beam such as visible

light, X-rays or electrons (Rodenburg & Faulkner, 2004).

While the spatial resolution of conventional lens imaging is

limited by the characteristics of the lens optics, ptychography

can overcome such limitations; for example, sub-10 nm reso-

lutions have been achieved in both hard and soft X-ray regions

(Deng et al., 2019; Sun et al., 2021), and the possibility to attain

such high spatial resolution in the tender X-ray region was

recently demonstrated using the new 3 GeV high-brilliance

synchrotron radiation facility NanoTerasu (Ishiguro et al.,
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2024). Ptychography has gained much attention for its

capability of imaging electron densities, chemical states,

magnetic structures, crystal orientations, strain fields etc. (Shi

et al., 2019; Gao et al., 2020; Uematsu et al., 2021), with high

spatial resolution and adaptability to different types of

radiation in various fields, such as materials (Grote et al., 2022;

Uematsu et al., 2021; Gao et al., 2020; Pattammattel et al.,

2020) and biological sciences (Polo et al., 2020; Suzuki et al.,

2016; Shahmoradian et al., 2017; Deng et al., 2018). Ptycho-

graphic measurement involves illuminating a specimen (the

object) with a coherent beam (the probe) and scanning the

object with overlapping intervals to obtain the resulting

diffraction intensity patterns. These observations contain

information about the interaction between the object and

incident radiation, encoding the microscopic structure of the

object. In ptychography, a computational algorithm extracts

the illumination wavefield and the complex-valued refractive

index distribution (i.e. phase and absorption contrast) of the

object from the observed data. This algorithm is often called

phase retrieval.

The imaging quality in ptychography generally can be

improved by increasing the exposure time (illumination

intensity) and/or the number of scan positions (overlap ratio

of the illuminated regions). However, such attempts cannot be

applied to radiation-sensitive specimens like biological

samples (Suzuki et al., 2016; Zhou et al., 2020) and polymeric

materials (Wu et al., 2018; De Caro et al., 2016). In computed

tomography, spectroscopic measurements or time-resolved in

situ observations, it is a challenge to perform multiple

measurements of identical samples within the limitation in the

tolerable irradiation dose. Consequently, the reconstructed

images often have low contrast and suffer from noise. For this

reason, the phase-retrieval algorithm must be robust under

conditions of low illumination intensity and/or where scans

have a low overlap ratio. In addition to this requirement, the

algorithm should have a reasonable computational time and

be easily adjusted to various specimens and experimental

conditions to give feedback on imaging results to the experi-

ments within the limited beamtime.

Many phase-retrieval algorithms have been developed for

ptychography. They can be categorized into model-based and

deep neural network (DNN)-based approaches. Model-based

approaches formulate an optimization problem from the

measurement model and solve it by iterative updates based on

alternating optimization. Examples of such model-based

phase-retrieval algorithms include the conjugate gradient

method (Guizar-Sicairos & Fienup, 2008), the extended

ptychographic iterative engine (ePIE) (Maiden & Rodenburg,

2009), the regularized PIE (rPIE) (Maiden et al., 2017), the

difference map (DM) (Thibault et al., 2009), relaxed averaged

alternating reflections (RAAR) (Luke, 2005; Marchesini et al.,

2016), the maximum likelihood estimation method (Thibault

& Guizar-Sicairos, 2012) and the proximal splitting algorithm

(Hesse et al., 2015; Chang et al., 2019a). Some advanced

methods address noise problems, such as camera readout

noise and parasitic scattering noise, to realize image recon-

struction robust to noise (Yatabe & Takayama, 2022; Seifert et

al., 2023; Chang et al., 2019b). Model-based approaches often

incorporate regularization and constraints that reflect prior

knowledge into optimization to improve imaging quality. This

strategy can realize successful imaging even when the number

of observations is insufficient and/or the illumination intensity

is low. However, the regularizer must be designed manually,

and its proper design is often difficult. This strategy also

requires tuning of the hyperparameters associated with the

regularizer.

On the other hand, DNN-based phase retrieval can

successfully reconstruct images without manually designing

regularizers thanks to the data-driven training of the DNN

using a large amount of data (Barbastathis et al., 2019; Bostan

et al., 2020; Nguyen et al., 2018; Rivenson et al., 2018; Sinha et

al., 2017; Li et al., 2018; Cherukara et al., 2020; Hoidn et al.,

2023). DNN-based approaches exploit the end-to-end learning

framework, i.e. the trained DNN directly maps observed

intensity data to phase. These approaches have achieved state-

of-the-art performance in X-ray ptychography (Cherukara et

al., 2020; Hoidn et al., 2023), Fourier ptychography (Nguyen et

al., 2018), holography (Rivenson et al., 2018) and computa-

tional imaging (Sinha et al., 2017; Li et al., 2018). However,

DNN-based phase retrieval has some limitations. The first

limitation is that DNN-based phase retrieval is sensitive to

changes in the experimental conditions and/or specimens (Jo

et al., 2019). Since similarity between the training dataset and

the actual observed data is crucial for DNN to work well,

DNN-based phase retrieval often fails to reconstruct images

when applied to data acquired with an experimental setting

that is not included in the training dataset. The second

limitation is the difficulty of collecting training datasets. While

training of a DNN requires a large amount of data, it is not

easy to measure many types of specimens with a variety of

experimental conditions due to the measurement costs of

ptychography. The difficulty of collecting data was circum-

vented by a physics-constrained unsupervised deep learning

approach (Hoidn et al., 2023), but this method cannot estimate

the probe function, unlike model-based approaches.

In this paper, we propose a ptychographic phase-retrieval

algorithm to overcome the above limitations. The proposed

method combines model-based and DNN-based approaches

by inserting a DNN-based denoiser into an iterative algorithm

derived from the measurement model. In the iterative algo-

rithm, the inserted DNN refines the image at each iteration,

leading to a higher-spatial-resolution image with fewer itera-

tions than are required by the conventional model-based

algorithms. The proposed method is not constructed by

heuristically incorporating a deep denoiser into an existing

method but is derived from the optimization problem with a

fixed-point constraint.

Since the proposed method explicitly incorporates the

measurement model, one can easily address changes in

specimens and experimental conditions by adjusting the

measurement model. This is the advantage of the proposed

method over conventional end-to-end DNN approaches that

cannot address such changes because they require recon-

struction of the dataset and retraining of the DNN.
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In addition, to circumvent the difficulty of collecting a large

number of actual measured images for training the DNN, we

propose to train it using a formula-driven supervised learning

(FDSL) technique (Baradad et al., 2021) which can train the

DNN with systematically generated synthetic training data-

sets.

In experiments using simulation based on a hard X-ray

ptychographic measurement system, we investigated the

spatial resolution of reconstructed images, robustness to the

choice of the hyperparameters and convergence speed of

iterative algorithms by comparing the proposed method with

ePIE (Maiden & Rodenburg, 2009) and rPIE (Maiden et al.,

2017). These experiments demonstrated that the proposed

method was able to reconstruct higher-spatial-resolution

images with half the number of iterations required by ePIE

and rPIE while having robustness to hyperparameters. In

addition, the proposed method was applied to ptychographic

datasets of a Simens star chart and ink toner particles

measured at SPring-8 BL24XU, and we confirmed that it was

able to successfully reconstruct images from measurement

scans with a lower overlap ratio of the illumination regions

than is required by ePIE and rPIE.

2. Problem formulation

2.1. Basic formulation for ptychographic phase retrieval

In ptychography, diffraction intensity patterns are measured

by two-dimensionally scanning a specimen (object) at scan

intervals where the illuminated regions overlap. The diffrac-

tion intensity pattern can be modeled by the squared ampli-

tude of the two-dimensional Fourier transform of the exit

wavefield, which corresponds to the multiplication of the

probe function and object function. Let O 2 CN�N and

P 2 CM�M be the two-dimensional object and probe func-

tions, respectively, with N > M. The rth observed diffraction

intensity pattern Ir 2 R
M�M can be represented as

Ir ¼ jF ½SrðOÞ � P�j2; ð1Þ

where F is the two-dimensional Fourier transform,

Sr : CN�N ! CM�M is the sampling operator that extracts the

rth measurement region, � denotes element-wise multi-

plication and | · |2 denotes the element-wise squared absolute

value.

Ptychographic phase retrieval aims to reconstruct the object

O and the probe P from a set of observed diffraction intensity

patterns {I1, . . . , IR}. We introduce an auxiliary variable

Wr 2 C
M�M that represents the exit wavefield at the rth

position and consider the following cost function:

frðO;P;WrÞ ¼
1

2
kSrðOÞ � P � Wrk

2
F þ �T ðWrÞ; ð2Þ

where k · kF represents the Frobenius norm and the indicator

function �T ðWrÞ, which encodes the constraint, is given by

�T ðWrÞ ¼
0 Wr 2 T;

1 otherwise;

�

ð3Þ

T ¼ fWr 2 C
M�M
j jF Wrj ¼ I1=2

r g: ð4Þ

This cost function measures the difference between an esti-

mate of Wr, whose modulus of the Fourier transform is

constrained to be equal to the observation I1=2
r , and the exit

wavefield calculated from estimates of O and P. From equation

(2), the ptychographic phase-retrieval problem can be

formulated as the following optimization problem:

minimize
O;P;fWrg

R
r¼1

XR

r¼1

frðO;P;WrÞ: ð5Þ

This optimization problem is a basic formulation for ptycho-

graphic phase retrieval and leads to some well known algo-

rithms (Chang et al., 2019a). For example, ePIE can be

interpreted as an algorithm that solves equation (5) by alter-

nating optimization based on the stochastic gradient descent

method; DM corresponds to the Douglas–Rachford algorithm

for solving equation (5). This formulation makes no special

assumptions about scan points and is therefore applicable to

various scans e.g. a Fermat spiral scan (Huang et al., 2014), as

well as a regular grid scan.

Although some algorithms for solving equation (5) have

been proposed (Maiden et al., 2017, 2012; Thibault et al., 2009),

finding better solutions is still challenging. This is because the

problem in equation (5) involves the product of the optimi-

zation variables O and P and has local minima due to its

nonconvexity. To achieve further improvement, we introduce

a DNN-based denoiser into the above formulation.

2.2. Proposed formulation

We propose a formulation based on a fixed-point constraint

(Cohen et al., 2021). The fixed-point constraint enables us to

naturally incorporate a trained DNN into an optimization

problem.

A fixed point of an operator G is defined as a point X

satisfying G(X) = X, i.e. a point that does not change under the

given transformation G(X) (Combettes & Pesquet, 2020). Let

Fix ðGÞ ¼ fX j GðXÞ ¼ Xg ð6Þ

be the set of all fixed points of G. If G is a trained DNN-based

denoiser D, then Fix ðDÞ can be interpreted as an approx-

imation of the set of noiseless images. This interpretation is

based on the fixed points of an ideal denoiser. The ideal

denoiser can remove only noise components from a noisy

image and it does not make any changes to noiseless images.

Therefore, the set of noiseless images can be modeled by the

set of fixed points of the ideal denoiser. Although it is

impossible to use such an ideal denoiser in reality, it can be

approximated by a denoising DNN that has high denoising

performance. Such a denoising DNN is usually trained using

an image dataset and additive Gaussian noise because the

fixed-point constraint is associated with the maximum a

posteriori estimation whose likelihood function is Gaussian

(Romano et al., 2017; Cohen et al., 2021).
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According to the above discussion, we propose to formulate

ptychographic phase retrieval as a problem of finding a

minimizer of equation (5) within the fixed-point set Fix ðDÞ,

the set of noiseless images approximated by a denoising DNN

D. This problem can be written as follows:

minimize
O;P;fWrg

R
r¼1

XR

r¼1

frðO;P;WrÞ such that O 2 Fix ðDÞ: ð7Þ

Since O obtained by solving equation (7) belongs to Fix ðDÞ, it

is expected to be an approximately noiseless reconstruction

image.

3. Optimization methodology

This section presents the proposed algorithm that approxi-

mately solves equation (7) in an alternating-optimization

manner. Since it is based on stochastic gradient descent (SGD)

(Kleinberg et al., 2018) and hybrid steepest descent (HSD)

algorithms (Yamada & Ogura, 2005), we first describe them in

the following subsections and then introduce the proposed

algorithm in Section 3.3.

3.1. Stochastic gradient descent algorithm

Consider the problem of minimizing a cost function that has

the summation form

minimize
X

XR

r¼1

grðXÞ; ð8Þ

where X is a target variable and gr is a differentiable function

associated with the rth observation in the dataset. A standard

gradient descent (GD) solves (8) by iterating the update

X½kþ1� ¼ X½k� � �
PR

r¼1 rgrðX
½k�Þ, where k is the iteration

index, � > 0 is the step size and r is the gradient operator. The

standard GD algorithm updates using the sum of rgr(X) with

all observations. On the other hand, SGD performs one-by-

one updates using rgr(X) at a single observation. For a given

initial value X[0], the algorithm of SGD can be written as

follows:

for k ¼ 0; 1; . . .

for every r 2 R in random orderj
X½k�  X½k� � �rgrðX

½k�Þ

X½kþ1� ¼ X½k�

6
6
6
6
6
4

ð9Þ

whereR ¼ f1; 2; . . . ;Rg. A remarkable feature of SGD is that

it can find a better solution than the standard GD for

nonconvex optimization problems. This feature has been

demonstrated in practical and theoretical studies (Kleinberg et

al., 2018; Keskar et al., 2016).

3.2. Hybrid steepest descent algorithm

The HSD algorithm can handle the following optimization

problem with a fixed-point constraint:

minimize
X

gðXÞ such that X 2 Fix ðGÞ; ð10Þ

where G is an operator and g is a differentiable convex

function with �-Lipschitz gradient rg. An operator A is

�-Lipschitz if

ð8X; 8YÞ kAðXÞ � AðYÞk � �kX � Yk; ð11Þ

where k · k is the Euclidean norm. If � = 1 in equation (11),

then A is called a nonexpansive operator.

The HSD algorithm iteratively computes the following

procedure:

V½kþ1� ¼ X½k� � �rgðX½k�Þ

X½kþ1� ¼ ð1 � �ÞV½kþ1� þ �GðV½kþ1�Þ

$

ð12Þ

where � > 0 is the step size and � > 0 is a hyperparameter.

Assuming that G is nonexpansive and that Fix ðGÞ \

Fix ðId � �rgÞ is nonempty (where Id denotes the identity

operator), this algorithm converges to a globally optimal

solution to equation (10) under the conditions that � 2 (0, 2/�)

and � 2 (0, 1/2) (Cohen et al., 2021). Note that our problem in

equation (7) is nonconvex, and thus the global convergence

cannot be guaranteed. Even so, it is empirically known that

the HSD algorithm can work well for nonconvex problems

and perform stable updates in practice with hyperparameters

that satisfy the convergence conditions.

3.3. Proposed algorithm: PINE

We propose a ptychographic phase-retrieval algorithm,

named PINE (ptychographic iterative algorithm with neural

denoising engine). It consists of the SGD step in (9) and a

denoising step corresponding to the second line of (12) as

follows.

The SGD-based step in PINE updates each variable using a

single observation and iterates it for all observations in

randomly shuffled order. For the rth measurement, the update

formulas of each variable are derived from the alternating

optimization for the problem of minimizing fr.

First, Wr is computed by solving the following subproblem,

where O and P are treated as constants:

minimize
Wr

1

2
kSrðOÞ � P � Wrk

2
F þ �T ðWrÞ: ð13Þ

For simplicity, let eWr ¼ SrðOÞ � P. A solution to equation (13)

is given by the projection of eWr onto T in equation (4) as

follows:

Wr ¼ PT ð
eWrÞ ¼ F � 1½I1=2

r � �ðF eWrÞ�; ð14Þ

where F � 1 is the two-dimensional inverse Fourier transform

and � is the element-wise modified sign function defined by

½�ðXÞ�ij ¼
Xij=jXijj Xij 6¼ 0;

1 Xij ¼ 0:

�

ð15Þ

The computation of Wr in equation (14) corresponds to the

operation that replaces the modulus of the Fourier transform
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of the exit wave computed from O and P with the square root

of the observed diffraction pattern.

Next, O and P are updated by the gradient decent for the

following subproblems using Wr computed by equation (14):

minimize
Or

1

2
kOr � P � Wrk

2
F; ð16Þ

minimize
P

1

2
kOr � P � Wrk

2
F; ð17Þ

where Or = Sr(O). The subproblems are derived by fixing

either O or P and treating the other as the optimization

variable in the problem of minimizing fr. By setting the step

size parameter � to a value that satisfies the convergence

condition of the HSD algorithm, i.e. � 2 (0, 2/�), the stochastic

gradient descent updates for equations (16) and (17) are

obtained as

bOr ¼ Or � �
P�

kPk2
max

� ðOr � P � WrÞ; ð18Þ

bP ¼ P � �
O�r

kOrk
2
max

� ðOr � P � WrÞ; ð19Þ

where (·)� represents the complex conjugate, k · kmax is the

maximum absolute value among all elements of the input

variable and �, � 2 (0, 2) are hyperparameters. The step size

parameters of equations (18) and (19) are �=kPk2
max and

�=kOrk
2
max, respectively, where kPk2

max and kOrk
2
max are the

Lipschitz constants of the gradients of fr with respect to Or and

P, respectively. The updated object bO can be obtained by

replacing the region of O extracted through Sr with bOr, and

this operation is denoted by bO ¼bSrðbOr;OÞ.

After the above SGD-based updates for all observations, a

denoising step is performed as follows:

bO ð1 � �ÞbOþ �DðbOÞ: ð20Þ

This step corresponds to the second line of the HSD algorithm

in (12) and refines the object image using a DNN-based

denoiser D. The hyperparameter � is selected from the open

interval (0, 1/2), which satisfies the convergence condition of

HSD. We empirically confirmed that tuning of � is not

important for the final results, and hence we set � = 0.49 for all

experiments in Section 5.

The entire procedure of PINE is summarized in the

following:

It can be considered as a modified HSD algorithm because the

gradient decent update in the first line of (12) is replaced by

the SGD-based updates. The key component of PINE is the

denoising step using DNN, which provides fast convergence

and high-resolution reconstruction images. To make the trial

easier, we provide the MATLAB code of the proposed

methods at https://github.com/mada-ko/PINE.

PINE includes ePIE as a special case: � = 0. Compared with

ePIE, PINE requires additional computation due to the

denoising step, but it can obtain reconstruction images faster

in practice thanks to its faster convergence speed. Further-

more, PINE inherits some useful properties of ePIE: ease of

hyperparameter tuning and stable convergence. The hyper-

parameters of PINE to be tuned are the step sizes � and � for

the object and probe updates, which can be adjusted intui-

tively like for ePIE. The experiments in Section 5 demonstrate

that PINE is robust to hyperparameters and experimental

conditions and can reconstruct images stably.

4. Training of the DNN-based denoiser

In this section, we explain how to construct the DNN-based

denoiser D used in PINE. Training of the DNN generally

requires a large amount of data; however, it is difficult to

collect many real object images due to the measurement cost

of ptychography. To overcome this difficulty, the proposed

method trains D using the generated synthetic dataset

described in Section 4.1. Moreover, it is necessary to train D to

be a nonexpansive operator to satisfy the convergence

condition of the HSD algorithm. The method of training D to

be nonexpansive is described in Section 4.2.

4.1. Generation of synthetic training dataset

We consider the method of training a DNN-based denoiser

without real datasets of object images. One possible choice is

to use publicly available image datasets, e.g. ImageNet (Deng

et al., 2009), MsCoco (Lin et al., 2014) etc., instead of a real

object image dataset. However, the usage of such datasets is
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often restricted and they can be unavailable because of

privacy and ethical concerns (Birhane & Prabhu, 2021).

For this reason, we adopt an approach that generates

synthetic data for training the DNN, called formula-driven

supervised learning (FDSL) (Kataoka et al., 2022a,b; Baradad

et al., 2021). In experimental study of FDSL, Baradad et al.

(2021) investigated image-generation models that produce

synthetic images from random processes. This study demon-

strated that a DNN trained with a synthetic dataset may

achieve comparable performance to one trained with a real

dataset. Specifically, learning with the dead leaves model

provides high performance for specialized tasks, such as the

medical or aerial photography domain. According to this

result, we generate synthetic training datasets using the dead

leaves image models (Baradad et al., 2021).

The dead leaves model generates synthetic images by

randomly positioning simple shapes (circles, triangles and

rectangles) until the image canvas is covered. Variants of the

dead leaves model have been proposed by Baradad et al.

(2021), and we construct the training dataset using two types

of models among them: the dead leaves model with rotated

multi-size shapes (DL-Diverse) and that with textured shapes

(DL-Textured). Fig. 1 shows examples of images generated by

DL-Diverse and DL-Textured. We add white Gaussian noise

to the generated images and construct a training dataset for

denoising, consisting of pairs of a noisy image and its corre-

sponding ground truth.

4.2. Training of the nonexpansive DNN-based denoiser

In this section we explain how to train a nonexpansive

DNN-based denoiser. A schematic illustration of the training

is shown in Fig. 2.

We first describe the DNN architecture used in the

proposed method. To construct a DNN-based denoiser, we use

DnCNN (Zhang et al., 2017), which is one of the de facto

standard DNNs for denoising tasks. DnCNN has a simple

architecture consisting of convolution (Conv) and rectified
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Figure 1
Generated synthetic dataset for training the DNN. The top and bottom rows show examples of images generated by the DL-Diverse model and DL-
Textured model, respectively.

Figure 2
Schematic illustration of training of a nonexpansive DNN-based denoiser.



linear unit (ReLU) layers, as in Fig. 2. For the training of

DnCNN, the following mean squared error (MSE) is mini-

mized through backpropagation:

MSE ¼ kY � D̂ðXÞk2
F ¼ kY � ½X � DnCNNðXÞ�k2

F; ð21Þ

where X is a noisy image input to DnCNN, Y is the ground

truth image, DnCNN(X) represents the output of DnCNN and

D̂ ¼ Id � DnCNN. This MSE indicates that DnCNN is

trained such that its output is close to the residual Y � X, i.e.

added noise. Thus, DnCNN estimates the noise included in

input X and performs denoising by subtracting it from X.

In general, a trained DNN is not a nonexpansive operator,

unless a nonexpansiveness constraint is imposed. We exploit

RealSN (Ryu et al., 2019), a spectral normalization method, to

constrain DnCNN to be nonexpansive. RealSN computes the

Lipschitz constant of the operation in a layer and divides its

parameters by the Lipschitz constant, which makes the

operation in the layer nonexpansive. Since DnCNN has a

simple structure, the entire operation is nonexpansive if the

operation in each layer is nonexpansive (Ryu et al., 2019). We

can train nonexpansive DnCNN by applying RealSN to each

layer after every weight parameter update through back-

propagation.

The DNN-based denoiser constructed in this way is for real-

valued images but can perform denoising effectively even for

complex-valued objects. Denoising of a complex-valued object

O with the denoiser D̂ can be represented by

DðOÞ ¼ D̂½<ðOÞ� þ iD̂½=ðOÞ�; ð22Þ

where <ð�Þ and =ð�Þ are real and imaginary parts of the input

complex number, respectively, and i is the imaginary unit.

Another possible way to denoise O using D̂ is to indepen-

dently apply D̂ to the amplitude and phase of O. However, this

approach may suffer from the phase-wrapping problem and is

therefore not adopted in this paper.

5. Experiments

To evaluate the imaging capability of the proposed method,

we conducted experiments with simulated and real data. The

simulation mimics the hard X-ray ptychographic measurement

system at the imaging station of the Hyogo ID beamline

BL24XU at SPring-8 (Takayama et al., 2021). Since particle

dispersions and micro-structured samples are common

subjects of observation using ptychography, we chose TiO2-

particle-filled polymethyl methacrylate film as the specimen in

the simulation. The details of the simulation configuration are

described in our previous study (Yatabe & Takayama, 2022).

In the experiment, we used two types of simulation data: low-

dose data and high-dose data, with diffraction intensities at the

origin (I0) of 108 and 1010 photons per pixel, respectively. The

diffraction intensity determines the noise level, with lower

intensities corresponding to more noise contamination. For

the experiment with real data, we used the actual measure-

ments of a Siemens star chart and ink toner particles. The

measurement conditions of the data are also described in the

previous study (Yatabe & Takayama, 2022).

To assess the image quality of reconstructed object images

for simulation data, we used the Fourier ring correlation

(FRC) (Rosenthal & Henderson, 2003):

FRCðSÞ ¼

P
i;j2IðSÞ�½i; j�b��½i; j�

ð
P

i;j2IðSÞ j�½i; j�j2
P

i;j2IðSÞ j
b�½i; j�j2Þ

1=2
; ð23Þ

where � is the Fourier transform of a reconstructed object

function,b� is the Fourier transform of the true object function

obtained by simulation and IðSÞ is the set of indices at the ring

with radius r that corresponds to a given spatial frequency S.

The closer FRC is to 1, the higher the spatial resolution of the

reconstructed image will be. For accurate FRC computation,

we performed some preprocessing. We first corrected the

amplitude scale and phase offset between true and recon-

structed images, and then they were subpixel-aligned using the

phase-only correlation method. To eliminate the influence of

the peripheral area of the image where the illumination

intensity is insufficient, i.e. the total number of irradiated

photons is less than 1% of the maximum, the true and

reconstructed images were set to a vacuum. In these simula-

tion data, the amplitude transmittance was close to 1, and the

peripheral area was small compared with the comparison

region, so edge effects can be ignored.

For the training of the DNN, we constructed a synthetic

dataset that consists of 500 images for each of two image

models, DL-Diverse and DL-Textured, i.e. 1000 images in

total. The generated images were 8 bit images of size

128 � 128, and their intensity range was [0, 255]. Gaussian

noise with a standard deviation � = 15 was added to them.

When training the denoiser, we normalized these images to

the range [0, 1]. The dataset generation and the training of the

DNN were implemented in Python 3.10 and were run on a

2.0 GHz Intel Core i9-13900 processor with 32 GB RAM and

NVIDIA GeForce RTX 3060. The computation time for

generating these 1000 images was 6 min. We trained the DNN-

based denoiser for 50 epochs, which required less than 8 h.

5.1. Performance comparison with simulation data

To perform a reasonable assessment, we adopt ePIE and

rPIE as comparison methods, because comparison with algo-

rithms derived in significantly different ways from the

proposed method may make the effect of the DNN-based

denoiser unclear. For all the algorithms, the initial probe

estimate was set to a bump function with support approxi-

mately the same size as the simulation probe, and the initial

object estimate was set to a vacuum (i.e. 1). The sequences to

access the indices of diffraction patterns in random order were

kept consistent among the different algorithms.

All algorithms have hyperparameters � and �, which were

set to the best values among 100 different combinations. For

ePIE and PINE, both � and � were selected from {0.1m | m =

1, 2, . . . , 10}; for rPIE, � and � were selected from {0.05m |

m = 1, 2, . . . , 10} and {0.5m | m = 1, 2, . . . , 10}, respectively.

The range for rPIE was determined according to the suggested
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hyperparameter ranges described by Maiden et al. (2017). The

selected hyperparameter combinations (�, �) in the low-dose

data were (0.3, 0.2) for ePIE, (0.15, 5) for rPIE and (0.5, 0.1)

for PINE; those in the high-dose data were (0.4, 0.8) for ePIE,

(0.1, 3.0) for rPIE and (0.8, 0.5) for PINE. Robustness to

hyperparameter selection is discussed in Section 5.2.

The reconstructed images are shown in Fig. 3. As can be

seen in Fig. 3(b), for low-dose data PINE obtained higher-

quality images, i.e. closer to the ground truth images,

compared with the other methods even when the number of

iterations was 150. On the other hand, in the reconstructed

amplitude image of ePIE, we can find artifacts that enhance

the contour of particles in white, by comparing the recon-

structed and ground truth images.

This artifact is known as the refractive contrast (Born &

Wolf, 1999; Paganin et al., 2002; Snigirev et al., 1995) and often

occurs when the algorithm does not converge sufficiently. The

reconstructed image of rPIE for low-dose data was contami-

nated with more noise than those of the other methods. From

Fig. 3(c), it is found that for high-dose data PINE and rPIE

were able to successfully reconstruct the images even with 150

iterations, while ePIE obtained an image containing refractive

contrast artifacts with 150 iterations.

The FRC of the reconstructed images for each algorithm is

shown in Fig. 4, where the blue, green and yellow lines

represent ePIE, rPIE and PINE, respectively, and the solid

and dashed lines correspond to the results with 150 and 300

iterations. For low-dose data, PINE with 150 iterations

outperformed the other methods with 300 iterations, and for

high-dose data, PINE was able to achieve higher spatial

resolution than ePIE and comparable resolution to rPIE. This

indicates that PINE can obtain higher-resolution images with

half the number of iterations required by ePIE and rPIE,

especially for low-dose data.
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Figure 3
Comparison of the images reconstructed from the simulated data, demonstrating the convergence properties. (a) The ground truth of the amplitude and
phase images. (b) The reconstructed images for low-dose simulations, and (c) those for high-dose simulations. The first and second rows show the
amplitude and phase of the constructed images after 150 iterations, and the third and fourth rows show those after 300 iterations, for ePIE, rPIE and
PINE. The insets show a magnified area. The black bars in the second row indicate 4 mm, and those in the insets are 0.5 mm.

Figure 4
Convergence properties of each algorithm evaluated with FRC curves.
(a) FRC curves for low-dose simulation, and (b) those for high-dose
simulation. The blue, green and yellow lines correspond to ePIE, rPIE
and PINE, respectively. The dashed and solid lines represent the results
of the 150 and 300 iterations, respectively.



5.2. Robustness to hyperparameter selection

The practical application of ptychography requires a phase-

retrieval algorithm that is robust to the choice of hyperpara-

meters and can be intuitively tuned. One of the algorithms

that meet these requirements is ePIE, which is used in many

practical applications such as multi-slice 3D imaging (Maiden

et al., 2012), measurement position correction (Zhang et al.,

2013; Tripathi et al., 2014) and multi-mode reconstruction (Li

et al., 2016). To evaluate the robustness of the algorithms to

the choice of hyperparameters, we examined how the changes

in hyperparameters affect the FRC of the reconstructed image

and compared PINE with ePIE and rPIE.

Fig. 5 shows the FRC at the spatial frequency of 12.5 mm� 1,

which is half of the maximum spatial frequency, for the 100

hyperparameter combinations described in Section 5.1. For all

algorithms, the FRC was computed from the reconstructed

image after 300 iterations. PINE was able to stably achieve

higher spatial resolution for both low-dose and high-dose data

and for most hyperparameter combinations. This demon-

strates that the proposed method can determine appropriate

hyperparameters in a shorter time than ePIE. The behavior of

FRC for hyperparameters in PINE is similar to that in ePIE.

This can be interpreted as PINE inheriting the good properties

of ePIE with respect to hyperparameters because it includes

ePIE as a special case. This result implies that PINE can be

used in place of ePIE and could improve imaging capability in

many practical applications.

5.3. Comparison of computational time

The convergence speed of the algorithm is important for

ptychography measurements to be conducted without delay.

The convergence speed and computational time of PINE were
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Figure 6
Comparison of computational time. (a) Computational time (s) versus the
number of iterations. (b) FRC at a spatial frequency of 18.75 mm� 1 versus
computational time (s). The blue, green and yellow lines correspond to
ePIE, rPIE and PINE, respectively. The dashed and solid lines in (b)
represent the results for the low-dose and high-dose data, respectively.

Figure 5
Robustness of each algorithm against the hyperparameters. FRC at a spatial frequency of 12.5 mm� 1, half of the maximum spatial frequency, is mapped
for 100 different combinations of the hyperparameters � and �. (a) FRC for low-dose simulation, and (b) FRC for high-dose simulation. They were
computed from the reconstructed images after 300 iterations.



compared with those of ePIE and rPIE. All methods were

implemented in MATLAB R2023a and run on a 2.0 GHz Intel

Core i9-13900 processor with 32 GB RAM. We recorded the

computational time of each algorithm for simulated data. The

hyperparameters for each method were the same as in

Section 5.1.

Fig. 6 shows a comparison of the computational time. The

blue, green and yellow lines correspond to ePIE, rPIE and
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Figure 7
Reconstructed images of the Siemens star chart data with different overlap ratios. (a)–(c) Amplitude (upper) and phase (lower) images reconstructed by
(a) ePIE, (b) rPIE and (c) PINE, with overlap ratios indicated at the top. The black bars in the main images represent 4 mm, and those in the insets are
1 mm.



PINE, respectively. The computational time (s) against the

number of iterations is shown in Fig. 6(a). The average

computational time per iteration was 2.8 s for ePIE, 3.1 s for

rPIE and 3.6 s for PINE. Since PINE requires additional

processing (i.e. the computation of the denoising step)

compared with the other methods, it took slightly more

computational time for each iteration. However, PINE can

obtain higher-resolution reconstruction images with fewer
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Figure 8
Reconstructed images of the ink toner particles with different overlap ratios. (a)–(c) Amplitude (upper) and phase (lower) images reconstructed by (a)
ePIE, (b) rPIE and (c) PINE, with overlap ratios indicated at the top. The black bars in the main images represent 4 mm, and those in the insets are 1 mm.



iterations than the other methods in practice. This can be

confirmed from Fig. 6(b). This figure shows the FRC at a

spatial frequency of 18.75 mm� 1 against computational time

(s), where 18.75 mm� 1 corresponds to three-quarters of the

maximum spatial frequency, and the dashed and solid lines

represent the results for the low-dose and high-dose data,

respectively. For high-dose simulation, the time it took to

achieve the FRC of over 0.95 was 500 s for ePIE, 375 s for

rPIE and 147 s for PINE. These results demonstrate that

inserting a denoiser does not impose high computational costs

and can improve convergence speed.

5.4. Results for real data

In general, imaging capability improves as the number of

measurements of diffraction patterns increases (Bunk et al.,

2008). However, measurement scans with a high overlap ratio

cause serious radiation damage to a specimen in some cases of

actual ptychographic measurement. Therefore, it is desirable

for the phase-retrieval algorithms to reconstruct a high-reso-

lution image using fewer measurements. To evaluate imaging

capability for different overlap ratios, we decimated the

observed diffraction patterns of the real data, the Siemens star

chart and the ink toner particles. We set the hyperparameters

(�, �) = (1, 0.1) for both ePIE and PINE, and (�, �) = (0.1, 1)

for rPIE.

Fig. 7 shows the reconstructed images of the Siemens star

chart data with different overlap ratios. As can be seen in this

figure, ePIE and rPIE suffered from degradation of the

amplitude images with a 50.0% overlap ratio and severe

degradation of both amplitude and phase images with a 37.5%

overlap ratio. In the amplitude images reconstructed by rPIE,

the contour of the radial slit pattern is enhanced brighter on

the slit hole side (white area) and darker on the tantalum foil

side (dark area), which is characteristic of refraction contrast

(Snigirev et al., 1995) as mentioned in Section 5.1 and suggests

that this is an artifact due to the slight shift of the recon-

struction plane downstream in the optical axis direction. On

the other hand, PINE obtained similar amplitude and phase

images for all overlap ratios and successfully reconstructed

images even for a 37.5% overlap ratio. Fig. 8 shows the

reconstructed images of the ink toner particles with different

overlap ratios. Similarly to Fig. 7, even for the overlap ratio of

37.5%, PINE was able to reconstruct images closer to the

reconstructed one at the overlap ratio of 75.0%, while severe

degradation was observed in the amplitude images for ePIE

and both the amplitude and phase images for rPIE. These

experimental results demonstrate that PINE is more robust to

the change in overlap ratio than the other methods.

6. Conclusion

This paper has proposed the ptychographic phase-retrieval

algorithm called PINE, which combines model-based and

DNN-based approaches. The proposed method incorporates a

denoising DNN into an iterative algorithm derived from the

measurement model and improves both the imaging capability

and the robustness to changes in experimental conditions. The

DNN is trained with synthetic datasets generated by the FDSL

techniques to avoid the difficulty of collecting many measured

specimen images for training. Experimental results using both

simulated and real data showed that PINE successfully

reconstructed high-spatial-resolution images with half the

number of iterations required by ePIE and rPIE while

inheriting the favorable properties of ePIE, such as stable

convergence and robustness to hyperparameters. The idea of

using a denoising DNN to assist an iterative algorithm in

finding better reconstruction images could be easily incorpo-

rated into other methods like DM and RAAR, which could be

a direction of future work. Our future work includes valida-

tion of such extended methods, improvements of the denoising

performance of nonexpansive DNNs, GPU-based imple-

mentation of the proposed method, and applying PINE to

practical applications such as 3D imaging through a multi-slice

approach and measurement position correction.
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