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A series of animations, videos and 3D models that were developed, filmed or

built to teach the symmetry properties of crystals are described. At first, these

resources were designed for graduate students taking a basic crystallography

course, coming from different careers, at the National Autonomous University

of Mexico. However, the COVID-19 pandemic had the effect of accelerating the

generation of didactic material. Besides our experience with postgraduate

students, we have noted that 3D models attract the attention of children, and

therefore we believe that these models are particularly useful for teaching

children about the assembled arrangements of crystal structures.

1. Introduction

The material organization of signs, diagrams and symbols has

had a great impact in the production of scientific knowledge

(Francoeur, 2001). For point- and space-group symmetry and

their diagrammatic representation, the closer cooperation that

started in 1929 between crystallographers at an international

level gave rise to the preparation of standardized space-group

tables and crystallographic nomenclature (Brock, 2014). The

latest editions of International Tables for Crystallography, Vol.

A (ITA, 2005, 2016), are of significant relevance for trans-

mitting information on symmetry.

In the early years of crystal structure determination,

Buerger & Butler (1936) pointed out that structural data in the

form of cell dimensions, space group and atomic coordinates

are of very little use if someone desires correct visual pictures

of the crystal structures. At that time, several publications

were devoted to methodologies for modelling crystal struc-

tures using wires and commercially available wooden spheres

of different sizes. Thereby, it was possible to build a model

such that 1 Å = 2 inches (Wyckoff & Ksanda, 1926; Buerger &

Butler, 1936; Buerger & Butler, 1938; Dorris et al., 1938;

Seymour, 1938; Wooster & Knott, 1938). Several researchers

were devoted to the study of the structure of minerals and

other inorganic crystals by X-ray diffraction, and accurate

values of interatomic distances in crystals were obtained. The

necessity of developing a system of radii for atoms that

explained the interatomic distances measured in inorganic

substances emerged (Pauling, 2015). As a result, a set of

atomic radii were available to anyone who wanted to build 3D

models for crystal structures.
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In later years, Pauling considered the importance of having

information about interatomic distances, bond angles and

other configurational parameters in order to obtain a reliable

prediction of reasonable configurations for polypeptide

chains. This would have an impact on the study of the structure

of both fibrous and globular proteins, as well as of synthetic

polypeptides (Pauling et al., 1951). Historically, a crucial

starting point was the complete and precise determination of

the crystal structures of amino acids, peptides and other simple

organic substances. The first was hexamethylene tetramine by

Dickinson & Raymond (1923), which forms crystals with cubic

symmetry. Bond lengths and bond angles were extracted with

success by the method of electron diffraction (Pauling, 2015).

Determinations of amino acid and peptide structures and the

understanding of protein structures were greatly facilitated

using accurately constructed 3D models. Interestingly, a

technical description of the models used at Caltech (USA)

pointed out that they were intended as ‘substitutes for calcu-

lations in investigations of the probable configuration of the

protein chain in proteins’ (Corey & Pauling, 1953). Two types

of model emerged, being complementary and of particular

importance: the space-filling and the skeletal (Walton, 1978).

The former had the advantage of examining fundamental

questions such as steric hindrance (Francoeur, 2001) and the

second allowed a connection to be made between the atoms in

a molecule and its arrangement. The work of Pauling and

Corey on the polypeptide chain would eventually have strong

influence when the structure of DNA was revealed (Watson &

Crick, 1953; Watson, 1968).

In the middle of the last century, Bragg & Nye (1947)

published an extraordinary model consisting of an assemblage

of bubbles representing the crystal structure of a metal. With

this model, they were able to simulate observed effects, such as

grain boundaries, dislocations and other types of fault. Since

then, ingenious methodologies for representing crystal lattices,

symmetry, crystal structures and their properties have been

documented (Buseck, 1970; Kantardjieff et al., 2010; Sunder-

land, 2014; Lenzer et al., 2019; Murray et al., 2024). The ability

to visualize and manipulate crystal structures has been crucial

for understanding different structural types and formations.

Interactive visualization has largely displaced molecular

modelling in the study of crystal structures (Driessen et al.,

1988; Alves et al., 2021). Software resources have included

crystallization phenomenon analysis (Chadwick et al., 2019),

allowing the display of crystal structures, as well as the

prediction or display of crystal morphologies such as in

Mercury (Macrae et al., 2020) or KrystalShaper (Weber, 2020).

KrystalShaper allows one to obtain and print polyhedral nets

to build paper models of crystal shapes. Very helpful software

has been developed for visualizing inorganic or mineral

structures, such as VESTA (Momma & Izumi, 2011), and other

software such as DIAMOND (Pennington, 1999) and

ChimeraX (Pettersen et al., 2021); this last was designed for

interactive visualization from the UCSF Resource for

Biocomputing, Visualization and Informatics (University of

California San Francisco, USA). PowderCell (Kraus & Nolze,

1996) allows the display of crystal structures and the calcula-

tion of powder diffractograms, and offers non-conventional

features like the generation of subgroups or representation of

a crystal structure using non-standard settings for a given

space-group type (Nolze, 2002). Jmol (Hanson, 2010) high-

lights the essential characteristics of unit cells, space groups

and symmetry operators; it has been used for teaching symmetry

and for space-group visualization (e.g. https://symotter.org).

The above illustrate how the development of 3D models

and access to computing software have played an important

role in the rise of crystallography and the understanding of

crystal structures. Further, to understand how to describe the

symmetry properties of a crystal structure by means of the

symmetry operations of its space group, it is extremely

important to adhere to the symbols, diagrams and nomen-

clature used in International Tables for Crystallography (ITA,

2005, 2016). Some of the specific references related to this

matter are Burns & Glazer (2013), Aroyo et al. (2006), Dauter

& Jaskolski (2010) and Nespolo et al. (2018), among others.

Additionally, there are many web sites containing diverse

interesting resources. These include among others the Bilbao

Crystallographic Server, which offers free of charge its crys-

tallographic and solid-state programs and utilities (Aroyo et

al., 2011; https://www.cryst.ehu.es); a tutorial on symmetry and

space groups by Jasinsky & Foxman (Foxman, 2021; https://

sites.google.com/brandeis.edu/foxman-group/teaching/

space-groups) with links to consult historical, professional and

pedagogic topics; and course material on symmetry teaching

and space groups with online animation and videos by Hoff-

mann (https://crystalsymmetry.wordpress.com).

The purpose of the present contribution is to show how

animations and videos in the form of a few short briefing

capsules, as well as 3D models, can be useful to help in

visualizing the symmetry properties of a crystal, following the

diagrams and symbols used in ITA. The topics and distinctive

features we have considered for the elaboration of the short

briefing capsules can be summarized as follows:

(i) Models. Crystalline structures with appropriate peda-

gogical qualities were considered to illustrate their symmetry

properties, although certain aspects with practical relevance

such as use and applications were also pondered.

(ii) Asymmetric unit. All asymmetric units great and small

were contemplated to show the symmetry properties of crystal

structures, from very small such as the case of five atoms for

the crystal structure of ice, to hundreds of atoms for the case of

insulin.

(iii) Matrix representation for rotational symmetry opera-

tions. Under the (a, b, c) vectorial basis, the animated move-

ment resulting from the linear mapping of a rotational

symmetry operation (isometry) is described, allowing its

matrix representation through geometric reasoning.

(iv) Seitz symbols for a symmetry operation. With the

application of each symmetry operation on the asymmetric

unit, both rotational (matrix) and translational parts of the

Seitz operator are exposed in the animation, showing how the

3D space is occupied by isometric mapping.

(v) Diagrams for representing general positions and

symmetry elements. In the animations, when a Seitz operator is
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applied to the asymmetric unit of the crystal, the portion of

atoms generated by the symmetry is shown simultaneously,

together with the corresponding position in the general posi-

tions diagram. With the information obtained from the general

positions generated by each Seitz operator, the diagram of

symmetry elements is constructed by means of animations.

(vi) Centred lattices. The use of the Seitz operators and how

the information is organized in ITA for the general coordi-

nates and diagrams of symmetry elements is described for the

case of centred lattices, such as occur for the crystal structures

of insulin and cocoa butter.

(vii) Relocation of symmetry elements. The combination of

rotational symmetry (proper or improper) with translations is

reinterpreted in some of the animations in terms of relocation

of the symmetry elements.

(viii) Screw axes and glide planes. Symmetry operations

such as screw axes and glide planes, represented through the

Seitz symbols, are described in the animations, giving them a

geometric sense in selected crystal structures such as ice or

cocoa butter. Frequently ‘roto-translation’ symmetry requires

reinterpretation as screw axes or glide planes, with or without

relocation of symmetry elements in the 3D space.

(ix) Coset decomposition of a space group. A given space

group can be represented by a left coset decomposition with

respect to its translation subgroup. For this case, polymorph V

of cocoa butter was selected for its simplicity, ease of anima-

tion and small number of coset representatives, and as a good

and interesting example of a centred lattice. Each coset,

headed by a coset representative, has been associated in the

crystal structure with a single specific colour.

(x) Running time. The set of designed briefing capsules have

short running times, around 11
2

min for the shortest and around

31 min for the longest.

With the design described above – addressed in the first

instance to graduate students as a support to lectures given in

a classroom – we set out to facilitate understanding and the

posing of questions related to the type of packing for a crys-

talline arrangement, the nature of interactions between atoms

or molecules, the rate of growth in certain directions and the

reason for certain symmetry properties, among many others.

2. Materials and methods

2.1. Models for crystal structures

The six crystalline materials listed in Table 1 were selected

to illustrate their symmetry properties since we found useful

pedagogical qualities in them. In addition, they cover almost

all the crystal systems, comprise primitive and centred lattices

(involving the rhombohedral centred space group described

with hexagonal axes), encompass a wide range of symmetry

operations and diverse sizes for the asymmetric unit, and are

miscellaneous types of compound with varied uses and

significance for humans.

With the crystal structures listed in Table 1, we intend to

explain different topics of space-group symmetry.

2.1.1. Lupeol

The first crystal structure is lupeol, which is an excellent

case for illustrating the action of symmetry operations on the

asymmetric unit. The asymmetric unit consists of one single

molecule of lupeol, where any symmetry operation of the

space group acts on all and each one of the atomic positions

creating an identical molecule of lupeol, equivalent by

symmetry to the asymmetric unit. For the description of its

space group only four symmetry operations are needed, and

the crystal system is tetragonal, which is not so difficult to

visualize. Lupeol belongs to a group of substances known as

secondary metabolites, which are of extreme importance for

understanding the mechanisms of plant interactions with their

environment and their relationships with other living organ-

isms.

2.1.2. Insulin

An insulin dimer is an example of a ‘giant asymmetric unit’

that can be found in a crystal structure. As a macromolecule,

the insulin dimer is structurally very complex. Three dimeric

units related by a threefold symmetry axis assemble to form a

hexamer in the shape of an oblate spheroid. The spheroids

pack together as sheets of spheres arranged at the vertices of a

triangular net. The sheets are stacked upon one another in

such a way that every third sheet eclipses the first one of the

sequence of three. Insulin is a hormone important for regu-

lating glucose levels in blood, and it exists in the body stored

as a stable inactive hexameric form in the pancreas. When

insulin is secreted by the pancreas in response to an increase in

glucose levels in the blood, the insulin hexamer dissociates to

dimers (breaking the threefold symmetry) and then to

monomers, which are biologically active in promoting glucose

metabolism.

2.1.3. Ice

Unlike the cases of the previous crystal structures, in the

crystal structure of ice the water molecule has internal
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Table 1
Crystal structures considered in the animations, videos and 3D models.

Name Chemical formula Crystal system Space group CIF file

Lupeol C30H50O Tetragonal P43 (No. 78) JOLBIW(a)

Insulin Zn–C512N130O152S12H776 Trigonal R3 (No. 146) 4ins(b)

Ice (Ih) H2O Hexagonal P63cm (No. 185) 27837(c)

Aspirin C9H8O4 Monoclinic P121/c1 (No. 14) ACSALA(a)

Cocoa butter (polymorph V) C55H108O6 Monoclinic C1c1 (No. 9) JEMSAW01(a)

Chromium potassium alum KCr(SO4)2·12H2O Cubic Pa3 (No. 205) 38232(c)

Sources for the CIF files: (a) Cambridge Structural Database (CSD; https://www.ccdc.cam.ac.uk/solutions/software/csd/), (b) Protein Data Bank (PDB; https://www.rcsb.org/), (c)

Inorganic Crystal Structure Database (ICSD; https://icsd.fiz-karlsruhe.de/index.xhtml).

https://www.ccdc.cam.ac.uk/solutions/software/csd/
https://www.rcsb.org/
https://icsd.fiz-karlsruhe.de/index.xhtml


symmetry given by its point group C2v (mm2). Some of the

symmetry operations are included among those of its space

group. The arrangement of water molecules in ice is attractive

for visually demonstrating the presence of diverse symmetry

properties such as rotation axes, mirror planes, glide planes

and screw axes of symmetry. On the other hand, the crystal

structure of ice presents structural disorder that is concerned

with its diverse polymorphic phases. Ice has had a deep and

multifaceted impact on life on Earth, from climate regulation

to habitat and preservation of natural resources; it has played

an essential role in the ecological balance and in life on Earth

as we know it.

2.1.4. Aspirin

In this case, the asymmetric unit consists of an aspirin

molecule, which has no internal symmetry (like lupeol and

insulin). This crystalline structure is ideal for demonstrating

detailed symmetry operations such as inversion, screw axes

and glide planes.

On the other hand, with this example, we seek to visualize

crystal growth in terms of mappings by symmetry operations

that give rise to the fragments that are added during crystal

formation. The crystal structure and growth of aspirin crystals

are of fundamental importance for understanding its solubi-

lity, stability and processability, and ultimately its efficacy as a

drug for reducing blood coagulation and as a non-steroidal

anti-inflammatory drug.

2.1.5. Cocoa butter

Cocoa butter has at least six polymorphic forms with

different melting points and different stabilities and textures.

The space group that corresponds to the crystal structure of

polymorph V (C1c1) has only four symmetry operations listed

in ITA. This case is appropriate for dealing with the study of

centred lattices and for understanding the left coset decom-

position of a space group with respect to its translation

subgroup. The concept of decomposing a space group in terms

of cosets can be readily generalized from this simple example.

Polymorph V of cocoa butter is crucial for the manufacture of

chocolate. An inadequate structural arrangement can lead to a

‘fat-bloom’ phenomenon, resulting in the formation of Poly-

morph VI, which recrystallizes on the chocolate surface,

affecting its texture, appearance and sensory properties.

2.1.6. Chromium potassium alum

This is a salt of chromium and potassium which has cubic

symmetry. In this special case, the set of symmetry operations

(necessary to build a 3D structure) can easily be used to create

a mapping for the gradual generation of fragments of the

crystalline solid following a macroscopically dictated pattern

of crystal growth, as observed experimentally. Chromium

potassium alum is a mordant important in the textile industry,

used to fix dyes in textile fibres. It is also used as a chemical

reaction catalyzer and as a flocculant in water-treatment

processes.

2.2. Software

The Crystallographic Information Framework (CIF) files

for lupeol, aspirin, cocoa butter and chromium potassium

alum were processed using Mercury (Macrae et al., 2020),

while VESTA (Momma & Izumi, 2011) was used for modelling

the crystal structures of ice and chromium potassium alum.

VESTA was also helpful for displaying the crystal shapes of

aspirin and chromium potassium alum after careful analysis of

the images obtained from crystal growth experiments. The

movements of all the images, text effects, colour changes etc.

were performed using PowerPoint utilities (Microsoft, Version

16.85). At the end, .gif and .mp4 files were produced. In

some cases, the final files were edited by Filmora (Wonder-

share, Version 13.3.9) to improve the presentation.

2.3. Crystal growth

To grow chromium potassium alum crystals, the powdered

substance (4.8 g; Farmacia Paris, SA de CV, Mexico City) was

dissolved in water (20 ml). Complete dissolution was ensured

by heating the water using an electric grill hotplate for 2 min

to ensure a completely homogeneous solution. The solution

was poured onto a 90 � 15 mm Petri plate and a record of the

growth was taken.

For aspirin, acetylsalicylic acid powder (0.9931 g; Sigma–

Aldrich, 99.0%) was dissolved in ethanol (20 ml). The solution

was poured onto a Petri plate for recording the growth of

crystals.

2.4. Image recording

A digital camera (Canon EOS Rebel SL3) with an EF

100 mm f/2.8 L Macro IS USM lens was used for obtaining

images of the crystals growing. The camera was controlled by

Python code to shoot each specified period �t (30 s). The

images with the crystals growing were processed to make a

video file. This was done for aspirin and chromium potassium

alum.

2.5. Three-dimensional models

The CIF file for ice (Table 1) was used in VESTA to obtain

the geometry and dimensions for a water molecule. VESTA

allows export of .stl files which are appropriate for 3D

printing. Several water molecules were printed using poly-

lactic acid (PLA) as printing material. Round magnets (7 mm

diameter, 2 mm thick) were embedded inside holes that were

created by drilling the models. Two magnets were placed in

each oxygen atom in such a way that the two north poles were

exposed at two spots on its surface, while one magnet was

placed in each hydrogen atom with its south pole at one spot

on the surface. With the magnets correctly oriented, a correct

mimic of ‘hydrogen-bonding interactions’ by the resulting

magnetic forces was achieved. The CIF file for cocoa butter

(Table 1) was processed by Mercury to display the molecule

that represents the asymmetric unit, and an .stl file was

exported from Mercury for 3D printing of a whole molecule.
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The space-filling style was selected to represent the molecule

(i.e. assigning van der Waals radii to all the atoms).

3. Representing a space-group symmetry operation: the

Seitz operator

The Seitz operator, introduced by Seitz (1935), is symbolized

as {R |v}, where R represents the rotation part and v contains

the components of the translation part of the symmetry

operation. R can be specified by the proper or improper

rotation symbol (1, 2, 3, 4, 6 or 1, m, 3, 4, 6), together with a

superscript + or � to specify the sense of rotation (in case of

ambiguity) and with a subscript consisting of three integers

associated with the direction of the axis of rotation, or the

normal to a plane of reflection. For v, the three components of

the translation part are directly placed separated by commas.

When the three components are equal to zero, only one zero is

placed for v. The details of the nomenclature followed for R

and v are described by Glazer et al. (2014). If the coordinates

of a position vector are given by r = xa + yb + zc, then the

motion executed by the symmetry operation {R |v}, results in

the new position vector ~r given by

~x

~y

~z

0

@

1

A ¼

R11 R12 R13

R21 R22 R23

R31 R32 R33

0

@

1

A
x

y

z

0

@

1

Aþ

v1

v2

v3

0

@

1

A:

4. Short briefing capsules

The learning activities contained in the capsules are listed in

Table 2 , along with the names of the corresponding files in the

supporting information and their running times.

The use of the capsules described in Table 2 is designed to

complement theoretical courses in curricula that address the

symmetry described by the space groups, the notation used,

diagrams, symbols etc. The capsules are videos that can be

used individually or in groups. However, it seems that the

maximum benefit can be achieved by watching the video and

controlling the speed of display, rewinding, pausing or

replaying scenes at will. There are capsules that are very short

and can be repeated as many times as necessary. There are

details in the video image field which can be appreciated after

several repetitions. One of the problems that remains to be

solved in the elaboration of the capsules is the optimization of

the speed at which the animations move and their correct

positioning in the video image field. This requires synchroni-

zation with the response of the human brain to the stimulus

given by the video information to obtain a perception of

knowledge that goes beyond the simple visual sensation.

In the case of the use of the capsules in a group or classroom

setting by an instructor, it could be useful if, together with the

blackboard where the theoretical basis of a given topic is

presented, there is a screen at the side of the blackboard and,

from time to time, the instructor uses some part of the

capsules, showing certain parts, pausing, going backwards or

whatever is desired.

4.1. Matrix representation for rotational symmetry opera-

tions

The matrix representation for the rotational part R with

respect to (a, b, c) can be obtained by considering the

operation R as a linear mapping � which is applied to the

vectors a, b, c, obtaining �(a), �(b), �(c) and the coefficients of

linear mappings with respect to (a, b, c) as follows (Boisen &

Gibbs, 2018):

�ðaÞ ¼

R11

R21

R31

0

@

1

A; �ðbÞ ¼

R12

R22

R32

0

@

1

A; �ðcÞ ¼

R13

R23

R33

0

@

1

A:

The case for � ¼ 4�001 (fourfold rotation clockwise with the

symmetry axis along [001]) is illustrated in Fig. 1.
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Table 2
Short briefing capsules available in the supporting information.

The first column refers to subsections of this article. The final column specifies the running times of the capsules (min:s) and the corresponding names of the
supplementary files.

Subsection Skill and level Running time

4.1 Ability to obtain the matrix representation of rotational symmetry operations. Basic level: linear algebra and
crystallographic notation required.

4:47 (dv5020sup2.mp4)

4.2 Ability to use Seitz symbols and the application of symmetry operations using matrix notation. Basic level: linear

algebra, crystallography and its notation required.

9:27 (dv5020sup3.gif)

4.3 Practice on diagrams to represent general positions and to display symmetry elements in the lupeol crystal
structure. Intermediate level: elementary crystallography and its notation required.

1:35 (dv5020sup4.gif)

4.4 Practice on a centred lattice in the trigonal system: space group R3 for the case of insulin. Descriptions using the
rhombohedral space group with a primitive rhombohedral unit cell based on rhombohedral axes and using an
obverse triple hexagonal cell based on hexagonal axes. Advanced level: crystallography and its notation required.

31:29 (dv5020sup5.mp4)

4.5.1 Ability to reinterpret symmetry elements and relocation, as well as diverse symmetry operations in the crystal
structure of ice. Intermediate level: elementary crystallography and its notation required.

13:19 (dv5020sup6.mp4)
(dv5020sup7.gif)
3:47 (dv5020sup8.mp4)

4.5.2 Ability to reinterpret symmetry elements and relocation, as well as diverse symmetry operations in the crystal
structure of aspirin. Intermediate level: elementary crystallography and its notation required.

7:26 (dv5020sup9.mp4)

4.6 Practice on coset decomposition of a space group in cocoa butter (form V). Intermediate level: crystallography and
its notation required.

4:03 (dv5020sup10.mp4)

5 Practice on symmetry operations and crystal growth in chromium potassium alum. Intermediate level: crystal-
lography and its notation required.

2:12 (dv5020sup11.mp4)

http://doi.org/10.1107/S1600576724008872
http://doi.org/10.1107/S1600576724008872


The matrix representations for five isometries, � = 2001, 4�001,

6
þ

001, m210 and 3
þ

111, are geometrically rationalized by means of

a .mp4 video available in the supporting information (file

dv5020sup2.mp4).

4.2. Seitz symbols for a symmetry operation

Fig. 2 is a screenshot of a GIF animation (supplementary file

dv5020sup3.gif) developed to illustrate how, by applying

the symmetry operations (represented by the Seitz operators),

space can be filled. These symmetry operations are always

applied to the asymmetric unit starting with the rotational

part, with the translation part added at the end. The screen-

shot displayed in Fig. 2 was taken just at the time when the

Seitz operator 4�001j0
� �

is applied to the asymmetric unit

coloured in ochre. As a result of this mapping (movement),

the generation of the equivalent region labelled with the

number 7 occurs. The rotational and translational parts of the

symmetry operation as a matrix and column are indicated in

the figure. The complete animation filling a portion of space

around the unit cell can be consulted by viewing the supple-

mentary file.

4.3. Diagrams for representing general positions and

symmetry elements

To introduce this topic, the crystal structure of lupeol was

selected to illustrate both the diagram of general positions and

the diagram representing the symmetry elements. Lupeol is a

pentacyclic triterpene and classed as one of the secondary

metabolites, considered not to be vital to the organism that

produces them; surprisingly, they seem to provide a unique

medium for interrelation with the environment (Chappell,

2002; Gallo & Sarachine, 2009) and for this characteristic they

have been used as botanical origin markers (Lucero-Gómez et

al., 2014). As can be seen in Fig. 3(b), lupeol crystallizes in the

tetragonal system, with symmetry described by the space

group P43 (No. 78). The asymmetric unit consists of one lupeol

molecule, C30H50O, which has 81 atoms with five rings in its

molecular structure [Fig. 3(e)]. All these atoms occupy general

positions. In fact, this space group has no special positions;

none of its symmetry operations can leave a fixed position in

space during the mapping. This can only happen when, for

example, in a rotation, the position to be mapped lies precisely

on the axis of rotation; or in a reflection, the position lies on

the plane of reflection; or the position occupies a centre of

inversion. In the case of lupeol, the space group P43 has no

axes of proper rotation, no planes of reflection and no centres

of symmetry. Therefore, it cannot have special positions. This

space group is a member of just 13 Bieberbach groups that

exhibit no special Wyckoff positions. Such groups are

called fixed-point-free space groups or Bieberbach groups and

are precisely those groups that may contain glide reflections or

screw rotations, but no proper reflections, rotations, inversions

or rotoinversions (Souvignier, 2015).

By applying the four symmetry operations listed in Fig.

3(d), a portion of the space around the unit cell [Fig. 3(a)] has

been populated with molecules, where each molecule has been

coloured according to the symmetry operation that was

applied. The colour has been maintained for each symmetry

operation when combined with translations. The action of
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Figure 2
The process of filling the space with the action of symmetry operations on
an object (a cross). This screenshot corresponds to one sequence in a
supplementary GIF file (dv5020sup3.gif) where the Seitz operator
f4�001j0g is acting on the asymmetric unit coloured in ochre.

Figure 3
(a) The lupeol crystal structure, with the asymmetric unit coloured in
ochre. (b) Data from Corrêa et al. (2009), CSD refcode JOLBIW. (c) A
diagram for general positions with the diagram of symmetry elements
superimposed. (d) The four symmetry operations for the space group P43.
(e) The lupeol chemical structure.

Figure 1
In this figure, the matrix representation for � = 4�001 is the matrix where
the first column has as entries the linear mapping coefficients of �(a), the
second column the coefficients of �(b) and the third column the coeffi-
cients of �(c). In all these cases, the representations are with respect to
the (a, b, c) basis.
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each symmetry operation on the asymmetric unit for lupeol is

represented as a GIF animation in the supplementary file

(dv5020sup4.gif). Each mapping movement of the Seitz

operator on the asymmetric unit is accompanied by a display

of the corresponding general position. Thereby, little by little,

the diagram of general positions is completed in the unit cell,

reaching the same format as that used in ITA. With the help of

the diagram for general positions, the diagram of symmetry

elements is geometrically elucidated [Fig. 3(c)].

4.4. Centred lattices

The crystal structure of pig insulin has two descriptions.

One of them is an example of a centred lattice. The crystal

structure of 2Zn pig insulin is shown in Fig. 4, based on data

from Baker et al. (1988). It forms rhombohedral crystals that

crystallize in the trigonal system, with symmetry described by

the space group R3 (No. 146) using rhombohedral axes

[Figs. 4(a) and 4(b)] or hexagonal axes [Figs. 4(d) and 4(e)].

The relationship between the two descriptions is displayed in

Fig. 4(c). If the rhombohedral axis description is used, then

three symmetry operations are used [Fig. 4(b)]: (i) identity, (ii)

threefold anticlockwise rotation and (iii) threefold clockwise

rotation along the [111] direction. They are presented

sequentially in a video, including their matrix representations

(supplementary file dv5020sup5.mp4). The centred lattice

R implies the presence of centring translations f1j 2
3
; 1

3
; 1

3
g and

f1j 1
3
; 2

3
; 2

3
g together with {1 |0} as symmetry operations

[Fig. 4(d)].

In general, the symmetry operations for space groups with

centred lattices are represented in ITA with the symmetry

operations grouped in blocks; the number of blocks is the

number of centring translations. The case of insulin is covered

in the supplementary file dv5020sup5.mp4. When this

video file is executed, the movements produced by the

symmetry operations – which always apply to the asymmetric

unit – start to be displayed. The demonstration begins with the

first block carrying the legend ‘(0,0,0) + set’ as subhead [Fig.

4(d)]. As three symmetry operations are grouped in the first

block, i.e. (i) identity, (iii) threefold anticlockwise rotation and

(iii) threefold clockwise rotation, they are presented sequen-

tially in the video, including their matrix representations.

Afterwards, the three symmetry operations of the block are

combined with some translations to complete part of ‘the set’.

Next, the second block with the subheading ‘For (2
3
; 1

3
; 1

3
) + set’

is presented. It groups the following symmetry operations: (iv)

centring translation f1j 2
3
; 1

3
; 1

3
g, (v) threefold anticlockwise

rotation at 1
3
, 1

3
, z and (vi) threefold clockwise rotation at 1

3
, 0, z.

These symmetry operations result from combining the three

symmetry operations of the first block with the centring

translation f1j 2
3
; 1

3
; 1

3
g. In a similar way, the third block with

another three symmetry operations is presented, this time as a

result of combining the three symmetry operations of the first

block with the centring translation f1j 1
3
; 2

3
; 2

3
g.

The asymmetric unit for pig insulin [Figs. 4(a) and 4(b)]

consists of a dimer with two insulin molecules. Its chemical

formula is 2
3
Zn–C512N130O152S12H776 accompanied by ‘some

283 other atoms, mainly water’ (Baker et al., 1988). Insulin was

chosen to describe symmetry properties here because it shows

an asymmetric unit with hundreds of atoms. The video file

dv5020sup5.mp4 illustrates how this enormous set of

atoms can be represented in the diagram of general positions,

which moves according to the action of the symmetry opera-

tion. Since the Zn ions are located on the threefold rotation

axes, they do not move with the action of the threefold rota-

tion, so they occupy a special position. Additionally, we

consider that the video will, in a small way, help in quickly

eliminating the idea of seeing lattice points as atomic posi-

tions.

4.5. Reinterpretation of symmetry elements: relocation,

screw axes and glide planes

The combination of rotational symmetry (proper or

improper) with translations gives symmetry operations that

can be visualized with the symmetry element displaced in

space; in other cases, the visualization of the symmetry

operation is better perceived as a screw rotation or a glide

plane operation. To illustrate this, the crystal structures for ice

Ih and aspirin have been selected.

4.5.1. Ice Ih, P63cm (No. 185)

Although ice has been reported to form crystals with many

polymorphs, it usually crystallizes developing crystals with

hexagonal symmetry in space group P63cm (No. 185). The
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Figure 4
Data for pig insulin according to Baker et al. (1988). (a) Asymmetric unit
located in the primitive rhombohedral unit cell. (b) Symmetry operations
for the crystal structure of pig insulin (rhombohedral axes). (c) Relation
between the descriptions using rhombohedral axes and hexagonal axes.
(d) Asymmetric unit located in the obverse triple hexagonal cell. (e)
Symmetry operations for the crystal structure of pig insulin (hexagonal
axes). ( f ) Complete fragment of one sheet of packed hexamers of pig
insulin. (g) One insulin hexamer from panel ( f ), represented as a compact
oblate spheroid, constituted of three insulin dimers coordinated around
two Zn ions. (h) Packing of oblate spheroid insulin hexamers, with layers
distinguished by colour. (i) Rhombohedral shape for pig insulin crystals.
(j) Oblate spheroid representation for an insulin hexamer with symmetry
axis along c.
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asymmetric unit for ice is constituted by five atoms: two

oxygen and three hydrogen atoms [Fig. 5(d)].

Since this space group has 12 symmetry operations [Fig.

5(c)], 12 circles symbolizing generated general positions are

shown in the unit cell [Fig. 5(e)]. The movements caused by a

symmetry operation (supplementary file dv5020sup6.mp4)

are executed in the video animation, always starting from a

superimposed image in the asymmetric unit which starts to

move. The movement stops when the destination of the

mapping is reached. At this moment, the corresponding

position (as a circle) is shown in the diagram of general

positions in the animation. When a symmetry operation is

applied, the animation also indicates the corresponding Seitz

symbol, as well as the name of the symmetry operation. With

this kind of presentation, we have tried to emphasize that the

set of atoms that make up the asymmetric unit can be asso-

ciated with a general position (a circle) as a representative in

the diagram of general positions. For those atoms in the

asymmetric unit that occupy special positions, the animation

shows that they will not move with the action of the symmetry

operation. This is exactly the case shown in Fig. 5(d), where all

the atoms O1, H1, H2 and O2 of the asymmetric unit for ice lie

on a plane of reflection; only atom H3 is on a general position.

The crystal structure of ice is a good example to illustrate

the presence of rotation screw axes and glide planes. They can

be identified in the list of symmetry operations given in

Fig. 5(c). The relocation of symmetry operations because of

combining rotations with translations can be observed in the

supplementary file dv5020sup6.mp4.

Two further supplementary materials for the ice crystal

structure have been included: dv5020sup7.gif is a GIF

animation showing the construction of the ice structure using

3D models, with magnets representing the hydrogen-bond

interactions (Fig. 6), and dv5020sup8.mp4 is a video

showing how the models are manipulated by children and a

teenage girl to build the ice structure. Prior to practice, they

were asked to perceive and verify the forces of attraction and

repulsion occurring when the magnets were brought together

(i.e. orienting magnets exhibiting their north pole at hydrogen

atoms and others exhibiting their south pole at oxygen

acceptor sites). In this context, they were asked to think about

the arrangement they would assume would be more satisfac-

tory for a water dimer [Figs. 6(b), 6(c) and 6(d)].

4.5.2. Aspirin, P21/c1 (No. 14)

Aspirin crystallizes in the monoclinic system with space

group P121=c1 (No. 14). It represents another example where

screw axes and glide planes can be found as symmetry

operations [Figs. 7(b) and 7(c)]. The asymmetric unit consists

of one aspirin molecule [Figs. 7(d) and 7(e)] with chemical

formula C9H8O4, with all 21 atoms occupying general posi-

tions. Inversion centres are the unique sites for special posi-

tions for this space group.

When the symmetry operations listed in Fig. 7(c) are

combined with translations, the portion of the crystal structure

shown in Fig. 7(h) is obtained. The sequence of symmetry map-

pings is shown in a supplementary video filedv5020sup9.mp4.

The procedure followed in the video for exhibiting each
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Figure 6
(a) Three-dimensional model for the crystal structure of ice. (b)–(d)
Dimers composed of two water molecules. (b) The lowest energy equi-
librium ‘trans’ configuration showing a mirror plane symmetry (Petrenko
& Whitworth, 2002). (c) and (d) Unstable configurations, where the
dipole moments of the two water molecules do not point in such a way
that they oppose each other as much as possible. (e) Water molecule
showing magnets located at the lone-pair positions on the acceptor sites
(in the oxygen atom) and on the proton donor sites (the hydrogen atoms).

Figure 7
(a) Data for aspirin from Wheatley (1964). (b) Space group and crys-
tallographic data. (c) Symmetry operations. (d) Molecular formula. (e)
Asymmetric unit. ( f ) Diagram for general positions. (g) Diagram for
symmetry elements. (h) Fragment for aspirin crystal structure. (i) Crystal
forms observed during crystal growth of aspirin (video can be seen at the
end of supplementary file dv5020sup9.mp4).

Figure 5
(a) Data information for ice Ih from Bernal & Fowler (1933). (b) and (c)
Space-group symmetry and list of symmetry operations. (d) Asymmetric
unit for ice Ih. (e) Diagram for general positions. ( f ) Diagram for
symmetry elements. (g) Crystal structure fragment for Ice Ih.
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symmetry mapping in aspirin was as follows. The Seitz symbol

that represents the symmetry operation and its name are

displayed. Thereafter, an image of a circle appears super-

imposed on the general position that corresponds to the

asymmetric unit; it then starts moving until it reaches the

destination specified by the symmetry operation. At the end,

the circle becomes frozen in the diagram of symmetry

operations. At this moment, an image of the set of atoms

generated by symmetry is displayed and added to the image of

the crystal structure. The aspirin molecule has no enantiomers,

so it is not a chiral molecule. However, the asymmetric unit in

the crystal structure of aspirin is related to another molecule

by means of an inversion centre (Fig. 8). A video of aspirin

crystals growing has been added at the end of the supple-

mentary file dv5020sup9.mp4.

4.6. Coset decomposition of a space group

Fig. 9 shows form V of cocoa butter (Mechelen et al., 2006),

which crystallizes in the monoclinic system with space group

C1c1 (No. 9). The asymmetric unit is complicated: it consists of

one molecule of triacylglycerol (TAG), which can be 1,3-di-

palmitoyl-2-oleoylglycerol (POP), 1,3-distearoyl-2-oleoylgly-

cerol (SOS) or 1-palmitoyl-2-oleoyl-3-stearoylglycerol (POS).

These are the main components of TAGs in cocoa butter

(�75%); each TAG appears as a racemic mixture co-crystal-

lized with the other TAGs (enantiomers are present as a

racemic mixture in the components of cocoa butter).

The crystalline structure for cocoa butter has an asymmetric

unit with average chemical formula C55H108O6, with all 169

atoms occupying general positions (this space group does not

have special positions). The sequence of symmetry operations

listed in Fig. 9(d) is shown in the supplementary video file

dv5020sup10.mp4. The procedure was as follows. The

Seitz symbol that represents the symmetry operation and its

name are displayed. Hereafter, an image of the asymmetric

unit appears superimposed on the asymmetric unit in the

crystal structure, and then starts moving until it reaches the

destination specified by the symmetry operation. At the end, a

circle appears as a general position in the diagram of general

positions. The application of the four symmetry operations

listed in Fig. 9(d) generates four imaged molecules which are

displayed in different colours in the animations [Fig. 9(e)]. The

combination of these four symmetry operations with some

translations allows the crystal structure to be represented [Fig.

9(g)]. In this case, the mappings of each symmetry operation

combined with some translations are represented using one

characteristic colour. If the four symmetry operations listed in

Fig. 9(d) are referred to as coset representatives, the space

group C1c1 can be represented as a left coset decomposition

with respect to its translation subgroup T as follows:

C1c1 ¼ 1j0f gT þ m001j0; 0; 1
2

� �
T þ 1j12;

1
2; 0

� �
T

þ m001j
1
2
; 1

2
; 1

2

� �
:

This representation is illustrated at the end of the video

supplementary file dv5020sup10.mp4. Three-dimensional

models to build form V of the crystal structure of cocoa butter

have been used in our laboratory (Fig. 10).
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Figure 8
Two molecules of aspirin, molecule 1 and molecule 2, are related by an
inversion centre. These two molecules are not enantiomers, since the
mirror image of molecule 1 (i.e. molecule 2) can be superimposed on
molecule 1 by rotating the fragment C21/C22/O21/H21/H22/H23 with
respect to a twofold axis defined by the line C23–O2, indicated by a blue
line.

Figure 9
(a) Information for the asymmetric unit of polymorph V of cocoa butter.
(b) Crystallographic data and space group. (c) Asymmetric unit. (d)
Symmetry operations. (e) Molecules generated by the four symmetry
operations and ( f ) the corresponding diagram for general positions. (g)
Crystal structure.

Figure 10
Three-dimensional models representing the arrangement for cocoa butter
(form V).
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5. Crystal growth of chromium potassium alum

Chromium potassium alum, KCr(SO4)2·12H2O, is relatively

easy to crystallize in an ordinary laboratory. The crystals

obtained have symmetry belonging to the cubic system, with

space group Pa3 (No. 205). The asymmetric unit (Fig. 11)

consists of ten atoms. When the video file dv5020sup11.

mp4 is run, the animation starts off showing the asymmetric

unit making a rotation, to exhibit clearly the positions of all

the atoms of the asymmetric unit. This step is announced by

showing the Seitz symbol and name of the identity operation

{1 |0}. With each of the next few symmetry operations,

sequentially applied, the subset of atoms generated by the new

symmetry operation appear coloured in black. The animation

carries out this action executing a rotation, keeping the atoms

generated by symmetry in black. The purpose of this is to show

clearly the arrangement of all the atoms under the action of

the symmetry operation. When the next symmetry operation

starts, the set of atoms that were coloured in black change

their colours according to each chemical species. In this way,

the 3D space is filled little by little, with the intention of

mimicking macroscopic crystal growth. That is to say, the way

in which the Seitz operators are applied to fill the 3D space is

related to a macroscopic version that can be clearly attested by

the videos of crystals of chromium potassium alum growing

(Fig. 12). The corresponding video file is included at the end of

the supplementary file dv5020sup11.mp4.

6. Discussion and conclusions

In their process of learning, many of our students find it

difficult to identify regions that are symmetrically equivalent

to each other and therefore do not easily find the presence of

certain symmetry operations and symmetry elements in space.

In general, the analysis of crystal structure fragments that are

related to each other by their space-group symmetry opera-

tions is a subject that has been of interest when reviewing

conference presentations, theses and manuscripts for refereed

publications. The need to improve the teaching material

offered to students inside and outside the classroom was

stimulated by the doubts that arose when consulting ITA for

the understanding of certain crystal structures published in the

literature. For numerous students – including those from areas

such as medicine, dentistry, biology, anthropology, archi-

tecture etc. – the criteria to select the views that clearly show

how the atoms (or molecules) are arranged in a crystalline

solid have acted as a bridge to attract these people to discuss

the crystal structure in a fascinating manner, since they see the

necessity of putting the crystal structure into context for the

practical use they desire.

During the COVID-19 pandemic, we were forced to

interact with students through digital and audiovisual means.

Quickly, the creation of animations and videos represented an

attractive solution for students when studying ITA and some

crystal structures. The task was to create movement to the

diagrams for general positions, in combination with crystal

structures and crystal growth experiences filmed on video. As

a result, many students reacted favourably when they had the

chance to see the short briefing capsules concerning crystals

such as insulin, aspirin, cocoa butter or ice, among others.

At the time of writing of this manuscript, it is not clear to us

what effect the use of these capsules will have on the learning

of the topics addressed. However, for the evaluation and

improvement of the short briefing capsules, we will take into

account the questions raised by He (2020) concerning the

problems of using animations: (i) sequential playback makes it

difficult to compare and contrast the information contained;

(ii) the amount of information to be processed is demanding

when simultaneous changes have to be perceived and under-

stood; (iii) the transience of the animation increases the

burden for learners to internalize information extracted from

the visual representation; (iv) the split attention effect within

the representation also leads to problems for perception, as

full attention to one part of the screen would lead to neglect of

information in other regions.

Basically, we are faced with the problem of the sensation

and perception of symmetry. Through the visual sense we

have tried to help the perception of symmetry: we can see but

not necessarily realize the symmetrical quality of objects.
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Figure 11
(Left) Asymmetric unit for chromium potassium alum crystal structure.
(Right) Asymmetric unit viewed on a (111) projection. Data from Bacon
& Gardner (1958), ICSD code 38232. These images are screenshots taken
from the supplementary file dv5020sup11.mp4.

Figure 12
The way in which the Seitz operators are applied to fill the 3D space, with
a macroscopic version that can clearly be seen in the videos of crystals
growing.
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Sensations and perceptions are remarkably dissimilar (Cohen,

1969).

The information contained in this article is intended to help

those who wish to learn how symmetry operations work in a

very visual way. It is possible that, with this procedure, details

can be observed that it would otherwise not have been

possible to pay attention to. Thinking very favourably, with the

increased visual perception of the action of the symmetry

operations, perhaps it can be a source of inspiration for new

ideas or new perceptions. The information presented in the

Introduction to this paper shows that the structural models

and other resources proved to be of great benefit to the

understanding of crystalline arrangements.

Finally, our experience tries to contribute to reverse the

results of the OECD PISA tests in Mexico (https://www.oecd.

org/en/publications/pisa-2022-results-volume-i_53f23881-en.

html). They showed an educational lag, mainly in science and

mathematics, as Mexican students’ scores are below the

OECD average, suggesting a limited ability to apply scientific

knowledge in a variety of situations. The reasons are diverse,

but in the experience of pre-school and primary school

teachers, students show a great interest in these areas at these

stages, but interest changes in secondary and high school. They

find it difficult and many of them do not pass, mainly because

they consider it difficult and the way they are taught does not

relate to their daily lives, so they do not find it useful to learn

it. However, the experiences we have had with primary and

high school students working with the 3D models for the ice

structure give us some motivating hope. We also hope to

contribute to the task of eliminating the factors that have

caused crystals and the science of crystallography to be

omitted or relegated as optional subjects in educational

curricula (Murray et al., 2024).
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