
cif applications

1640 https://doi.org/10.1107/S1600576724007908 J. Appl. Cryst. (2024). 57, 1640–1649

ISSN 1600-5767

Received 17 May 2024

Accepted 12 August 2024

Edited by A. Barty, DESY, Hamburg, Germany

Keywords: Modulated Structures Open

Database; CIF validation; Python web

development; Bilbao Crystallographic Server.

Published under a CC BY 4.0 licence

Towards dynamically configured databases for
CIFs: the new modulated structures open database
at the Bilbao Crystallographic Server

J. Gabirondo-López,a* I. Gabirondo-López,a E. S. Tascib and G. Madariagaa

aDepartment of Physics, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain, and
bDepartment of Physics Engineering, Hacettepe University, Ankara 06800, Türkiye. *Correspondence e-mail:

jon.gabirondol@ehu.eus

This article presents a web-based framework to build a database without in-

depth programming knowledge given a set of CIF dictionaries and a collection

of CIFs. The framework consists of two main elements: the public site that

displays the information contained in the CIFs in an ordered manner, and the

restricted administrative site which defines how that information is stored,

processed and, eventually, displayed. Thus, the web application allows users to

easily explore, filter and access the data, download the original CIFs, and

visualize the structures via JSmol. The modulated structures open database

B-IncStrDB, the official International Union of Crystallography repository for

this type of material and available through the Bilbao Crystallographic Server,

has been re-implemented following the proposed framework.

1. Introduction

The introduction in the early 1990s of crystallographic infor-

mation files (CIFs) (Hall et al., 1991), consolidating earlier

ideas (Brown, 1983; Crennell & Brown, 1985) to standardize

the transmission, validation and archiving of crystallographic

data, started a new age in the field of structural crystal-

lography. Since then, the number of stored and openly

accessible structures with a high degree of quality control has

quickly increased. At present, the main goal of the CIF is to

constitute the lingua franca of all the agents involved in the

production, storage and dissemination of (mostly) crystal-

lographic information.

On the other hand, the hierarchy defined by the conceptual

sequence (meta-metadata)–(metadata)–(data) expressed by a

dictionary definition language (DDL), CIF dictionaries and

the CIFs themselves (Hall & McMahon, 2006) allows the

extension from crystallography to other ontologies. The

availability of a well defined CIF dictionary language allows

easy extension of CIF ontologies to such disparate fields as

molecular information (MIF) (Allen et al., 1995), raw

diffraction images (imgCIF) (Bernstein & Hammersley, 2006)

and topology (TopoCIF) (Blatov et al., 2021), all of which can

leverage the availability of dictionary-aware software tools.

From the beginning, the closeness of the structure of a CIF

to that of a relational database through the design and orga-

nization into categories of the different data names allowed us

to think about efficient storage of the information they

contained. CIFs were designed to be written, validated and

read by programs (while still being human-readable as well).

However, and this is a serious drawback, adhering to the

standard has generally been a secondary activity of high cost

https://doi.org/10.1107/S1600576724007908
https://journals.iucr.org/j
https://scripts.iucr.org/cgi-bin/full_search?words=Modulated%20Structures%20Open%20Database&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=Modulated%20Structures%20Open%20Database&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=CIF%20validation&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=Python%20web%20development&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=Python%20web%20development&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=Bilbao%20Crystallographic%20Server&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:jon.gabirondol@ehu.eus
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576724007908&domain=pdf&date_stamp=2024-09-17


relative to perceived benefit for software developers not

directly involved in the validation or exploitation of the

information contained in the CIF, despite the tools that

already exist to create and manage CIFs [Berman et al., 2006;

International Union of Crystallography (IUCr), since 1993,

https://www.iucr.org/resources/cif/software]. This has dimin-

ished the reliability of the data contained in the CIFs and

contributed to the delay in the migration towards more

versatile implementations such as the transition from DDL1 to

DDLm dictionaries (Hall & Cook, 2006; Spadaccini & Hall,

2012). Consequently, and although fortunately the situation

has stabilized over time, many of the existing CIFs are not yet

strictly valid [see, for example, Vaitkus et al. (2021)].

It then seems obvious, and more so if we focus on the scope

of a database, that validation turns out to be the key process in

the usefulness of a CIF for the safeguarding and utility of the

data. Said validation can be carried out at several levels:

syntactic and data-name validation against a dictionary and

data consistency including scientific criteria. Syntactic,

semantic (data-name validation against a dictionary) and data

consistency (for including scientific criteria) validations are

performed by programs such as VCIF (McMahon, 1998,

2006b) and VCIF2 (Todorov & Bernstein, 2008), enCIFer

(Allen et al., 2004), PyCIFRW (Hester, 2006), publCIF

(Westrip, 2010), iotbx.cif (Gildea et al., 2011) and, probably the

most powerful parser, COD::CIF::Parser (Merkys et al., 2016;

Vaitkus et al., 2021). PLATON (Spek, 2003) (or checkCIF;

Spek, 2020) is accepted, by publishers and authors, as the

standard tool for the validation of the chemical and crystal-

lographic consistency of single-crystal structural data of small

molecules.

A raw validated CIF is a single file consisting of several data

blocks (one for each embedded structure) which contain

hundreds or thousands of lines, not following a predefined

order. In addition, the meaning of the tags or their physical

interpretation is not embedded in the file itself. So, although

CIFs are human readable in theory, in practice searching for

specific data inside a CIF can be a challenging task, particu-

larly for users unfamiliar with, for example, structural crys-

tallography. As the number of published articles is growing

exponentially (Fire & Guestrin, 2019), the only way to handle

this huge amount of results and data is to sort them and make

them programmatically accessible.

To be scientifically useful, databases recording crystal

structures should be not simply collections of CIFs but

powerful tools to facilitate data access and management, such

as the Protein Data Bank (PDB; Bernstein et al., 1977), the

Crystallography Open Database (COD; Gražulis et al.,

2009), the collection of magnetic structures (MAGNDATA;

Gallego et al., 2016a,b) and many others listed on the website

of the IUCr (since 2002, https://www.iucr.org/resources/data/

databases). Along with these excellent databases, there coexist

less ambitious, but very useful, applications that use CIFs for

the exchange of information. Their biggest weakness is usually

the use of ad hoc hard-coded tags: since official dictionaries

are revised and expanded over relatively long periods of time,

some CIF applications, especially in emerging fields, are built

on top of semi-official dictionaries. The subsequent adaptation

of these to the finally approved dictionaries may involve a

debugging of unknown scope.

In this work, we present a dictionary-independent frame-

work to organize CIF information (although the acronym CIF

refers to the crystallographic information framework, in what

follows this term will be used as a reference to the syntax of a

file, regardless of its content) in databases and make it avail-

able via web applications. The main idea is that most of the

characteristics of the application (for example, how the stored

CIFs are rendered) can be defined by relating them to the tags

defined in a set of dictionaries. Thus, the tags are decoupled

from the code, so all CIFs are treated equally, and the data-

base can be modified by updating the dictionaries or the CIFs.

This allows the maintenance of the database without hard-

coding of domain-specific concepts, and it serves as a base

database that can be used to store CIFs with different scopes,

such as the aforementioned ontologies. Consequently, for this

approach to work properly, the correctness of all CIFs

contained in the database must be ensured and, therefore, the

CIFs shown by the web application are intrinsically valid

according to the selected dictionaries. To our knowledge,

compared with other databases such as the ones mentioned

above, the databases created using this framework have the

advantages that they are easily customized, can be used to

display the information related to various CIF dictionaries

directly and ensure that the CIFs are correct.

The main contributions of this work are the development of

a neutral web-based framework, customizable without in-

depth programming knowledge, that allows a database to be

built with arbitrary information as long as it is supplied in CIF

format and there exist dictionaries for its validation. The

implementation of this approach, together with its application

to the database of modulated structures (B-IncStrDB)

included in the Bilbao Crystallographic Server (Aroyo et al.,

2006), is described in the following sections.

2. Framework design

The framework proposed in this work allows the creation of

web applications to manage and explore databases that gather

the information contained in CIFs. The main idea is to define a

set of rules that will determine the way CIF information is

stored and, eventually, displayed. To do so, the most robust

approach is to establish those rules according to the tags

defined in a set of CIF dictionaries; thus, all the CIFs that

contain the tags defined in those dictionaries will be treated

equally. As indicated above, this approach requires that all the

CIFs suitable for storage in the database must be valid

according to the set of CIF dictionaries, and that all the tags of

the files are defined as usable tags within the set of diction-

aries. Once both conditions are fulfilled, the CIF is stored, and

the information represented in it can be displayed in an

appropriate manner.

Such a framework must have two main elements: a database

that contains not only the CIF information but also all

the information required to display it properly, and a web

cif applications

J. Appl. Cryst. (2024). 57, 1640–1649 J. Gabirondo-López et al. � Towards dynamically configured databases for CIFs 1641

https://www.iucr.org/resources/cif/software
https://www.iucr.org/resources/data/databases
https://www.iucr.org/resources/data/databases


application, to process all the data contained in the CIFs and

to render them in a human-readable way. Consequently, one

key element of the web application is CIF validation: to

simplify the design of the database application and to ensure

both performance and data integrity, it is essential that all

ingested data (including CIFs and dictionaries) follow the

standards defined by the dictionaries loaded in the applica-

tion.

To obtain a flexible and easy-to-configure application, the

web implementation is divided into two main sites. On the one

hand, there is a private administrative site, which is used to

manage the information stored in the database, to ensure its

correctness and to specify how it is displayed. On the other

hand, there is a public site, which renders the information

contained in the CIFs of the database. That rendering is done

according to the configuration set in the administrative site.

The main setup of the web application starts by uploading a

set of CIF dictionaries to the administrative site. Once

syntactically validated against the DDL on which the

dictionary has been built, the tags defined in those dictionaries

are stored in the database. Then, those tags that define the

meaning, the properties and the category structure of the

items included in a CIF can later be used to specify how the

CIFs will be stored and rendered. When a CIF is uploaded, it is

validated against the set of dictionaries uploaded to the web

application, and it is rendered in the public site according to

the specifications established in the administrative site.

Each of those sites is divided into two main parts: the

backend, which consists of the actual programs that process

the requests made by the users and communicates with the

database; and the frontend, which contains all the interfaces

needed for user interaction. As will be shown in Section 3, the

backend is one of the core elements of the framework. It

implements all the data processing (including the reading and

validation of the CIF dictionaries and files) and the dynamic

configuration of the web application. The frontend is

responsible for displaying all the information given by the

backend. Since it is the part of the framework that is in direct

contact with the users, it allows high flexibility in terms of

customization: regardless of the backend, the frontend can

easily be modified to change the displayed data, the style of

the interfaces or any other details needed by the developers.

The overall design of the framework can be seen in Fig. 1: the

administrators provide the dictionaries that will be used for

validation, some custom rules for processing and displaying

the information, and the CIFs to be stored. All this informa-

tion is stored in the database, so that users can access it by

using the public site.

Accordingly, in the next sections (Sections 3 and 4), the

administrative site will be explained first, as it contains some

essential elements that are required to fully understand the

structure of the database, while a general discussion of the

public site will be presented in Section 5. Then, a possible

frontend is shown in Section 6, which uses the B-IncStrDB as

an example, as it is the first crystallographic database built

using the proposed framework. Note that the proposed

architecture could be implemented by using various platforms

or languages, and that the exact tools used in that first appli-

cation (see Section 6) are only one of the possible options.

3. The administrative site

The administrative site allows site managers to specify some

parameters of the application related to the visualization of its

entries and to the performance of the database. All custo-

mizable features can be easily edited and removed, allowing

the database to be adapted to any visual requirement or

modification in the dictionaries.

Regarding the configuration of the main layout of an entry,

the information stored in a record is shown separately in

sections. Those sections consist of a title, the position they

occupy when rendered and a set of tag categories that are

displayed within them. In this context, those categories are the

category assignments of each data name in the DDL.

Administrators can choose in which order the categories are

shown and give a physical meaning to that group by setting a

title. Thus, the way in which the information is displayed can

be modified to fit the scope of the database.

The web application and the data processing can be dyna-

mically configured by managing the elements that are

described in the following subsections.

3.1. Dictionaries

The set of dictionaries needed to validate the CIFs define all

the tags that could be stored within the database. The specific

tags feeding a certain database as well as how it is visually

structured are governed by rules established at the adminis-

trator level (see Sections 3.3 to 3.7). At present only DDL1

dictionaries are supported.

When a dictionary is uploaded to the database, the first step

is to read the file and to check both its syntax and contents (the

definitions of the data blocks). If the input dictionary presents

any type of error, the upload process is halted and the

dictionary will not be stored in the database. Once the

correctness of the input dictionary is ensured, the metadata of

the file (name of the dictionary, version, last time it was

updated . . . ) are retrieved and saved in the database. In the

case that the uploaded dictionary is a different version of

cif applications

1642 J. Gabirondo-López et al. � Towards dynamically configured databases for CIFs J. Appl. Cryst. (2024). 57, 1640–1649

Figure 1
Overall representation of the proposed framework. Administrators
provide the CIF dictionaries that will be used for validation, the CIFs and
the rules for displaying the information they contain. The backend vali-
dates the CIFs against the given dictionaries and stores the information in
the database following the rules provided. Finally, users can access the
information of the CIFs from the public site.



another dictionary, already in the database, the entry state of

all the CIFs that were validated against it is updated, indi-

cating that the CIFs need to be validated again. Finally, the

new dictionary is merged with the other dictionaries of the

database, so that future validations of CIFs will take into

account the restrictions described in this merged file. In this

case, that merging procedure is made following the STRICT

method described by McMahon (2006a) – a fatal error is

raised if a data name is multiply defined – but any other

merging mode could be used.

3.2. CIFs

When a new CIF is uploaded, it is validated against the set

of dictionaries of the database. New entries are set as private

by default, so they can only be seen by administrators. Each

entry receives a unique identifier that can later be used to

properly identify that entry. Once a new file is uploaded, its

representative figure can be created or uploaded (see Section

6.2.1). All entries can be made public or private at any time,

and their figures can also be updated. A deeper explanation of

how a CIF is rendered can be found in Section 5.2.

The process of uploading a CIF to the database is very

similar to that of the dictionaries. First of all, the CIF is stored

in a temporary file for easing the process of reading its

contents. The second step is to validate the file against the

merged dictionaries stored in the database. If the CIF presents

any kind of error or warning, it will not be possible to upload

the file. This design decision has been taken in order to ensure

that all the CIFs of the database have a minimum base of

quality.

After having verified the correctness of the CIF, the next

step is to check that all the tags of the file to upload are inside

the database. If a tag is not found, the uploading process will

be halted and the administrator will be required to update the

dictionaries stored in the database and/or upload additional

ones. In addition, if the tag appears in the list of excluded tags,

this will not be taken into account when performing the vali-

dation. With these restrictions, the application ensures that all

the tags of the new CIFs are included in the dictionaries stored

in the database.

Regarding the storage process of the CIF, first some hard-

coded metadata are generated and the tags with their

respective values are retrieved. Those metadata are specific

for each database: for instance, in the case of the B-IncStrDB,

a unique identifier is created, and the values of the

tags _publ_section_title, _publ_author_name,

_journal_name_full, _journal_year, _journal_

volume, _journal_page_first and _journal_

page_last are extracted from the CIF and stored in the

database. Afterwards, both the metadata and tags are stored in

the database. By default, this process also creates a new state

for the entry, showing that the entry is private and that it has

no errors. Moreover, additional metadata concerning the

dictionaries used for validating the CIF are stored in the

database. Lastly, the temporary file that is created at the

beginning of the process is moved to the database’s directory

with an appropriate name, and the original CIF is copied into a

common directory for downloading if it is requested by the

user. Given that all the curation operations of the database

contents are done through CIFs, the correlation between the

database contents and the stored CIFs is preserved. The

revision histories of the entries are not recorded. Both the

database records and the corresponding CIFs are superseded

by any updated versions.

3.3. Excluded tags

Often, submitted CIFs include information that is outside

the scope of the database. For example, CIF generators may

include data items with undefined values, data names that

belong to dictionaries that are not loaded into the application

or information that is not relevant to a first look at the data

(for example, a list of reflections). To handle these cases,

administrators can define a list of data names that should be

ignored during the entry processing. The associated data will

not be stored in the database or displayed by the interface. In

the case of loops, the whole loop will be skipped if it contains a

tag that must be ignored. Thus, it is not required to add all the

tags of the loop, but it is sufficient to specify just one of them.

It must be emphasized that, as the uploaded CIF remains

unchanged, this information is not deleted at all and can be

accessed by downloading the original file. (Note that on many

occasions the original CIF requires some manual changes to

comply with the standard.)

3.4. Section structure

The information contained in the CIFs is shown in a layout

defined by the administrators. The tags corresponding to

certain categories are joined into sections, which means that

all the CIFs are displayed in a homogeneous manner that does

not depend on the order of the original file. The administrators

can create, eliminate and rename those sections, and they can

also choose which tag categories are shown inside them.

3.5. Tag titles

In order to facilitate the reading of the information shown

in the application, especially for inexperienced users, the

values of the tags can be accompanied by a more informative

title than the actual tag name. Those titles can be set from the

administrative site.

3.6. Matrices

Some loops are better shown as matrices in order to

enhance their readability. Administrators can specify which

loops should be shown as matrices by introducing the common

root of the tag of the elements of the loop, the dimensions of

the matrix and the title that will be shown on the public site.

For instance, let us consider the case of the tags that are

used to represent the cell parameters of each subsystem

present in a composite. Those tags are defined in the msCIF

dictionary (Madariaga, 2006). For each subsystem the matrix

W as defined by van Smaalen (1991) is represented with a set

of tags (whose default values are 0) like _cell_subsystem_

matrix_W_i_j, where i and j are integers from 1 to 11,

cif applications

J. Appl. Cryst. (2024). 57, 1640–1649 J. Gabirondo-López et al. � Towards dynamically configured databases for CIFs 1643



which represent the indices of the element of the matrix. In

that case the _cell_subsystem_matrix_W_ string is set

as the base of the matrix, as it is the text that is common in all

the tags of the elements of the matrix, and the maximum

dimensions must be set to 11 and 11. Consequently, for all of

the CIFs containing such a loop, it will be shown in its matrix

form. A deeper explanation of how a matrix is rendered is

given in Section 5.2. An example of such a case can be found in

the CIF deposited by Ren et al. (1996):

In the public view, the matrices are rendered as shown in

Fig. 2.

3.7. Search fields

The search form of the public site is also fully customizable:

the tags that will be used to perform the query can be selected

through the administrative site. The operator corresponding to

a tag is directly selected according to their type. String tags

only accept ‘=’ and ‘!=’ operators (equal and not equal, but

restricted implicitly to a search by substrings), whereas

numerical tags accept ‘=’, ‘!=’, ‘<’, ‘�’, ‘>’ and ‘�’, so

numerical comparisons can be made between the value of the

tag and the input of the search form. Moreover, the selected

tags can be shown accompanied by a suitable name instead of

the raw tag name, and the order in which they appear can also

be edited.

3.8. Users

The creation and removal of privileged users or modifica-

tion of the metadata (first and last names, and the institution)

of the existing ones can also be done through the adminis-

trative site. This allows dynamic modification of the users that

can manage the website. In the future, a group-based orga-

nization scheme will be adopted to define the permissions of a

set of users.

4. Database structure

The structure of the database (see Fig. 3) reflects and favors

the actions accessed from the administrative site. The tables of

the database can be divided into three main groups: the tables

containing information on the dictionaries involved in the

validation (Dictionary, Tag), the tables containing the

entries themselves and their state (Entries, EntryState,

EntryValidation and Props), and the tables reflecting

the relational aspects between the properties of each entry

(Props, Section, Category).

Regarding the dictionaries, it is necessary to keep both their

metadata and their contents organized in order to perform

CIF validations in an efficient way. In addition, the names of

the tags of a dictionary might be difficult to interpret, and

therefore they need a human-readable form. Taking these

considerations into account, Dictionary stores the meta-

data of the dictionaries and Tag represents the definition of a

tag, indicating the dictionary to which it belongs. Two addi-

tional tables (TagTitle and ExcludedTag) are used for

keeping track of the human-readable names of the tags and

the tags that must not be stored in the database.

Entry management deals with two separate tasks given that

it is necessary to keep track of not only the contents of the

entry itself but also the metadata of the entry and its state. The

table Entries contains all the specific hard-coded CIF

metadata. The current state of the entries is stored in the table

EntryState. This is very useful for saving several aspects of

an entry’s state, for example, whether the entry is publicly

available or not, the last time it was revised, or any other

aspect required for checking data integrity, given a particular

implementation. Database administrators might also find it

cif applications

1644 J. Gabirondo-López et al. � Towards dynamically configured databases for CIFs J. Appl. Cryst. (2024). 57, 1640–1649

Figure 2
Matrix representation of the values present in the loop example given in
the text. For convenience and unlike how they are presented in the
database web interface, the matrices have been placed side by side.

Figure 3
Relations between the main tables that compose the framework. The
arrows show how one table relates to another. This distribution of tables
has been designed for storing the main aspects of the framework: the
information of the CIFs and the dictionaries, the way in which the
information is displayed, and the users allowed to manage the database.



useful to know the dictionaries that were used for validating

an entry. This information is stored in EntryValidation.

The contents (the tags with their respective values) of each

specific entry are stored in the table Props. This table stores

one row per value in the original CIF, so even though the CIF

relational structures are not translated to a series of tables, the

proposed architecture allows us to have a single table to store

the information contained in all the CIFs of the database. This

makes the writing and querying processes easier. Although

not mimicking explicitly the table structure of a CIF, the data

are structured and stored in the database in terms of tags and

values, and the hierarchies and relations are contained and

well defined in the dictionaries; therefore, the relational

structure of the CIF data can be reconstructed whenever

needed. Thus, a singleton occupies a single row of the table,

whereas each value inside a loop is represented via a row. To

do so, the table has some columns to correctly represent the

value (tag name, type and value) and others to refer to the

loop (these columns are ignored for singleton values): an

identifier of the loop, the position of the tag within that loop

and the position of the value in the list of values corresponding

to that loop (i.e. the position of the row in which the value

appears in the loop). As an example, the loop shown below is

stored in the Props table as is shown in Table 1:

Additional columns are used to store the type of the value, and

the raw and processed values of string values that are properly

shown in HTML: numerical values are shown along with their

standard uncertainty, whereas string values are displayed with

unicode characters replacing the special characters defined by

the CIF standard.

This design is particularly successful since it avoids the use

of fixed-size tables, which force all CIFs to include exactly the

same data names. In addition, tags allowed to be looped

together inside a CIF may represent a matrix. Therefore, it is

convenient to have a table for storing these types of structures.

In order to store a matrix, A, of dimensions N �M a new row

is created in the auxiliary table Matrix and for every matrix

element aij (N �M in total) a new entry is created in a table

called MatrixTag.

In order to keep the application as human readable as

possible, the tags stored in the database can be classified into

different categories and, in the same way, categories can be

classified into different sections. As these categories and

sections may vary depending on the application, it is important

to keep them organized in tables. The tables Section and

Category are used for storing these two structures. Apart

from them, for making complex data queries with ease, the

SearchField table keeps the different search operators

that can be used when looking for information.

Finally, information about the administrators (name, user-

name, password, email . . . ) is saved in the Users table.

5. Public site

The public site of the framework allows users to access the

data stored in the database by interacting through the

graphical interface. To facilitate the process of looking for

data, a search engine that allows complex searches in the

database has been designed. Moreover, as has been mentioned

before, the public site is highly customizable, allowing easy

manipulation of both the search engine and the interfaces for

many different types of applications.

5.1. The search engine

The search form allows the user to concatenate operations,

permitting complex searches and the ability to make a more

fine-grained exploration of databases with a considerable

number of entries. Although the search engine is based on

formal CIF data names, the search forms show an informal

cif applications

J. Appl. Cryst. (2024). 57, 1640–1649 J. Gabirondo-López et al. � Towards dynamically configured databases for CIFs 1645

Table 1
Example of the storage of a loop.

Note that this table shows a simplified version of the Props table.

Loop order Tag position Value position Tag Value

1 1 1 _reflns_class_code Main
1 1 2 _reflns_class_code Sat1
1 2 1 _reflns_class_description Main reflections
1 2 2 _reflns_class_description 1st-order satellites

1 3 1 _reflns_class_number_total 1153
1 3 2 _reflns_class_number_total 2301
1 4 1 _reflns_class_number_gt 885
1 4 2 _reflns_class_number_gt 1751
1 5 1 _reflns_class_R_factor_gt 0.0236
1 5 2 _reflns_class_R_factor_gt 0.0292

1 6 1 _reflns_class_R_factor_all 0.0333
1 6 2 _reflns_class_R_factor_all 0.0484
1 7 1 _reflns_class_wR_factor_all 0.0269
1 7 2 _reflns_class_wR_factor_all 0.0338



name or rubric for each search field. These labels can be

modified, with absolute flexibility, from the administrative site.

5.2. Rendering the contents of the database

The frontend has been designed to render, in a human-

readable way, the information stored in the database. Never-

theless, in order to ensure that the information is displayed

correctly, the process of retrieving the data must be efficient

and well defined.

First it is necessary to verify that an unprivileged user is not

trying to access a private entry file. After that, the application

retrieves the metadata of the record selected by the user,

which is easily achieved by querying the database with a

unique identifier. Once this is done, the application obtains the

tags and matrices of the entry. Because of the way in which the

database and the interfaces are designed, these two pieces of

information require an additional filtering process. Then, the

tags of every CIF data block must be classified into the

different sections that are defined by the administrators.

Hence, the first step is to read the CIF categories that belong

to each section, and in the same way the tags that correspond

to those CIF categories.

For every tag, its value (together with its standard uncer-

tainty and units, if applicable) and metadata (category of the

tag and dictionary where it is defined) are obtained, if it is not

part of a loop. On the other hand, the values and metadata of

tags belonging to the same loop are stored together using list

structures. Finally, as the category of each tag is obtained, the

tags are classified into the different sections using those

categories.

As far as the matrices are concerned, the first step is to

check if the loop identifier indicates it is a matrix. In that case,

the values of the tags of the loop are internally represented as

separated lists. Then, a reshaping procedure converts these

lists into a single matrix. For representing a matrix of

dimensions N �M, a separate matrix is first created. After

that, as every value of the loop is stored in the database with

its respective (i, j) coordinates, each value in the loop is copied

into the created matrix. This process is done for every matrix

of the input CIF. Finally, the information obtained is rendered.

6. A proof of concept: the B-IncStrDB

From the beginning of the Bilbao Crystallographic Server

(Aroyo et al., 2006) and given that there was, within the

research group that maintained it, a very active line focused on

incommensurate modulated structures, the possibility arose of

starting a database dedicated to this novel (in those times)

class of materials. Two fundamental milestones contributed to

the beginning of this task: the standardization of the

description of the modulated structures by the IUCr

Commission on Aperiodic Crystals (Chapuis et al., 1997) and

the development of a CIF dictionary including the descriptors

proposed by said commission (Madariaga, 2006). In this way,

articles with structural content present in the literature began

to be compiled. The information was extracted, analyzed and,

so far as was possible, standardized and stored in hand-built

CIFs. Obviously, publications grew in number more than it was

possible to assimilate. At the same time, the increase in

complexity of the analyzed structures required more descrip-

tors than those found in the standard dictionary. Fortunately,

the most established refinement program (Petřı́ček et al., 2014)

began producing CIFs automatically. However, the structure

of those CIFs varied throughout the program versions,

requiring manual adjustments by specialized personnel. In

this context the Bilbao Incommensurate Structures Database

(B-IncStrDB) was established in 2012. It was implemented on

MySQL (Widenius et al., 2002) and was linked to the Bilbao

Crystallographic Server, that is, it was publicly accessible. The

input interface parsed the CIFs, extracting the information to

include in the database. It lacked a validator and only the

values of certain hard-coded tags were extracted from the CIF.

Taking into account that the authors of the publications

sometimes manually modified the CIFs, the task of entering

the data could be frustrating. It became evident that there was

a need for a CIF validator, not only for the database but for

the entire crystallographic server, since it uses CIFs in several

of its programs. Even so, some of the initial data storage

strategy of the database has been preserved in the current

version of the B-IncStrDB. The IUCr has given the database a

significant boost by considering it the official repository of

structural information for modulated structures and compo-

sites, including, in each publication, a direct link to the

corresponding entry in the database.

The new version of the modulated structure database (for

historical reasons the name B-IncStrDB has been preserved)

is a particular implementation of the application described in

the previous sections, which uses the official IUCr dictionaries

(Hall & McMahon, 2006) as a reference against which all the

entries included in the database have been strictly validated.

Currently, two additional local dictionaries are also required

to validate some unofficial data names used by structural

refinement programs [in practice, only JANA2020 (Petřı́ček et

al., 2023) and earlier versions are widely used for the refine-

ment of modulated structures] that should disappear and will

be properly aliased within the forthcoming DDLm release of

the msCIF dictionary (development version available at

https://github.com/COMCIFS/Modulated_Structures). The only

explicit dependencies on specific data names are the publica-

tion data, the chemical formula and, to determine whether the

structural data belong to a composite, the number of subsys-

tems it contains. Those items are used as metadata of the

entries and shown on the main page of the public site. Even so,

the input data themselves constitute the greatest weakness of

the database, since sometimes they have had to be manually

standardized and could contain errors not originating from the

authors of the publication. The most relevant cases are

annotated when the structure is displayed. In no case has any

value been omitted or corrected, even if it did not have a clear

physical meaning.

Regarding the used libraries, the backend is a Django

(Django Software Foundation, 2019) application written in

Python 3 (Van Rossum & Drake, 2009). The processing and

cif applications

1646 J. Gabirondo-López et al. � Towards dynamically configured databases for CIFs J. Appl. Cryst. (2024). 57, 1640–1649

https://github.com/COMCIFS/Modulated_Structures


validation of the CIFs are done by using the code iotbx.cif

(Gildea et al., 2011) supplied with the Computational Crys-

tallography Toolbox (cctbx) (Grosse-Kunstleve et al., 2002).

The present validator is intended to give external users (and

also the administrators) a tool to check if their CIFs are

appropriate for submission to the database or elsewhere. At

the time of writing, the current validator only supports DDL1-

based dictionaries. However, the validator is designed to be an

interchangeable piece of software that can be updated,

completely replaced by a more modern and enhanced

program, or even run in a standalone way, separate from the

database. This philosophy will allow a rapid transition to

DDLm dictionaries. The current list of warnings and errors

raised by the validator is shown in Table 2.

The processed data are stored in a SQLite database (Hipp,

2020). Even though Django supports other relational data-

bases such as MySQL and MariaDB, SQLite was chosen in

this case because of its easy maintenance and portability. The

frontend is mostly based on Bootstrap (Twitter, 2019) and uses

Jinja to parse the information coming from the backend. It

also has some custom-defined CSS rules to modify style-

related parameters.

The following sections present an overview of the current

status of the database, accessible through the link https://www.

cryst.ehu.eus/bincstrdb/.

As the database has been built according to the general

design presented in the previous sections, it is divided into two

main parts: the public site and the administrative site. Below is

a more detailed description of the public site and an expla-

nation of how the administrative site has been adapted for this

use case.

6.1. The public site

The public site, which tries to be simple in presentation,

consists of a search section, the query results and a header,

showing a contact link and from where, through a login, the

administrative site can be accessed. The validator is accessible,

also from the header, regardless of the action being performed

on the database.

6.1.1. Visualization of the database contents. The main

page of the website shows the entries stored in the database in

a paginated list, showing a projection of the structure and the

minimum information needed to easily identify the entries

(title of the publication, authors, journal reference and DOI)

(see Fig. 4). That information is shown along with three

buttons: to view the CIF data; to directly download the

uploaded CIF; and to visualize in detail the structure file via

JSmol (Hanson et al., 2013) (see Fig. 5).

When the user clicks on the ‘View entry’ button, the

selected information stored in the database is shown in an

organized manner. If a CIF contains multiple structures (data

cif applications

J. Appl. Cryst. (2024). 57, 1640–1649 J. Gabirondo-López et al. � Towards dynamically configured databases for CIFs 1647

Figure 4
Reduced representation of an entry that shows relevant metadata (article
title, authors, journal reference and DOI) and buttons to access the main
view of the entry, to download the uploaded CIF or to visualize it via
JSmol.

Figure 5
Graphical interface based on JSmol (Hanson et al., 2013). This tool
interprets the crystallographic information stored in a CIF and allows its
interactive visualization (top), including the atomic modulation functions
(bottom) of any selected atom.

Table 2
List of warnings and errors raised by iotbx.cif.

Type Message

Warning Tag not defined in the dictionary

Warning Case-sensitive match failure for a value
Warning Obsolete definition
Error Value type differs from indicated in data-name definition
Error Standard uncertainty not applicable to this data name
Error Value outside of the permitted range
Error Value not in the enumeration list of the data name
Error Both data item and exclusive alternate, present in data block

Error Missing value associated to a data name
Error Data name cannot be declared in a loop
Error Data name can only be declared in a loop
Error Multiple categories mixed in a loop
Error Value assigned in child data name not found in parent data name
Error Missing parent data name for loop containing child data name

Error Missing required reference data name(s) for a loop

https://www.cryst.ehu.eus/bincstrdb/
https://www.cryst.ehu.eus/bincstrdb/


blocks), each of them is displayed in a different tab, allowing

an easy location of the data associated with each structure.

Within each tab, data items are distributed in sections. Each

section consists of a title, its position and a set of tag categories

that are displayed within it. The description of each item and

the data categories included in each displayed section are

defined via the administrative site. Thus, the order in which the

crystallographic data are displayed is completely determined

by the administrators: items will always appear in the same

order regardless of the original CIF ordering.

For the user, this style of presentation has advantages over

searching within the original CIFs. On the one hand, CIF data

names can be replaced by administrator-defined labels, which

can be especially helpful for non-expert users. Moreover,

where applicable, numerical data are shown explicitly with

their respective units, and each item is accompanied by a link

that redirects to its definition at the IUCr website. Looped

data are presented in two possible ways. By default, CIF loops

are shown in tabular form, with each column headed by a user-

friendly title or description. However, some of the looped data

can also be displayed in matrix form, and this is also chosen on

a case-by-case basis by the administrators.

6.1.2. Querying the database. The main page has a search

form that allows the user to perform complex queries. The

simplest form contains three inputs: the first allows the user to

choose one of the tags defined as search tags by the admin-

istrators (note that the tag is not shown directly by its name,

but by the title defined in the administrative site); using the

second the user can select one of the operations corresponding

to that tag; and, finally, the third is the text input area. The

input area allows the user to use the ‘jj’ operator to perform

OR operations: i.e. ‘tP6 jj mP12’ means ‘tP6’ OR ‘mP12’.

Apart from simple queries, more complex searches can be

done by adding multiple lines to the search form. Each of

those form lines works as explained above, and the queries of

each line are combined with an AND operator.

6.1.3. Graphical representation of the structures. Great

effort has been put into the graphical representation of the

specific characteristics of modulated structures. Any click over

the thumbnail accompanying each entry brings up a JSmol-

based page, where each structure contained in the uploaded

CIF can be examined, including aspects related to modulation

(Fig. 5).

6.2. The administrative site

The administrative site allows modifications online and in

real time, with an impact on the information displayed on the

public site, which for the user only requires deleting cache

data in the browser and reloading the page. Compared with

the base framework, the administrative site of B-IncStrDB has

been completed with a small application to create the figures

that are shown on the public site and another one to add a

header to all the CIFs downloaded from it.

6.2.1. Figure generation. As stated before, each entry is

accompanied by a figure generated with JSmol (Hanson et al.,

2013). Those figures can be created through the administrative

site once the CIF is uploaded. An embedded JSmol applica-

tion that loads the CIF can be used to directly create and store

a figure that represents the most significant characteristics of

the structure. Those thumbnails are saved in the JSmol-

specific PNGJ format. They are compressed files which include

a PNG image, together with the CIF and the state of the

structural plot (displayed atoms, bonded atoms, polyhedra if

present . . . ). This should allow the user to see, as initial model,

the same image as appears in the thumbnail. Moreover, PNGJ

files can be uploaded via an input form, so figures can be

created outside of the web application using Jmol or JSmol,

and then uploaded to the database.

6.2.2. CIF header. Administrators can also set a multiline

string that will be automatically added when a CIF is down-

loaded from the database. That header can be used to include

relevant information: CIF version, the list of dictionaries

against which the CIF has been validated and/or from where it

was downloaded, for example.

7. Conclusions

In the previous sections, a tool has been presented to organize

information contained in CIF-like archives in databases,

independently of a particular ontology. It only requires the

appropriate dictionaries to validate the structure and content

of the file. Its design allows great flexibility both to maintain

the contents and to vary the type and format of the informa-

tion presented to users. As an example, the modulated struc-

tures database (https://www.cryst.ehu.eus/bincstrdb/, B-IncStrDB)

publicly accessible through the Bilbao Crystallographic Server

has been presented. At the time of writing this article, the

database contains 267 modulated structures (46 of which are

composites) that have been, in most cases, manually standar-

dized. All stored CIFs comply with the DDL1 dictionary

msCIF.dic. The growth of the database is still far from

being completely automated. Although the migration of the

dictionary from DDL1 to DDLm will mitigate this situation, at

least 100 structures, which have been located in different

publications, are waiting as they require a complete CIF; this is

because, until not many years ago, information stored in CIF

format has been reduced to the average structure. On many

occasions, the information about modulation appears only in

graphic form. A possible cause is that publishers, beyond the

IUCr, do not demand it, perhaps in part because the excellent

program PLATON (Spek, 2003) does not yet validate CIFs of

modulated structures. The B-IncStrDB could be a good

opportunity to centralize the particular information on

modulated structures, linked to the rest of the open structural

databases that currently exist.

8. Future work

The framework presented here allows the creation of highly

configurable web applications to exploit CIF-based data-

bases. Even though the current implementation has been

successfully used to deploy a referential database such as the

B-IncStrDB, the framework needs further development to

cif applications

1648 J. Gabirondo-López et al. � Towards dynamically configured databases for CIFs J. Appl. Cryst. (2024). 57, 1640–1649

https://www.cryst.ehu.eus/bincstrdb/


overcome the challenges posed by the migration from DDL1

to DDLm, and to fit other cases. Firstly, the validator, which is

one of the key elements of the framework, must be replaced

by another software that deals correctly with DDLm

dictionaries and with files conforming to the CIF 2.0 syntax

standard. Moreover, the proposed tables are flexible enough

to store the new elements introduced by the DDLm language,

such as arrays and matrices. As the tag definitions given in the

dictionaries are directly loaded into the database, minor

modifications of the tables would be required to specify the

dictionary version, to include the new high-level metadata and

even to manage the aliases correctly. Thus, in principle, it

should be even possible to have databases with DDL1 and

DDLm dictionaries. Secondly, the framework should be

adapted to work with more scalable database platforms such

as MongoDB and MySQL. Django is compatible with those

technologies, but adopting them would require a major

refactor of the code. Finally, in order to promote the creation

of open databases, the framework should be made open

source so that other developers can deploy their own appli-

cations and contribute to the community by improving the

current framework. In the short term, we intend to extend the

framework for allowing validations against DDLm diction-

aries and then open it to the public domain.

Acknowledgements

The authors would especially like to thank R. Hanson for his

kind and quick response to all issues related to graphical

representation of modulated structures using JSmol.

Funding information

This research has been funded by the Basque Government

(project IT1458-22). JG-L is indebted to the University of the

Basque Country (UPV/EHU) for the grant PIF 21/06. Open

access funding provided by University of the Basque Country.

References

Allen, F. H., Barnard, J. M., Cook, A. P. F. & Hall, S. R. (1995). J.
Chem. Inf. Comput. Sci. 35, 412–427.

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M.
(2004). J. Appl. Cryst. 37, 335–338.

Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E.,
Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006).
Z. Kristallogr. Cryst. Mater. 221, 15–27.

Berman, H., Bernstein, H., Ellis, P., Feng, Z., Hall, S., Hoyland, M.,
McMahon, B., Spadaccini, N., Strickland, P., Westbrook, J. & Yang,
H. (2006). International Tables for Crystallography, Vol. G, ch. 5,
pp. 481–568. Chester: IUCr

Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F. Jr, Brice,
M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M.
(1977). Eur. J. Biochem. 80, 319–324. .

Bernstein, H. J. & Hammersley, A. P. (2006). International Tables for
Crystallography, Vol. G, ch. 2.3, pp. 37–43. Chester: IUCr.

Blatov, V. A., Hanson, R. M. & Proserpio, D. M. (2021). Topology
CIF Dictionary, https://www.iucr.org/__data/iucr/cif/dictionaries/
cif_topology_0.9.6.dic.pdf.

Brown, I. D. (1983). Acta Cryst. A39, 216–224.

Chapuis, G., Farkas-Jahnke, M., Pérez-Mato, J. M., Senechal, M.,
Steurer, W., Janot, C., Pandey, D. & Yamamoto, A. (1997). Acta
Cryst. A53, 95–100.

Crennell, K. M. & Brown, I. D. (1985). J. Mol. Graph. 3, 40–49.

Django Software Foundation (2019). Django, https://djangoproject.
com.

Fire, M. & Guestrin, C. (2019). GigaScience, 8, giz053.

Gallego, S. V., Perez-Mato, J. M., Elcoro, L., Tasci, E. S., Hanson,
R. M., Aroyo, M. I. & Madariaga, G. (2016a). J. Appl. Cryst. 49,
1941–1956.

Gallego, S. V., Perez-Mato, J. M., Elcoro, L., Tasci, E. S., Hanson,
R. M., Momma, K., Aroyo, M. I. & Madariaga, G. (2016b). J. Appl.
Cryst. 49, 1750–1776.

Gildea, R. J., Bourhis, L. J., Dolomanov, O. V., Grosse-Kunstleve, R.
W., Puschmann, H., Adams, P. D. & Howard, J. A. K. (2011). J.
Appl. Cryst. 44, 1259–1263.

Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós,
M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A.
(2009). J. Appl. Cryst. 42, 726–729.

Grosse-Kunstleve, R. W., Sauter, N. K., Moriarty, N. W. & Adams,
P. D. (2002). J. Appl. Cryst. 35, 126–136.

Hall, S. R., Allen, F. H. & Brown, I. D. (1991). Acta Cryst. A47, 655–
685.

Hall, S. R. & Cook, A. P. F. (2006). International Tables for Crystal-
lography, Vol. G, ch. 2.5, pp. 53–60. Chester: IUCr.

Hall, S. R. & McMahon, B. (2006). Editors. International Tables for
Crystallography, Vol. G, Definition and Exchange of Crystal-
lographic Data. Chester: IUCr.

Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. & Sussman, J. L.
(2013). Isr. J. Chem. 53, 207–216.

Hester, J. R. (2006). J. Appl. Cryst. 39, 621–625.

Hipp, R. D. (2020). SQLite, https://www.sqlite.org/index.html.

Madariaga, G. (2006). International Tables for Crystallography, Vol.
G, ch. 4.3, pp. 270–289. Chester: IUCr.

McMahon, B. (1998). VCIF: a Utility to Validate the Syntax of a
Crystallographic Information File, https://www.iucr.org/iucr-top/cif/
software/vcif/index.html.

McMahon, B. (2006a). International Tables for Crystallography, Vol.
G, ch. 3.1, pp. 88–89. Chester: IUCr.

McMahon, B. (2006b). International Tables for Crystallography, Vol.
G, ch. 5.3, pp. 499–525. Chester: IUCr.

Merkys, A., Vaitkus, A., Butkus, J., Okulič-Kazarinas, M., Kairys, V. &
Gražulis, S. (2016). J. Appl. Cryst. 49, 292–301.

Petřı́ček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. Cryst.
Mater. 229, 345–352.

Petřı́ček, V., Palatinus, L., Plášil, J. & Dušek, M. (2023). Z. Kristallogr.
Cryst. Mater. 238, 271–282.

Ren, Y., Baas, J., Meetsma, A., de Boer, J. L. & Wiegers, G. A. (1996).
Acta Cryst. B52, 398–405.

Smaalen, S. van (1991). Phys. Rev. B, 43, 11330–11341.

Spadaccini, N. & Hall, S. R. (2012). J. Chem. Inf. Model. 52, 1907–
1916.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

Spek, A. L. (2020). Acta Cryst. E76, 1–11.

Todorov, G. & Bernstein, H. J. (2008). J. Appl. Cryst. 41, 808–810.

Twitter (2019). Bootstrap, https://getbootstrap.com.

Vaitkus, A., Merkys, A. & Gražulis, S. (2021). J. Appl. Cryst. 54, 661–
672.

Van Rossum, G. & Drake, F. L. (2009). Python 3 Reference Manual.
Scotts Valley,: CreateSpace.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Widenius, M., Axmark, D. & DuBois, P. (2002). Mysql Reference
Manual. Sebastopol: O’Reilly.

cif applications

J. Appl. Cryst. (2024). 57, 1640–1649 J. Gabirondo-López et al. � Towards dynamically configured databases for CIFs 1649

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB7
https://www.iucr.org/__data/iucr/cif/dictionaries/cif_topology_0.9.6.dic.pdf
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB11
https://djangoproject.com
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB28
https://www.iucr.org/iucr-top/cif/software/vcif/index.html
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB35
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB41
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB41
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB42
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB42
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB43
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=yr5136&bbid=BB44

	Abstract
	1. Introduction
	2. Framework design
	3. The administrative site
	3.1. Dictionaries
	3.2. CIFs
	3.3. Excluded tags
	3.4. Section structure
	3.5. Tag titles
	3.6. Matrices
	3.7. Search fields
	3.8. Users

	4. Database structure
	5. Public site
	5.1. The search engine
	5.2. Rendering the contents of the database

	6. A proof of concept: the B-IncStrDB
	6.1. The public site
	6.1.1. Visualization of the database contents
	6.1.2. Querying the database
	6.1.3. Graphical representation of the structures

	6.2. The administrative site
	6.2.1. Figure generation
	6.2.2. CIF header


	7. Conclusions
	8. Future work
	Acknowledgements
	Funding information
	References

