
research papers

J. Appl. Cryst. (2024). 57 https://doi.org/10.1107/S1600576724007295 1 of 15

ISSN 1600-5767

Received 27 March 2024

Accepted 23 July 2024

Edited by S. Disch, Universität Duisburg-Essen,

Germany

Keywords: small-angle neutron scattering;

Porod scattering; superconductivity; vortex

matter.

Published under a CC BY 4.0 licence

Pushing the limits of accessible length scales via a
modified Porod analysis in small-angle neutron
scattering on ordered systems

Xaver Simon Brems,a,b* Sebastian Mühlbauerb* and Robert Cubitta*

aLarge Scale Structures Group, Institut Laue–Langevin, 71 Avenue des Martyrs CS 20156, 38042 Grenoble Cedex 9,

France, and bHeinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstrasse 1, 85748

Garching, Germany. *Correspondence e-mail: bremsx@ill.fr, sebastian.muehlbauer@frm2.tum.de, cubitt@ill.fr

Small-angle neutron scattering is a widely used technique to study large-scale

structures in bulk samples. The largest accessible length scale in conventional

Bragg scattering is determined by the combination of the longest available

neutron wavelength and smallest resolvable scattering angle. A method is

presented that circumvents this limitation and is able to extract larger length

scales from the low-q power-law scattering using a modification of the well

known Porod law connecting the scattered intensity of randomly distributed

objects to their specific surface area. It is shown that in the special case of a

highly aligned domain structure the specific surface area extracted from the

modified Porod law can be used to determine specific length scales of the

domain structure. The analysis method is applied to study the micrometre-sized

domain structure found in the intermediate mixed state of the superconductor

niobium. The analysis approach allows the range of accessible length scales to be

extended from 1 mm to up to 40 mm using a conventional small-angle neutron

scattering setup.

1. Introduction

Small-angle neutron scattering (SANS) is a widely used

technique to study bulk samples with length scales in the range

of 10–1000 nm. The isotope specificity of neutrons and their

ability to interact with magnetic spins make SANS a powerful

tool to determine the size and shape of structures in fields

ranging from biology (Jeffries et al., 2021) to magnetism and

superconductivity (Mühlbauer et al., 2019). However, the

accessible length scales in a conventional SANS setup are

limited by the available neutron wavelengths and resolvable

scattering angles, with a rough upper limit for resolvable

structures of approximately 1 mm. We present a novel method

of circumventing this limitation using a modification of the

well known Porod law in the case of aligned structures. We

showcase our approach making use of the highly aligned

domain morphology of the intermediate mixed state in the

model superconductor niobium.

Superconductors are most commonly classified according to

their response to an applied magnetic field. Type-I super-

conductors completely expel the magnetic field, called the

Meissner state, while type-II superconductors allow for an

additional state where the field can enter in a quantized

manner in the form of flux lines, known as the mixed state. The

flux lines are extended along the magnetic field direction and

their mutual interaction is conventionally repulsive.

Frequently, this leads to the formation of a hexagonal lattice

consisting of flux lines that are aligned nearly parallel to the
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direction of the magnetic field. This structure, most commonly

known as a flux line lattice (FLL), can be described by only

two lattice vectors (Huebener, 2001). It is similar to other

aligned periodic arrangements such as liquid crystals (Lee et

al., 2006).

A single flux line contains a quantum of magnetic flux.

Therefore, the area density of flux lines is directly proportional

to the mean internal field. This makes the FLL in super-

conductors an interesting model system, where we can tune

the lattice spacing by changing the magnetic field. For

example, at an applied field of 100 mT the inter flux line

distance for a hexagonal lattice is approximately 150 nm.

For superconductors on the verge between type I and type

II, for example in niobium, we find, below a certain applied

field, a coexistence of the FLL interspersed with the Meissner

state separated on the micrometre length scale, as schemati-

cally depicted in Fig. 1. The resulting domain structure is most

commonly known as the intermediate mixed state (IMS)

(Träuble & Essmann, 1967; Krägeloh, 1970). Since its first

observation (Träuble & Essmann, 1967), the IMS and similar

domain structures have been studied in a multitude of

superconducting systems (Christen et al., 1980; Ge et al., 2014;

Vinnikov et al., 2019) and have recently been rediscovered in

both theory and experiment (Ooi et al., 2021; Brems et al.,

2022; Vagov et al., 2023; Backs et al., 2023). While the exact

theoretical explanation depends on the superconducting

system and is still an active field in theory, in general, the

domain formation can be understood as a result of an addi-

tional attractive component in the conventional mutual

repulsive flux line interaction leading to a locked-in lattice

spacing (Brandt & Das, 2011; Babaev & Silaev, 2013).

Besides being an interesting topic in superconductivity, the

IMS also represents an ideal model system for universal

domain physics: it exhibits typical domain shapes such as

tubular, laminar and labyrinth-like (Krägeloh, 1970) which are

also observed in other physical, chemical and biological

systems (Seul & Andelman, 1995). This renders the IMS a

remarkable model system, as not only the inter flux line

spacing of the FLL but also the length scale of the domain

structure can be easily tuned via changing the magnetic field

and temperature (Backs et al., 2019).

SANS is routinely used to derive characteristic super-

conducting parameters from the FLL SANS pattern such as

the London penetration depth �L and Ginzburg Landau

coherence length �GL (Eskildsen, 2011), and can also shed

light on the superconducting pairing mechanism (Eskildsen,

2011; Campillo et al., 2021). One of its main advantages is the

use of 2D position-sensitive detectors, allowing for an easy

extraction of orientation-dependent structural information.

Especially in the case of the FLL, seeing the full 2D picture of

the Bragg peak scattering is invaluable for a complete

understanding of the FLL structure (Mühlbauer et al., 2019).

However, SANS would struggle to capture lengths much

larger than 1 mm as found, for example, in the domain struc-

ture of the IMS.

An upper limit in SANS of d = 4 mm for a large sample of

15 mm was obtained on D11 located at the Institut Laue–

Langevin (ILL) via the combined use of neutron focusing

lenses with a special instrument configuration countering the

effects of gravity (Cubitt et al., 2011). For sample sizes of the

order of a few millimetres, this upper limit is closer to 1 mm.

Techniques such as ultra-small-angle neutron scattering using

interferometry (USANS) can extend the accessible length

scales to approximately 30 mm (Hainbuchner et al., 2002).

However, this comes at the cost of long counting times due to

the use of multiple crystal reflections for the monochromator

and analyzer. Additionally, USANS is not able to capture a

possible orientational dependence of the scattering pattern

due to the 1D nature of the technique.

In the specific case of the IMS domain structure, USANS

can give direct access to the average size of the domains.

However, the need for an additional sample environment

(magnet and cryostat) increases the counting time even

further. The lack of orientational information on the scat-

tering pattern persists, adding to the disadvantages of USANS

for the study of the IMS. It would be a huge advantage if we

could extend the accessible length scales of conventional

SANS to cover both the lattice spacing and the micrometre

length scale of the IMS, thus giving access to the entire system.

Here we present a novel approach to further push the limits

and extract large real-space length scales from the modified

Porod analysis of SANS data. Porod scattering (Porod, 1982)

originates from the scattering of a random arrangement of flat,

smooth surfaces. The isotropic scattering can be described by a

simple power law of the form q� 4, with the modulus of the

wavevector transfer q defined as

q ¼
4�

�n

sinð�Þ; ð1Þ

where the neutron wavelength is �n and 2� is the angle

between the incoming and scattered neutron. Conventional

Porod scattering can be described by

IPorodðqÞ ¼ 2�ð��Þ
2 1

q4

S

V

�
�
�
�

spec

: ð2Þ

The intensity as a function of q is determined only by the

scattering contrast �� and the quantity ðS=VÞjspec, known as

the specific surface area. ðS=VÞjspec is equivalent to the number

density of scatterers per unit volume multiplied by the surface

area of a single scatterer and has the unit of an inverse length.

We show that, in the special case of an aligned system, such as

the IMS, the inverse of ðS=VÞjspec is directly related to a

specific length scale of the domain structure. Via this method,

we extract the characteristic length scales of up to 40 mm of the

domain structure found in the IMS. Our results are consistent

with previous attempts to determine this length scale from

USANS (Reimann et al., 2017), Landau’s theory of domains in

superconductors (Landau, 1937) and the well established

method of deriving correlation lengths from Bragg peak

widths (Cubitt et al., 1992; Cubitt, 1994; Grigoriev et al., 2010)

that can be connected to the finite size of the FLL domains.

The paper is structured as follows. We first present the

experimental setup and experiment geometry in Section 2. In
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Section 3, we then focus on the SANS data analysis method to

determine quantitative information from the FLL Bragg

peaks and the power-law scattering of the domain structure via

the modified Porod analysis. The results from our analysis are

presented and discussed in Section 4 and Section 5, where we

additionally compare our results with previous findings and

Landau’s theory of domains in superconductors. Finally, we

summarize our main findings in Section 6.

2. Experimental setup

The SANS measurements were performed using the small-

angle neutron diffractometer D33 at the ILL (Dewhurst et al.,

2016). The standard FLL SANS experiment geometry is

depicted in Fig. 1, showing the orientation of the sample with

its crystallographic orientation, the direction of the applied

magnetic field Bapp and the coordinate system used from now

on.

We used a large prism-shaped high-purity Nb single-crystal

sample (l � w � t = 13 � 3.8 � 1 mm) in this study. The

sample was cut from the same Nb single crystal obtained from

Heraeus used in previous studies on the IMS (Reimann et al.,

2017; Backs et al., 2019; Brems et al., 2022). A residual resis-

tivity ratio of RRR ’ 390 (Brems et al., 2022) and a super-

conducting transition temperature in zero field Tc = 9.25 K

obtained from transport and AC magnetic susceptibility

measurements, respectively, were measured using a smaller

sample cut from the same single crystal. The value of Tc agrees

well with the literature value of Nb (Stromberg, 1965) and

confirms the high degree of purity. The [101] and [010] crys-

tallographic directions were measured to be parallel to the

large sample face surface normal and parallel to the long

sample dimension, respectively, within a few degrees using an

X-ray diffractometer, resulting in the orientation as shown in

the coordinate system of Fig. 1. The sample was positioned in

the neutron beam with the long sample dimension parallel to

the x axis and the large sample face aligned perpendicular to

the magnetic field, resulting in a large demagnetizing factor

and large phase space of the IMS in the field temperature

phase diagram.

The magnetic field was initially aligned parallel to the

incoming neutron beam, but the ensemble of the cryostat with

the sample inside the magnet could be rotated by an angle !

around the y axis, perpendicular to the neutron beam. A

maximum collimation length of Dcol = 12.8 m, sample–

detector distance Ddet = 13 m and neutron wavelength �n =

14 Å with a full width at half-maximum (FWHM) wavelength

spread ��n=�n ¼ 10% were used. The beam size was defined

by a neutron absorbing source aperture of diameter dsource =

10 mm and a rectangular neutron absorbing sample aperture

of ax � ay = 5 � 1.5 mm illuminating the central part of the

sample. This resulted in an effective sample volume in the

beam of V = 5 � 1.5 � 1 mm. The magnetic field and cryo-

genic temperatures were supplied via a dry high-Tc super-

conducting magnet in combination with an Orange-type

cryostat. All measurements were performed at T = 4 K

following a field-cool (FC) measurement procedure from T =

10 K and were corrected for a high-temperature background

measured in zero field at T = 10 K above the superconducting

transition temperate Tc. For each measured field, we scanned

the angle ! in the range of � 1� to 1� with a step size of �! =

0.05�, referred to as a rocking scan.
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Figure 1
Schematic of the scattering geometry. The applied magnetic field Bapp is aligned parallel to the incoming neutron beam. The scattered neutrons are
recorded using a position-sensitive 2D detector placed behind the sample. The two FLL vectors ai, the interplanar FLL distance dFLL, the FLL domain
size d and the Meissner state domain size m are marked by arrows in the zoomed-in schematics of the insets. A schematic drawing of the magnetic field
distribution B(r) along the direction of a1 is also included. The magnetic scattering length density contrast �� is determined by the difference in magnetic
field between mixed state domains (internal magnetic field Bint) and Meissner state domains (zero internal field) and connected to the IMS scattering.
The FLL form factor amplitude FFLL connected to the Bragg peak scattering results from the close to sinusoidal field variation inside the mixed state
domains.



3. SANS data reduction and analysis

The different length scales found in the IMS call for a careful

analysis of the SANS pattern that we will develop in the

following. Before we focus on extracting physical quantities

from the scattering data, we turn our attention to an example

of typical 2D SANS data of our system [shown in Fig. 2(a)] to

identify the two distinct contributions: (i) the FLL inside the

mixed state domains with an interplanar FLL distance dFLL of

100–200 nm results in well defined Bragg peak scattering and

(ii) the domain structure consisting of mixed state and

Meissner state domains separated on the micrometre length

scale leads to diffuse scattering in the low-q regime found in

the vicinity of the blacked-out direct beam. The I-versus-q

curve shown in Fig. 2(b) obtained by radially averaging the

intensity inside the white sectors of Fig. 2(a) allows us to better

understand the qualitative difference in the two scattering

contributions: We can extract both the peak position of the

Bragg peak scattering and the three reciprocal widths in the

radial, tangential and longitudinal directions. The diffuse

scattering, on the other hand, is best described using a power

law. The data set consists of 2D SANS detector images

recorded at different rocking angles !. After normalization,

calibration and background subtraction, the data set is

reduced to 1D scattering curves in order to perform a quan-

titative data analysis of the two scattering contributions. In the

first part of this section, we outline the principal steps of our

data reduction workflow. In the second part, we focus on the

extraction of length scales and quantities from the reduced

data, starting with the Bragg peak scattering connected to the

FLL. In the third part, we turn our attention to a detailed

analysis of the low-q power-law scattering stemming from the

domain structure.

3.1. SANS data reduction

Standard data correction is applied using the SANS data

reduction tool GRASP (Dewhurst, 2023) to calculate the

corrected scattering data Icorr,

Icorr ¼
1

Ts

IFG � IBCK; ð3Þ

with the foreground data IFG, the background data IBCK and

the relative beam attenuation of the sample expressed as a

transmission Ts. The additional beam attenuation in the

foreground data with respect to the background data is caused

by the magnetic scattering in the superconducting state.

Strictly speaking, the data correction scheme presented in
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Figure 2
From 2D scattering data to 1D reduced data on the example of data measured in Bapp = 20 mT and T = 4 K. The top panels show the background-
corrected 2D SANS detector image of the sum of the rocking scan. The columns represent the extraction of the radially averaged data (a), (b),
azimuthally averaged data (c), (d) and rocking curves (e), ( f ) from the background-corrected 2D data to fit the radial, tangential and longitudinal Bragg
peak widths, respectively.



equation (3) is only valid for beam attenuation due to

absorption (Dewhurst, 2023), but it can be used to perform

background correction on neutron scattering data of the IMS

(Reimann et al., 2015).

In the analysis of the low-q power-law scattering, where we

limit the analysis to the rocking angle ! = 0, Ts is calculated for

each measured field as the ratio of the intensity of the trans-

mitted direct beam of the foreground and the background

data, both at ! = 0. In the analysis of the Bragg peak scat-

tering, where only the position and width of the Bragg peaks

are relevant, Ts is set to 1. After background subtraction, Icorr

only contains the scattering due to magnetic structures.

Absolute scattering intensities are obtained via the standard

SANS data reduction dividing the intensity by the illuminated

sample volume, the direct beam flux and the pixel solid angle.

For radially and azimuthally averaged data (see Fig. 2 for

examples) the scattering intensity in each pixel is summed

over the entire range of rocking angles. For the radially

averaged data used in the analysis of the low-q power-law

scattering we only consider ! = 0. The intensity is then

represented in polar coordinates as a function of the modulus

of the wavevector transfer q and azimuthal angle ’ to yield

I(q, ’). The azimuthal angle ’ is defined on the detector plane

with respect to the qy axis as shown in Fig. 2(c). For radially

averaged data we integrate over ’ to obtain I(q) [see Figs.

2(a), 2(b)], whereas for azimuthally averaged data we inte-

grate over q to get I(’) [see Figs. 2(c), 2(d)]. User-defined

masks, such as sectors around Bragg peaks [see Fig. 2(a)], can

be applied to adapt the area of integration.

For the rocking curves, the scattering data are not summed

over rocking angles. Instead, the intensity inside a region of

interest given by a user-defined mask is summed for each

rocking angle ! to obtain I(!) [see Figs. 2(e), 2( f)].

3.2. Bragg peak scattering of the FLL

We now focus on quantities extracted from the Bragg peak

scattering characterized by the positions and widths of the six

first-order Bragg peaks, as schematically depicted in Fig. 3.

3.2.1. Internal magnetic field Bint

Each Bragg peak has a well defined position qi = (qi, ’i)

given by the modulus of the wavevector transfer qi and the

azimuthal angle ’i. The value of the local internal magnetic

field, Bint, is calculated using the position qi of two adjacent

first-order Bragg peaks according to

Bintðq1; q2Þ ¼ q1 � q2

�0

ð2�Þ
2
¼ q1q2 sinð’2 � ’1Þ

�0

ð2�Þ
2
; ð4Þ

with the magnetic flux quantum �0 = h/2e of a flux line, where e

is the elementary charge and h is the Planck constant.

The Bragg peak positions in q are determined by fitting a

function consisting of the sum of a power law / q� 4 and a

Gaussian function, with peak position q0, Gaussian width �

expressed as a root mean square (r.m.s.), intensity I0 and zero

offset y0, to the radially averaged intensity inside sectors

encompassing a pair of Bragg peaks shown on the example of

the horizontal Bragg peaks in Fig. 2(a). By including the

power-law scattering, we ensure that the underlying IMS

scattering is not leading to an overestimation towards larger q

values of the Bragg peak position. The peak positions in

azimuthal angle ’ are extracted by fitting a sum of six Gaus-

sian functions with common zero offset y0 to the azimuthally

averaged intensity inside the sector shown between white

circles in Fig. 2(c). We reduce the number of fit parameters by

making use of the symmetry of the system: two opposing

Bragg peaks have the same r.m.s. width �, intensity I0 and

peak position ’0 that is shifted by �.

3.2.2. Correlation lengths

In standard crystal diffraction, the finite size of the crystal

contributes to the width of the measured Bragg peaks, known

as finite size broadening. The same concept can be applied to

SANS Bragg peaks of large-scale crystalline structures such as

the FLL (Cubitt, 1994) or nanopore lattices (Grigoriev et al.,

2010) to quantify the size of the well ordered lattice structure.

The volume defined by the extent of the well ordered FLL can

be expressed using three correlation lengths �i inversely

connected to the intrinsic radial �rad, tangential �tang and

longitudinal �long width of the FLL Bragg peaks in reciprocal

space, schematically depicted in Fig. 3. The measured widths

of the Bragg peaks in the three reciprocal-space directions are

a result of the convolution of the different broadening effects

due to the size and perfection of the well ordered FLL, the

sample volume, and the instrumental resolution defining a

coherence volume. Whichever is the smallest dominates the

measured Bragg peak widths �i,m.

The intrinsic Bragg peak widths are calculated from the

respective measured widths �i,m by taking into account the

instrumental resolution and their mutual contributions

according to the method originally presented by Cubitt (1994)

and extended by Campillo et al. (2022). In the calculation the

intrinsic Bragg peak widths in the reciprocal space are

expressed as the intrinsic mosaic spread along the field

direction �b in radians, the intrinsic tangential spread �t in

radians on the detector plane and the relative spread of
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Figure 3
Schematic drawing of the intrinsic widths �i of the Bragg peaks in the
three reciprocal-space directions and the corresponding real-space
correlation lengths �i. The inset shows schematically the projected length
drad along the direction parallel to q of the horizontal Bragg peaks
contributing to the Bragg peak width �rad via a finite size broadening.



interplanar distances �dFLL
=dFLL. The intrinsic r.m.s. Bragg

peak widths �i in reciprocal-space units are then calculated

from these quantities given as r.m.s. widths according to

�rad ¼ q
�dFLL

dFLL

; ð5Þ

�tang ¼ q tanð�tÞ; ð6Þ

�long ¼ q tanð�bÞ: ð7Þ

Converting the intrinsic widths of the Bragg peaks in reci-

procal space to meaningful correlation lengths in real space is

prone to subjectivity, as can be seen from the different forms

used in the literature (Yaron et al., 1994, 1995; Backs et al.,

2019; Grigoriev et al., 2010; Eskildsen, 2011). A full discussion

on how to properly define and extract correlation lengths is

not the focus of this work; however, we outline some common

considerations and justify our choice. In the conventional

mixed state, where the correlation length serves to quantify

the FLL perfection, the correlation length is often defined as

the inverse of the r.m.s. Bragg peak width � in reciprocal

space, which results in � = 1/� (Eskildsen, 2011). This is

obtained from the width of the Fourier transform of a Gaus-

sian distribution of r.m.s. width �, which again is a Gaussian

distribution of r.m.s. width � = 1/�. The real-space length scale

is the envelope over FLL positions where the lattice is still in

phase. Sometimes, factors of 2 appear to account for a

different peak shape (Yaron et al., 1994, 1995). In the case of

the IMS, we use the correlation length to extract the actual

size of the mixed state domains. Note that the peak broad-

ening is not solely caused by the distribution of the different

broadening effects such as a distribution of interplanar lattice

spacing dFLL, but rather a result of a top hat function

convolved with the FLL structure representing the finite size

of the mixed state domains. While observed on a different

length scale, this is analogous to the Bragg peak broadening

encountered in powder diffraction experiments. The Scherrer

equation (Scherrer, 1918) can be used to determine the crys-

tallite size � in the direction perpendicular to the lattice planes

from the Bragg peak width �(2�) at the Bragg angle �

according to

� ¼
K�

�ð2�Þ cosð�Þ
; ð8Þ

where � is the wavelength of the used radiation, K is a

dimensionless factor close to unity connected to the shape of

the crystallite and �(2�) is expressed as an FWHM in radians.

Using the small-angle approximation and the definition of the

wavevector transfer q ’ 2�2�/�, this can be rewritten as

� ¼
2�2�

q�ð2�Þ
¼

2�

�ðqÞ
; ð9Þ

where we set K = 1 for simplicity and in the last equation the

relation �(q)/q = �(2�)/2� was used with �(q) expressed as

an FWHM. A definition of the correlation length according to

equation (9) seems more appropriate to quantify the size of

the mixed state domains in the IMS domains. It is also used

outside the field range of the IMS to avoid discontinuities due

to a change of the definition of the correlation length. As the

Bragg peak widths are extracted as r.m.s. widths, the real-

space correlation lengths are then obtained as �i = 2�/k�i, with

the scaling factor k ¼ 2ð2 log 2Þ1=2 converting r.m.s. widths �i

to their FWHM equivalent.

As we only performed rocking scans around the vertical x

axis, we can only fully extract the FLL correlation lengths of

the equivalent spots (2) and (5) marked in Fig. 2(e).

The measured radial and tangential widths were determined

from the same fit used to extract the Bragg peak positions in q

and ’. From the rocking curves shown in Fig. 2( f) of the

intensity inside the sectors marked in white in Fig. 2(e), we

determine the r.m.s. width of the rocking curve by fitting a

Gaussian function.

3.3. Porod scattering of the domain structure

Having discussed the extraction of physical quantities from

the Bragg peak scattering, we now focus on the q� 4 power-law

scattering observed at low q values. The Porod law (Porod,

1982) can be used to describe the q� 4 power-law scattering of

scattering objects with well defined surfaces that are either in a

vacuum or surrounded by a second phase. It is used to connect

the specific surface area ðS=VÞjspec of the scattering objects to

their macroscopic scattering intensity according to

IPorodðqÞ ¼ 2�ð��Þ
2 1

q4

S

V

�
�
�
�

spec

; ð10Þ

with the scattering length density contrast �� = �1 � �2 given

as the difference between the scattering length densities of the

two phases. �� reduces to �, the scattering length density of

the scattering particles, in the absence of a second phase.

Equation (10) is derived using the angular average of IðqÞ

over all possible directions of q and is valid only in the case of

spherical symmetric scattering objects (Feigin & Svergun,

1987), where the scattering intensity depends only on the

magnitude q and not the direction given by its unit vector q̂. It

has been adapted to anisotropic particulate samples posses-

sing smooth boundaries (i.e. with no sharp edges and/or

vertices) and strictly convex particles.1 The scattering intensity

shows the same asymptotic q� 4 behavior (Ciccariello et al.,

2000) according to

Iðq q̂Þ ’
4�2ð��Þ

2

q4

X

j

1

j�G;jð�q̂Þj
; ð11Þ

where Iðq q̂Þ stands for the q-dependent intensity along a fixed

direction q̂ and �G, j denotes the Gaussian curvature of the jth

scattering particle. The notation �G;jð�q̂Þ ensures that only the

particle curvatures with their surface normal parallel or anti-

parallel to the unit vector q̂ enter in the calculation of the

scattering intensity in the direction of q̂. As a result, the

measured scattering intensity is higher for directions where
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1 Taking into consideration the finite pixel size of detectors, the leading term in
the observed scattering intensity is still proportional to q� 4 even for particles
with non-convex surfaces, possibly also including edges, vertices and planar
facets (Schneider et al., 2002).



the Gaussian curvature is smaller, which is equivalent to

directions where the surface of the particles is close to flat.

In an alternative formulation, closely reflecting the

morphology of the IMS, the Porod scattering of anisotropic

two-phase systems can be rewritten in a more suitable manner.

Using the angular distribution of the surface normals between

the two phases in the sample PðnÞ, the power-law scattering

can be modeled according to

Iðq q̂Þ ’
8�2

q4
ð��Þ

2 S

V

�
�
�
�

spec

Pð�q̂Þ; ð12Þ

where Pð�q̂Þ stands for the angular distribution PðnÞ eval-

uated for directions parallel/antiparallel to q̂ (Onuki, 1992).

We can recover the conventional Porod law of equation (10)

by inserting the isotropic case PðnÞ ¼ 1=4� (Onuki, 1992).

Comparing the conventional Porod law in equation (10) with

equation (12), the correct value of ðS=VÞjspec cannot be

obtained using the conventional Porod law in the case of

samples with anisotropic particles/surface normals. In our

case, the domain structure is aligned with its surface normals

close to orthogonal to the incoming neutron beam, leading to

a massive overestimation of ðS=VÞjspec when extracted using

equation (10). A correct determination of ðS=VÞjspec is only

possible taking into account Pð�qÞ. In the case of the IMS,

where the surface normals are close to orthogonal to the

incoming neutron beam, this reduces to a simple scaling factor

�orient.

In the following we connect the rocking-curve width of the

low-q IMS intensity to �orient to extract the corrected value of

ðS=VÞjspec. In a second step the corrected value will be

connected to a characteristic length scale of the domain

structure.

3.3.1. Correction factor aorient for highly oriented structures

Without loss of generality, the surfaces of the scattering

particles making up the sample can be considered as square-

shaped platelets. In the random case, they are isotropically

oriented in space, as schematically depicted in Fig. 4(a). The

distribution of their surface normals can be best visualized by

the surface of the unit sphere.

In the case of perfectly aligned platelets, the vectors

describing the surface normals are found in a plane orthogonal

to the neutron beam, as schematically depicted in Fig. 4(b). In

the presence of some finite degree of imperfection, the surface

normals are distributed with a finite spread around that plane.

The spread can be modeled using a Gaussian distribution of

width �, schematically represented by the gray ribbon on the

unit sphere in Fig. 4(b).

The Porod law given in equation (10) describes the scat-

tering intensity as a function of the modulus of the wavevector

transfer q, averaged over all possible directions of q̂. As the

low-q power-law scattering of the IMS is isotropic on the

detector plane, the calculation of the scaling factor reduces to

a 1D problem. The uniform probability density distribution

over 2� is now compressed into the small ribbon best

described by a distribution of r.m.s. width �, as schematically

shown in Fig. 4(c).

Ignoring this alignment would result in an overestimation of

ðS=VÞjspec. We define the factor �orient as the ratio of the

isotropic Porod scattering and the aligned case. Therefore, the

corrected specific surface area ðS=VÞjspec;corr extracted from

the modified Porod law for domain structures aligned along

the beam direction reads

S

V

�
�
�
�

spec;corr

¼ �orient

S

V

�
�
�
�

spec

: ð13Þ

�orient is given as the ratio of the constant value of a normal-

ized uniform distribution on the unit circle and the peak value

of a normalized Gaussian of r.m.s. width � measured in

radians, according to

�orient ¼
2��2ð Þ

1=2

2�
: ð14Þ
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Figure 4
Schematic representation of the surface normals in a sample with
randomly oriented scattering objects (a) versus a sample with aligned
surfaces such as the studied domain structure (b). (c) illustrates the
distribution of the random (purple line) and aligned case (orange line),
which for radially averaged data is just a 1D curve. The distribution of the
aligned case is extracted from the IMS rocking curves shown in Fig. 5(d).
The correction factor �orient is given as the ratio of the constant value of
the flat distribution and the peak value of the aligned distribution marked
by a purple and orange solid dot, respectively. Note that the width of the
shown distribution is exaggerated for illustrative purposes and not to
scale.



�orient is calculated using the IMS rocking-curve width �IMS as

an estimate of the width of the distribution of surface normals

perpendicular to the field direction. Fig. 5(d) shows an

example of the IMS rocking curves measured at Bapp = 20 mT.

The region of interest for the summation is represented by the

white sectors shown in Fig. 5(b). The rocking curves are fitted

with a Gaussian function, shown as solid lines, to obtain the

r.m.s. width �IMS given as the average of the rocking-curve

widths of the intensity inside sectors (1) and (2).

3.3.2. Extracting length scales from (S/V)|spec,corr

Having derived the correction factor �orient, we will now

turn to extracting a characteristic length scale from

ðS=VÞjspec;corr by virtually rearranging the domain structure

found in the IMS.

ðS=VÞjspec;corr is the total interface between the two phases

divided by the sample volume V. The domain structure can be

imagined as small areas where the phase boundaries are

parallel to each other, as schematically depicted in Fig. 6(a).

This results in a system of layers of mixed state domains of

thickness d separated by Meissner state domains of thickness

m. The thicknesses m and d represent an average over all

observed thicknesses present in the system. In Fig. 6(b) a

sketch of this system is shown, assuming that the individual

layers of the mixed state can be pictured as small platelets of

area l1 � l2 and thickness d separated by a distance given as

the thickness m of the Meissner state domains. The total

number of interfaces N is then given as
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Figure 5
Examples of scattering data to extract the low-q scattering connected to the specific surface area of the domain structure: (a), (b) 2D detector images of
the scattering pattern in Bapp = 20 mT, with the definition of the low-q sector (a) for the extraction of the radially averaged I-versus-q plot [shown in (c)]
and the IMS rocking scan sector (b) for the extraction of the IMS rocking curve [shown in (d)]. (c) The fit of the power law to extract the IMS intensity is
constrained to the data in between the dashed vertical lines. (d) The rocking curve of the IMS intensity within the sector shown in (b) is fitted with a
Gaussian function to extract its width. Equivalent 1D plots for Bapp = 90 mT where no domain structure is present: no low-q power-law scattering is
observed in the I-versus-q plot (e) and the rocking curve is flat around zero intensity ( f ).

Figure 6
Schematics of the virtual reorientation of randomly oriented domains to
aligned planes. The direction of the applied magnetic field Bapp is indi-
cated by the black cross and the black arrow in panels (a) and (b),
respectively. The superconducting domain structure in panel (a) is
adapted from Brandt & Essmann (1987), reproduced with permission of
Wiley.



N ¼ 2
L1

l1

L2

l2

L3

mþ d
; ð15Þ

where L1 � L2 � L3 = V describes the dimensions and the

volume V of the sample and the factor 2 stems from the fact

that each platelet has two surfaces. Using equation (15),

ðS=VÞjspec;corr can be connected to the repetition length m + d,

S

V

�
�
�
�

spec;corr

¼
N l1l2

V
¼ 2

L1

l1

L2

l2

L3

dþm

l1l2

V
¼

2

mþ d
: ð16Þ

In the special case of a two-phase system with alignment along

one direction, ðS=VÞjspec;corr is essentially a length scale. It can

be used to extract the field-dependent repetition length m + d

of the IMS.

The only remaining issue before m + d can be calculated

from ðS=VÞjspec;corr is the determination of the scattering

length density contrast �� in equation (10).

For scattering patterns with purely magnetic scattering, as

shown for example in Fig. 2(a), the scattering stems from the

interaction of the neutron’s magnetic moment l with the

magnetic field B governed by the Zeemann interaction given

as VZeemann ¼ � l � B. In analogy to the nuclear scattering

length density, a magnetic scattering length density contrast

can be defined. For the two-phase system consisting of flux-

free Meissner state domains and mixed state domains with

local internal magnetic field value Bint, �� is given as

�� ¼
�N

4�0

Bint; ð17Þ

with �N = 1.91 the ratio between the magnetic moment of the

neutron and the nuclear magneton �N and �0 the magnetic

flux quantum already introduced above.

Bint is calculated from the Bragg peak positions according to

equation (4).

Inserting into equation (17) a typical value of Bint = 73 mT

measured inside the mixed state domains of the domain

structure at T = 4 K results in a value of �� = 1.7 � 10� 7 Å� 2.2

ðS=VÞjspec is obtained by fitting equation (10) with ��

defined by equation (17) to the radially averaged intensity of

the scattering pattern at ! = 0. The fit was constrained to data

found in between the white circles shown in Fig. 5(a). This

corresponds to the intensity in between the vertical dashed

lines shown in Fig. 5(c). ðS=VÞjspec;corr is then calculated

according to equation (13) using �orient according to equa-

tion (14).

4. Results

The Results section follows the same structure as the previous

section. We first focus on Bint and �i extracted from the FLL

Bragg peaks. We then turn our attention to ðS=VÞjspec;corr and

the repetition length m + d extracted from the power-law

scattering of the domain structure.

Fig. 7(a) shows the value of the local internal field Bint

inside the mixed state domains as a function of the applied

field Bapp obtained from the positions qi of two adjacent Bragg

peaks according to equation (4). We observe two different

regimes separated by the value of the applied field Bapp =

B* ’ 75 mT: starting at high fields Bint decreases linearly with

decreasing field down to Bapp = B*. For lower fields, we find a

constant value of Bint = (73.5 � 0.3) mT with a slight downturn

for Bapp = 2.5 mT. The two different regimes can both be fitted

using a straight line Bint = aBapp + constant, where for the low-

field regime we set a = 0. We excluded the field range close to

the transition marked in between the two dotted vertical lines.

The fits are shown as solid purple and orange lines in Fig. 7(a)

for Bapp > B* and Bapp < B*, respectively. The line of inter-

section of the two regimes is obtained from equating the two

fits and results in a value of B* = 75.5 mT. It is included as a

vertical dashed line in all panels of Fig. 7.

The two regimes can also be traced via the FLL correlation

lengths obtained from the Bragg peak widths in the three

reciprocal-space directions. We first describe the correlation

lengths �rad and �tang shown by the purple markers in Figs. 7(b)

and 7(c), respectively. Both correlation lengths lie in the plane

orthogonal to the applied field. Starting at high applied fields

in the conventional mixed state �rad is scattered around a

constant value �finite ’ 2.2 mm.

For Bapp < B*, �rad rapidly decreases and then levels off to a

length of �rad ’ 0.7 mm for the lowest applied fields. �tang

shows a very similar behavior with slight deviations in the

high-field regime: in contrast to the scatter around a constant

value observed at high applied fields, �tang exhibits a slow

decrease before it rapidly decreases at field values close to the

transition line B*. We again observe a leveling off to a

constant value of �tang ’ 0.8 mm. We now describe the field

dependence of the correlation length �long in the direction of

the applied field shown in Fig. 7(d). Over the entire field range,

the values of �long are larger by more than an order of

magnitude than the respective values of �rad and �tang. This is

not surprising for the FLL as the flux lines, the building blocks

of the FLL, are long structures elongated along the field

direction. The high-field value for Bapp > B* is close to 40 mm.

At B* we observe the same rapid decrease of the correlation

length and a consequent leveling off to a low-field value of

�long ’ 10 mm when approaching zero field.

We now turn to the analysis of the low-q power-law scat-

tering caused by the domain structure. Using the modification

of the Porod analysis presented in Section 3, we extract

ðS=VÞjspec;corr to subsequently calculate the repetition length

m + d.

Fig. 8(a) shows ðS=VÞjspec;corr calculated from ðS=VÞjspec and

�orient according to equation (13). We only show data for fields

Bapp < B* as outside the IMS regime no low-q scattering is

observed [see Figs. 5(e), 5( f)]. The correction factor �orient is

calculated according to equation (14) and shown in Fig. 8(b).

For fields Bapp = 0 and Bapp > 75 mT the correction factor had

an error larger than 15% and is not included in the following

analysis. The correction factor is of the order of magnitude of

�5 � 10� 3 for the remaining field values. Turning to the
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2 For comparison, the nuclear scattering length density of D2O can be calcu-
lated to be �D2O = 6.4 � 10� 6 Å� 2 using https://www.ncnr.nist.gov/resources/
activation/ with a mass density of �m = 1.11 g cm� 3 for D2O.

https://www.ncnr.nist.gov/resources/activation/
https://www.ncnr.nist.gov/resources/activation/


description of ðS=VÞjspec;corr, for both zero applied field

and Bapp = B*, ðS=VÞjspec;corr approaches zero. In between

ðS=VÞjspec;corr is close to symmetric around its maximum value

of ðS=VÞjspec = 0.38 mm� 1 at Bapp ’ 0.5B*. The symmetric

behavior can be fitted using a parabola, shown as the purple

solid line.

Rearranging equation (16) allows us to extract the repeti-

tion length m + d shown in Fig. 8(c). m + d diverges at both

ends of the IMS regime with extracted values close to 40 mm.

We observe a nearly flat field dependence at intermediate field

values in the range 20–50 mT, with a value of m + d = 5.5 mm at

Bapp ’ 0.5B*.

5. Discussion

Having presented the results in the previous section, we will

quickly summarize our main findings, further develop and

compare our results with previous work and discuss some

limitations of our analysis approach.

The internal field Bint shows a constant value below the

transition field B*. This is a well known hallmark of the IMS
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Figure 7
(a) Local internal magnetic field Bint and (b)–(d) radial, tangential and longitudinal correlation length extracted from the Bragg peak width in the three
reciprocal-space directions. (b) additionally shows the size of mixed state domains drad.



and a result of the repulsive flux line interaction with an

attractive tail leading to a constant inter flux line distance and

hence a constant value of Bint inside the mixed state domains.

The value of Bint agrees well with values obtained in previous

studies on samples cut from the same single crystal (Brems et

al., 2022; Backs et al., 2019).

The transition to the IMS can also be traced via the FLL

correlation lengths in the three space directions: we observe a

rapid decrease at the onset of the breaking up of the homo-

geneous FLL. �tang and �rad show very similar behavior and

almost lie on top of each other. This indicates that the size of

the mixed state domains in the plane orthogonal to the field is

independent of the direction. In other words, the size of FLL

domains is isotropic with respect to the orientation of the FLL,

as can also be seen from the isotropic low-q scattering.

We have extracted the repetition length m + d over the

entire field range of the IMS. The values of m + d have the

same order of magnitude as values obtained via an analysis of

the correlation peak of the domain structure from USANS

measurements (Reimann et al., 2017), indicating that the

proposed modified Porod analysis yields physically meaningful

results. Comparing the values of m + d with the radial corre-

lation length �rad leads to a similar conclusion: at Bapp’ 0.5B*,

the value is m + d = 5.5 mm. Based on the symmetric shape of

m + d as a function of Bapp, a simple assumption is that m ’

d = 0.5(m + d) ’ 2.8 mm at Bapp = 0.5B*. We find a value of

�rad = 0.8 mm, which is slightly smaller but on the same order of

magnitude. We now further discuss our results with a focus on

FLL correlation lengths, the domain sizes and m + d derived

from the modified Porod analysis.

In the IMS, �rad contains the contribution of the finite FLL

perfection as well as the reduced size of the well ordered FLL

due to the actual size of the mixed state domains. In the

following, we present an attempt to remove the finite lattice

perfection from �rad to yield the actual size of the mixed state

domains. Our observation of a finite plateau of �rad for Bapp >

B* suggests that even in the conventional mixed state the

extent of the well ordered FLL has an upper limit. Under the

assumption that the contribution of the finite lattice perfection

and the finite size of the FLL are independent of each other,

we can calculate the size of mixed state domains projected in

the horizontal direction drad according to

drad ¼
1

1

�2
rad

�
1

�2
finite

� �1=2
: ð18Þ

In equation (18) we assumed that the individual contributions

of the finite size and perfection to the overall Bragg peak

width are summed quadratically and that we can take the
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Figure 8
Corrected specific surface area ðS=VÞjspec;corr and repetition length m + d. (a) ðS=VÞjspec;corr extracted from the low-q power-law scattering taking into
account the aligned character of the IMS. (b) Correction factor �orient obtained via equation (14). (c) Repetition length m + d, radial correlation length
�rad and drad extracted from �rad according to equation (18). The solid lines in (a), (c) represent fits and their inverted fits to Landau’s model of domains
(purple) and a parabola (orange) representing a simple model of the functional dependence of the sum of the size of mixed state domains d (blue dashed
line) and Meissner state domains m (orange dashed line).



average value of the FLL perfection in the mixed state �finite’

2.2 mm as the value for the maximum achievable FLL

perfection in the IMS.

The results are shown in Figs. 7(b) and 8(c) as orange dots.

For low applied fields the field dependence of drad is qualita-

tively equivalent to that observed for �rad. For increasing fields

approaching B*, drad is now rapidly increasing, as expected for

a decreasing size of the Meissner state domains. As discussed

in Section 3.2.2, the exact values of �i and their derived

quantities are subjective and depend on the exact definition of

the correlation length. We defined the correlation length as � =

2�/FWHM = 2�/�ik in analogy to the Scherrer equation used

to quantify the sizes of crystallites in powder diffraction

experiments (Scherrer, 1918). In addition to the subjectivity

for the definition of �, an individual mixed state domain could

contain more than one crystallite or contain voids. The

assumption of the lattice perfection being independent of the

mixed state domain size might be too simplistic and adds to

the uncertainty of the extracted value of drad. Therefore, the

extracted size drad should be seen as an order of magnitude of

the average size of the mixed state domains.

Furthermore, we stress that the obtained value of drad

represents only the projected average length of mixed state

domains in the direction parallel to q, as schematically

depicted in the inset of Fig. 3.

The average size d of the mixed state domains over all

directions is contained in the domain structure repetition

length m + d, discussed in the following. We now turn to the

discussion of the repetition length, domain sizes and other

quantities extracted from the modified Porod analysis.

The repetition length m + d is calculated using the correc-

tion factor �orient. We observe a non-trivial field dependence

of �orient, showing a slight peak for intermediate fields in the

IMS [see Fig. 8(b)]. The correction factor is directly deter-

mined by the width of the IMS rocking scan �IMS, which is

linked to the straightness of the domain boundaries along the

field direction. A possible explanation for this non-trivial

behavior can be found when considering the influence of the

pinning landscape on the straightness of the mixed state

domains as a function of field. This is shown in Fig. 9, which

schematically depicts the mixed state domain straightness in

the field direction for three different fields. The interaction of

the mixed state domain boundaries with the pinning landscape

is governed by the elastic properties of the FLL. It can be

quantified in analogy to crystal lattices by the elastic moduli of

the FLL determined by the flux line interaction (Brandt,

1995). The elastic moduli set an upper limit for the curvature

of the FLL along the field direction to accommodate a pin. In

the IMS, where the inter flux line spacing is independent of the

applied field, the elastic moduli can be considered close to

constant. This results in a global maximum curvature of the

flux lines over the entire field range of the IMS. The maximum

curvature can be expressed as a length scale.

For a given pinning landscape, the curvature of the flux lines

along the field direction is then solely determined by d, as

schematically depicted in Fig. 9. For large d at high fields, the

curvature is small and the domain boundaries are close to

parallel to the field direction. For decreasing field the curva-

ture of the domains increases as d decreases, translating to

larger values of �IMS and �orient. Below a certain threshold

value and consequently smaller values of d, the maximum

curvature of the flux lines is reached. As a result, the value of

�IMS for low fields is larger as compared with intermediate

field values, explaining the non-trivial field dependence of

�orient.

Recently (Reimann et al., 2017), the repetition length of the

IMS domain structure has been modeled using Landau’s

theory (Landau, 1937) for domain structures in super-

conductors,

mþ d ¼
�t

fLðbÞ

� �1=2

; ð19Þ

with the thickness of the superconducting sample t, reduced

field b, superconducting wall-energy parameter � and fL a

numerical function of which an explicit formulation, given by

Dorsey & Goldstein (1998), was used.3 In contrast to type-I

superconductors, where � is a measure of the superconducting

surface energy, here it describes a cleavage energy of the FLL

due to the partially attractive flux line interaction (Reimann et

al., 2017).

For the IMS b has been adapted to

b ¼
Bapp � ð1 � DÞBc1

DBint

; ð20Þ

to take into account the demagnetization effects due to the

demagnetization factor D (Reimann et al., 2017). In our case,

where the IMS covers the entire range of fields of 0 < Bapp <
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Figure 9
Schematic illustration of the field-dependent curvature of mixed state
domains along the field direction which is directly related to �IMS used in
the calculation of �orient. (a) For high values of Bapp the domains are large
and the influence of the pins on the straightness along the field direction is
limited. (b) For intermediate field values the mixed state domains are
increasingly bent due to the interaction with the pinning landscape. This
leads to an increase in �IMS and �orient with decreasing field. (c) For low
fields approaching zero, the maximum curvature determined by the
elastic moduli prohibits the accommodation of all pins, leading to an
increased straightness and decreasing values of �IMS and �orient as
compared with intermediate field values. The schematic drawings are
exaggerated and not to scale.

3 We note that there is an error in equation (7) of Reimann et al. (2017). We
present the correct version, which is in agreement with, e.g., equation (3.23) of
Dorsey & Goldstein (1998).



B* and no Meissner state is observed, a definition of b

according to equation (20) is not applicable as it fails to

capture the whole range of the IMS, especially in the low

applied field range. Therefore, we use a simplified version

given by b ¼ Bapp=Bint. This is justified by the absence of a

Meissner state following the FC measurement procedure due

to macroscopic flux trapping. With the above adaptation of

Landau’s theory, we can fit the repetition length m + d

obtained from ðS=VÞjspec;corr to obtain a value of � =

7.4 � 0.1 Å, with the error determined by the uncertainty of

the fit. The fit is shown as the solid orange line in Fig. 8(c). The

value obtained by Reimann et al. (2017) is � = 13 � 2 Å using a

sample of different shape and purity. The sample thickness is

taken into account in equation (19), but it is hard to quantify

the influence of the sample purity. Nevertheless, the compar-

ison with our results shows that our analysis approach yields

the same order of magnitude.

The repetition length is given as the sum of Meissner length

m and the mixed state length d as m + d. On the basis of the

symmetric shape of m + d around b = 0.5, we develop a purely

phenomenological model taking into account the asymptotic b

dependence of the Meissner length m and the mixed state

length d:

mðbÞ ¼
m0

b
; ð21Þ

dðbÞ ¼
d0

1 � b
; ð22Þ

where m0 and d0 are constant factors.

As we are extracting only the length m + d, we need a model

function to connect our ansatz from equations (21) and (22) to

ðS=VÞjspec;corr. The symmetric shape of ðS=VÞjspec;corr can be

fitted with a parabola of the form

S

V

�
�
�
�

spec;corr

¼
4

L0

bð1 � bÞ ¼
2

mþ d
; ð23Þ

where L0 is a constant scaling factor with the dimension of a

length following from equation (16).

If we invert equation (23) and insert our ansatz from

equations (21) and (22), we can deduce explicit forms for m(b)

and d(b):

L0

2

1

bð1 � bÞ
¼ mðbÞ þ dðbÞ ¼

m0

b
þ

d0

1 � b
: ð24Þ

For the last equation to hold we see that m0 = d0 and 2m0 = L0.

Considering the symmetric shape of ðS=VÞjspec;corr around

b = Bapp/Bint = 0.5 yields an intuitive explanation of the

requirement m0 = d0: for a volume filling fraction of 50% the

mixed state length d(b) is equal to the Meissner state length

m(b).

We thus get

mðbÞ ¼
L0

2b
; ð25Þ

dðbÞ ¼
L0

2ð1 � bÞ
; ð26Þ

with L0 the only free parameter. We fitted equation (23) to

ðS=VÞjspec;corr to extract L0. The result is shown as the solid

purple line in Fig. 8(a). The fitted value with the error deter-

mined by the fit is L0 = (2.9 � 0.1) mm. After extracting L0 we

can use equations (25) and (26) to plot the functional

dependence of m and d. The results are shown as dashed lines

in Fig. 8(c).

We see that there is an overall qualitative agreement of d(b)

obtained from our modified Porod analysis and drad from the

Bragg peak width, both showing rapidly increasing behavior

when approaching B* and a constant value for low fields. A

quantitative agreement can not be seen, partially because the

correlation length is only an approximation of the mixed state

domain size, as discussed above.

We conclude this section by discussing some limitations in

our analysis approach. We extract the FLL domain size from

both the Bragg peak widths and the low-q Porod scattering.

Our analysis of the Porod scattering is based on a simple

modification of the Porod law to take into account the align-

ment of the scattering surfaces orthogonal to the neutron

beam by introducing a correction factor �orient. Via simple

geometry, the repetition length m + d is then obtained from

the corrected specific surface area from the slope of the

radially averaged scattering data in absolute scattering

intensities. Slight systematic errors in the data reduction

introduced by the choice of the region of interest in the

calculation of the normalization and calibration constants

(transmission, direct beam flux etc.) can influence the fitted

slope of the intensity curves. Other sources of possible errors

are the choice of the correction factor �orient and the simple

assumption of virtual rearrangement in the calculation of

m + d from ðS=VÞjspec;corr. Finally, the model presented in

equations (21) and (22) might be oversimplified to capture the

actual field dependence of the mixed state domain size, as can

be seen by deviations between the experimental data of

ðS=VÞjspec;corr and the fit shown in Fig. 8. We extracted corre-

lation lengths from the Bragg peak widths to estimate the

contribution of the finite size broadening. In our analysis, we

assumed that the intrinsic FLL perfection is independent of

the mixed state domain size. Furthermore, drad only represents

the projection of d along the direction of q.

Despite these sources of uncertainty, we are confident that

the overall order of magnitude of the extracted length scales

from both the Porod analysis and the Bragg peak widths is

correct. This is shown by the qualitative agreement of our two

analysis approaches, the overall agreement with previous work

(Reimann et al., 2017) and Landau’s theory of domains in

superconductors (Landau, 1937).

6. Conclusion

We have presented a novel approach based on a modification

of the well known Porod law to extend the accessible length

scales to up to 40 mm in a classical SANS experiment.

Our analysis approach is based on the alignment of the two-

phase domain structure along the beam direction. The degree

of alignment is directly measured via a rocking scan and used
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to extract the corrected specific surface area, allowing the

calculation of the mean repetition length m + d. In principle,

the proposed analysis approach is applicable to any degree of

alignment along the beam direction, with the case of isotro-

pically distributed surfaces resulting in the conventional Porod

law. We note that even in the case of the conventional Porod

law the specific surface area can still be connected to the mean

interparticle distance, but only if the particle dimensions are

known. In the special case of an aligned structure where the

domain surfaces continuously extend through the sample, we

have shown that the specific surface area is linked directly to a

mean intersurface distance.

We apply our method to the two-phase domain structure

found in the IMS of the superconductor niobium, where the

domain boundaries are aligned along the beam direction. We

extract the repetition length of the domain structure m + d

over the entire field range.

Our results are consistent with previous attempts to derive

this length scale from USANS (Reimann et al., 2017), Land-

au’s theory of domains in superconductors (Landau, 1937) and

the well established method of extracting correlation lengths

from Bragg peak widths (Cubitt et al., 1992; Cubitt, 1994;

Grigoriev et al., 2010) that can be connected to the finite size

of the FLL domains. The overall agreement showcases the

power of our analysis approach in extending the accessible

length scales from 1 mm by almost two orders of magnitude to

up to 40 mm in a conventional SANS setup without compro-

mising the experiment by long counting times. Our study can

act as a proof of concept for use in other systems showing

alignment along the beam direction with unbroken surfaces

extending through the length of the sample.
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