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In research on mesoscale structure and correlations, small-angle neutron scat-

tering (SANS) is increasingly being employed to map fully three-dimensional

distributions of scattered intensity at low momentum transfer. While tradi-

tionally SANS experiments and data analysis methods are designed to prioritize

the determination of salient information in only one or two dimensions, the

trend towards volumetric intensity mapping experiments calls for new software

tools to assist with analyzing the resulting datasets. In this paper, we describe the

development of a new software module, the GRASP Integrated 3D Plotter

(GRIP). GRIP adds numerous features to GRASP, a widely used SANS analysis

program that was written in MATLAB and developed at the Institut Laue–

Langevin, France. The GRIP module provides multiple methods of three-

dimensional SANS data visualization and new abilities to perform 1D and 2D

cuts in various momentum-space coordinate systems, including reciprocal lattice

units relevant for single-crystal studies. GRIP also includes the ability to fit

diffraction peaks to a fully three-dimensional ellipsoidal Gaussian function to

extract peak parameters including peak intensity, location and width, as well as a

built-in calculator for estimating the resolution-deconvolved 3D coherence

lengths in a sample. GRIP thus represents a significant addition to GRASP

which extends the utility and application of SANS. Valuable advantages are

provided, in particular, for ‘small-angle neutron diffraction’ studies of mesoscale

correlations in single crystals, such as those due to incommensurate magnetic

spin textures like spirals and topological skyrmion lattices.

1. Introduction

Small-angle neutron scattering (SANS) is a well established

and versatile technique (Jeffries et al., 2021) providing pivotal

insights in the research fields of biological systems, polymers,

engineering, nanoparticles and micromagnetism (Mühlbauer

et al., 2019; Jacques & Trewhella, 2010; Koch et al., 2003;

Schmidt, 1991; Chen, 1986; Gabel et al., 2002; Schmatz et al.,

1974; Bunjes & Unruh, 2007; Blazek & Gilbert, 2011; Marshall

& Lowde, 1968; Gebel & Diat, 2005; Honecker et al., 2022), to

name a few. The technique is optimized for the study of

structure and correlations characterized by real-space length

scales in the �1–400 nm range. In recent years in particular,

SANS has proved invaluable in the investigation of a growing

number of magnetic materials found to host complex

magnetism such as magnetic incommensurately modulating

spiral and skyrmion phases (Mühlbauer et al., 2009; Mühl-

bauer et al., 2019; Tokura & Kanazawa, 2021). Skyrmions

themselves are nanoscale magnetic whirl-like structures with

topological properties and real-space length scales that vary

from a few to a few hundred nanometres. As they typically

form a two-dimensional hexagonal lattice inside a host crystal,

the distribution of the associated diffraction signals in

momentum space from these skyrmion lattices makes them

ripe for exploration and characterization by SANS. The first
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discovery by SANS of skyrmions was in the chiral cubic

helimagnet MnSi in 2009 (Mühlbauer et al., 2009; Neubauer et

al., 2009; Yu et al., 2010); skyrmions and their lattice structures

have most recently been discovered in frustrated magnets with

strong Ruderman–Kittel–Kasuya–Yosida (RKKY) interac-

tions (Kurumaji et al., 2019; Hirschberger et al., 2019), with

SANS studies again making notable contributions (Takagi et

al., 2022; Singh et al., 2023). Beyond two-dimensional

skyrmion lattices, three-dimensional magnetic textures such as

hedgehog lattices (Tanigaki et al., 2015; Fujishiro et al., 2019;

Ishiwata et al., 2020; Kanazawa et al., 2020) have also been

revealed using SANS, extending the scope of magnetic

textures found in nature that may be potentially exploited for

industrial use (Fert et al., 2017).

The developing interest in applying SANS instruments for

studying diverse types of incommensurate magnetic order

marks the evolution towards a need for comprehensive

analysis of three-dimensional datasets. Traditionally SANS

data analysis software allows the user to perform an analysis

over either one or two dimensions within the qx-qy plane of

the two-dimensional detector (Pedersen, 1997). The qz

dimension (parallel to the incident neutron beam) is otherwise

neglected or integrated over, and in many studies, for instance

on biological and soft matter systems, only |q| is considered.

However, in systems with sharply peaked structure factors or

single-crystalline materials, important information is con-

tained in the qz dimension: namely the three-dimensionality of

propagation vectors q of incommensurate magnetic structures,

information about mosaicity of single-crystal samples and

three-dimensional correlation lengths. The emergence of

numerous single-crystalline materials hosting magnetic

textures spanning a wide distribution in momentum space

strongly motivates the need for SANS software tools which

allow visualization, analysis and interpretation of fully three-

dimensional diffraction data, thus consolidating a branch of

the technique we term small-angle neutron diffraction

(SAND).

To date, SANS software tools have provided only limited

support for the detailed analysis of the full three-dimensional

scattering that can be collected in standard SAND measure-

ments (i.e. ‘rocking curve’ measurements), where multi-

detector intensity data are collected over a range of discrete

sample rotation angles with respect to the incoming neutron

beam. Notably, the SANS data reduction and analysis soft-

ware GRASP, written in MATLAB (The MathWorks Inc.,

Natick, MA, USA) and developed at the Institut Laue–

Langevin (ILL), Grenoble, France (Dewhurst, 2023), provides

a platform for analysis of SAND data obtained over a range of

rocking angles, as well as the ability to analyze data both

within the qx-qy detector plane and as a function of rocking

angle. However, the standard analysis tools offered by

GRASP neither calculate qz nor transform the data from the

laboratory frame into the sample’s momentum space, and rely

on integration over one or more directions of a three-

dimensional array of the accumulated two-dimensional SANS

detector data. Additionally, there are no tools that allow the

user to either visualize or analyze the entire three-dimensional

dataset as a single entity of volumetric data in the sample

reference frame.

Here, we describe the development of a user module for

GRASP that provides the capability for the operator to both

visualize and analyze an entire three-dimensional SAND

dataset. This user module, called GRASP Integrated 3D

Plotter or GRIP, harnesses much of the flexibility of GRASP,

making it immediately compatible with data collected at

numerous SANS instruments around the world, as well as

including support for modern multi-panel SANS detectors and

polarization analysis. GRIP introduces several methods of

plotting three-dimensional SAND datasets, the ability to make

user-defined one- and two-dimensional cuts in a variety of

coordinate systems, and a SAND calculator to aid in the

planning of experiments. Beyond this, GRIP elevates the

capability of GRASP to a full 3D analysis of SAND data

through (i) plotting the three-dimensional SAND dataset in

reciprocal lattice units, (ii) three-dimensional fitting of

diffraction peaks to extract 3D q-vector lengths and orienta-

tions, diffraction intensities, and correlation lengths, and (iii) a

built-in resolution calculator. Additionally, the processed

datasets produced by GRIP are made available to users using

the MATLAB-code version as a global data structure in the

MATLAB workspace. The current version of GRIP was

developed in MATLAB version R2023b with GRASP version

10.27f. GRIP is included as part of GRASP, either as source

MATLAB code or as a standalone executable, and is distrib-

uted freely by the ILL at https://www.ill.fr/grasp.

2. Formalism

2.1. Coordinate systems

In order to develop the full three-dimensional treatment of

SAND data, it is important to first describe the coordinate

systems and their relationships. The geometry of a standard

SANS experiment is depicted in Fig. 1. A collimated mono-

chromatic neutron beam is transmitted through a sample, and

then the scattered beam is detected on a 2D detector a

distance d behind the sample. We define a dimensionless

laboratory coordinate system with an origin in the plane of the

detector where ŷL is vertical, ẑL is anti-parallel to the incident

neutron beam and x̂L completes the right-handed coordinate

system. The incident neutron wavevector k0 ¼ � k0ẑL, where

the magnitude k0 is related to the neutron wavelength � by

k0 = 2�/�. Since we consider only standard elastic scattering

processes [neither inelastic SANS nor scattering processes

that lead to noticeable changes in neutron kinetic energy (e.g.

Kealey et al., 2001; Rastovski et al., 2013) are considered or

implemented in GRIP], the outgoing neutron wavevector kf of

magnitude k0 forms an angle 2� with k0 and an azimuthal

angle  in the x-y plane. If a neutron is detected at a position

(x, y, 0) on the detector, and the transmitted beam is centered

at (xBC, yBC, 0), then

kf ¼ k0

ðx � xBCÞx̂L þ ðy � yBCÞŷL � dẑL

ðx � xBCÞ
2
þ ðy � yBCÞ

2
þ d2

� �1=2

¼ k0ðsin 2� sin x̂L þ sin 2� cos ŷL � cos 2� ẑLÞ: ð1Þ
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The scattering wavevector in the laboratory coordinate system

qL is then defined as

qL ¼ kf � k0

¼ k0½sin 2� sin x̂L þ sin 2� cos ŷL þ ð1 � cos 2�ÞẑL�: ð2Þ

Prior to GRIP, this equation represented the extent to

which GRASP handled both geometric angles and the

momentum-space coordinate system, with the relevant values

generated by the built-in GRASP function build_q_

matrix.m. Combining these values with an understanding of

the geometry of the rotation axes, the GRIP module maps

these data to a three-dimensional reciprocal space in the

reference frame of the sample. In a standard experiment, the

sample and cryostat may be rocked together, first by a rotation

about the vertical direction, which we refer to as san, and then

on that goniometer by a rotation about a horizontal axis

parallel to x̂L when san = 0, referred to as �. Then inside the

cryostat the sample stick can be rotated about an axis that is

parallel to ŷL when � is zero, a rotation that we refer to as

dom. (The names of angles san, � and dom, respectively,

correspond to those commonly called !, � and � on four-circle

diffractometers.) The combined effect of these independent

rotational degrees of freedom can be represented by the

application of three consecutive rotation matrices:

R� 1
san ¼

cos san 0 � sin san

0 1 0

sin san 0 cos san

0

B
@

1

C
A;

R� 1
� ¼

1 0 0

0 cos� � sin�

0 sin� cos �

0

B
@

1

C
A;

R� 1
dom ¼

cos dom 0 � sin dom

0 1 0

sin dom 0 cos dom

0

B
@

1

C
A:

ð3Þ

These create a master rotation matrix R� 1,

R� 1 ¼ R� 1
sanR� 1

� R� 1
dom; ð4Þ

that transforms the scattering vector in the laboratory coor-

dinate system qL into the (not yet aligned) sample coordinate

system q0S as

q0S ¼ R� 1qL ð5Þ

when q0S and qL are represented as row vectors. A standard

SAND experiment consists of rocking over one or several

angles and taking exposures on the 2D detector at many

discrete, consecutive angles. In this way, a three-dimensional

volume of reciprocal space is mapped out. To make any of the

GRASP-supported SANS instruments compatible with GRIP,

one need only add a mapping of the instrument goniometer

angles to the GRIP_dom, GRIP_san and/or GRIP_phi

variables within the instrument’s specific pre-existing GRASP

configuration file.

GRIP provides further support for correcting any mis-

alignment of the sample with respect to the zeroed goniometer

positions. Here three additional rotation matrices U � 1
y , U � 1

x

and U � 1
z correct for misalignment of the sample rotation in

dom, tilt in � and azimuthal alignment, respectively. These are

written as

U � 1
y ¼

cos �y 0 � sin �y

0 1 0

sin �y 0 cos �y

0

B
@

1

C
A;

U � 1
x ¼

1 0 0

0 cos �x � sin �x

0 sin �x cos �x

0

B
@

1

C
A;

U � 1
z ¼

cos �z � sin �z 0

sin �z cos �z 0

0 0 1

0

B
@

1

C
A

ð6Þ

for angular sample misalignments �y, �x and �z. The complete

transformation matrix from the laboratory qL to an aligned

sample reciprocal space qS is thus qS ¼ U � 1
a R� 1qL with

U � 1
a R� 1 ¼ U � 1

y U � 1
x U � 1

z R� 1
sanR� 1

� R� 1
dom.

GRIP also supports several other coordinate systems which

can aid in various common types of data cuts, visualizations

and analysis that the users may want to perform. A cylindrical

coordinate system is provided by

qr ¼ q2
x þ q2

y

� �1=2
;

 ¼ atan2ðqx; qyÞ;

qz ¼ qz;

ð7Þ
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Figure 1
Diagram of a typical SANS experiment geometry at a continuous source,
and angle/axis coordinates used by GRIP. An incident collimated and
monochromated neutron beam comes from the left with wavevector k0.
The sample is indicated by a gray hexagonal prism with local sample
coordinates x̂S, ŷS, ẑS in red. The sense of rotation of the goniometer
angles GRIP_dom, GRIP_san and GRIP_phi is indicated about the
axes shown as dashed lines. Outgoing scattered neutrons at wavevector kf

impinge upon a detector a distance d (several metres, not to scale) away.
The laboratory coordinate system x̂L, ŷL, ẑL is indicated on the detector,
along with the Bragg angle 2� and the azimuthal angle  .



where atan2 is the four-quadrant arctangent function

returning in units of degrees such that 0� � atan2(y, x)� 360�.

This coordinate system is particularly useful, for example,

when analyzing hexagonal/square lattice structures, or other

cases where a magnetic field creates a planar or cylindrically

symmetric structure, or where a user observes an azimuthal

distribution of intensity as a function of qz or qr. Additionally,

a spherical coordinate system is provided by

q� ¼ q2
x þ q2

y þ q2
z

� �1=2
;

 ¼ atan2ðqx; qyÞ;

! ¼ acosðqz=q�Þ:

ð8Þ

This coordinate system is particularly convenient for obtaining

the true magnitude of jqj that includes all three dimensions,

and for resolution function calculations, since the principal

axes of the instrument resolution function lie along q�,  and

! when the rocking axis is perpendicular to q. The relationship

between the Cartesian, cylindrical and spherical coordinate

systems is depicted in Fig. 2.

Also of key importance for interpreting SAND data from

single-crystalline samples is the ability to transform the data

into the reciprocal lattice unit (RLU) coordinate system of the

sample. This transformation can be accomplished by

qRLU ¼ B� 1U � 1
b qS; ð9Þ

where B� 1U � 1
b is a matrix which transforms coordinates in

momentum space into reciprocal lattice units (Busing & Levy,

1967; Arnold et al., 2014). In SANS, it is often not possible to

directly access nuclear Bragg peaks, so alignment must be

done either ex situ or with (in)commensurate superlattice

peaks of known propagation direction. For this reason, we

separate the sample misalignment correction matrix U � 1
a from

the overall B� 1U � 1
b matrix for convenience. B� 1U � 1

b can be

generated from a set of three points with known coordinates in

both qS and qRLU as

B� 1U � 1
b ¼ QRLUQ� 1

S ; ð10Þ

where QRLU and QS are 3 � 3 matrices made of three columns

of three vectors of qS and qRLU, respectively. The B� 1U � 1
b

matrix can also be generated from two known crystallographic

directions if the lattice constants are known (Busing & Levy,

1967; Arnold et al., 2014). Both methods have been imple-

mented in GRIP.

To aid in the planning and interpretation of SAND

experiments where a strongly three-dimensional distribution

of scattering intensity is expected, GRIP also includes a

calculator. This tool can convert between neutron wavelength

in ångströms, energy in meV and momentum in inverse

ångströms. This calculator can also calculate reciprocal lattice

vectors given lattice parameters (only necessary for conver-

sions using RLU), and convert a Cartesian q vector into RLU

coordinates or the rotation angles at which a diffraction peak

may appear. Note that for the conversion to angles one angle

of {san, 2�, �,  } must be specified; otherwise the nonlinear

function solver will be underconstrained. If given RLU coor-

dinates, the calculator can convert those to Cartesian q

coordinates. Given a set of instrument angles, a corresponding

q vector can also be calculated.

2.2. Binning

In a standard SAND experiment on samples with diffrac-

tion peaks, the sample is rocked along one or more angles

while collecting data on a 2D area detector, sweeping out a 3D

volume of reciprocal space. The pixels are not distributed

evenly or uniformly in three dimensions, and therefore it is

necessary to rebin the pixelated data into a regular coordinate

system in order to plot the data for 1D, 2D or 3D cuts. In the

following, we describe the protocol for binning in Cartesian

coordinates. The procedure is similar for other coordinate

systems, though care must be taken to handle the branch cut in

the azimuthal angle in cylindrical and spherical coordinates if

the desired limits exceed the range [0�, 360�]. In this case, the

 coordinates should first be shifted as  ! mod( �

 min, 360�) +  min to ensure that the desired range is covered,

where  min is the minimum of the binned  range. To bin the

data, first the user selects 0, 1 or 2 axes to integrate over for

3D, 2D and 1D plots, respectively. Then the range and number

of bins of q-space to include is specified with minima and

maxima in qx, qy and qz. If the user leaves an intensity limit as

NaN (‘not a number’), the largest/smallest value on that axis

within the dataset is used automatically. The specified number

of bins are evenly distributed between the minimum and the

maximum. For each detector pixel at each sample angle, the

pixel q is calculated and is added to the appropriate bin for

which it falls within the binning limits. Axes that are integrated

over include all counts with the specified limits (this can be

thought of as creating one bin for that axis). If normalization is

selected, the counts in each bin are divided by the number of

detector pixels that fell within that bin. This compensates for

the nonuniform sampling of each bin (e.g. the Lorentz factor

and moiré patterns between detector pixels and bins). Even

with normalization, some choices of binning still lead to obvious

binning artifacts, and care must be taken when aiming to

evaluate peak intensities on an absolute scale from binned data.

The user can also choose to symmetrize the data with

respect to q! � q. This is often valid because of Friedel’s law,

computer programs
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Figure 2
Relationship between Cartesian (qx, qy, qz), cylindrical (qr,  , qz) and
spherical (q�,  , !) coordinate systems used by GRIP.



which states that the intensity of scattering should be inversion

symmetric because it is proportional to the magnitude squared

of the structure factor. However, we note that data symme-

trization may not always be appropriate due to absorption, an

asymmetric background, detector inefficiency, the chiral term

in polarized data etc. Whether or not to symmetrize should be

judged carefully by the user on the basis of the details of their

experiment and reported in publications. Symmetrization is

useful to improve the statistics in data visualization and to

accommodate for regions that were not reached in q-space.

The symmetrization is performed by splitting each pixel of

intensity I at position q into two pixels of intensity I/2 at q and

� q. A comparison between a single qx–qy cut with different

choices of normalization and symmetrization is provided in

Fig. 3. Symmetrization matches the intensity of opposing

peaks and improves signal to noise. Normalization can even

out the peak intensities somewhat, correcting for e.g. the

Lorentz factor, which in this case leads to an intensity equal-

ization so that the top and bottom peaks appear more intense.

In practice, normalization may not always help with Lorentz

factor corrections, depending on the angular extent over which

the measurements are performed.

3. Plotting

A number of plotting options have been integrated into GRIP

to aid in interpretation, investigation and analysis of SAND

data. The data plotted and analyzed by GRIP come from the

dataset that is currently in the GRASP dataloaders and can be

perused angle by angle on the main display. Therefore, any

background subtractions, renormalizations, polarization

analysis etc. done by GRASP can be easily transported into

GRIP for further analysis. Multi-detector support is imple-

mented, and as mentioned above, any GRASP-supported

instrument can be made compatible with GRIP through the

implementation of GRIP_san, GRIP_dom and GRIP_phi

angles (as defined in Fig. 2) in the instrument configuration

file. This must be done individually for each instrument to

accommodate differences in naming and sign conventions for

each instrument’s goniometer(s).

3.1. 3D plotting

3.1.1. Isosurface and volumetric plots

For full visualization of three-dimensional SAND datasets,

GRIP includes a variety of 3D plotting options. Volumetric

and isosurface plots in Cartesian and RLU coordinates can be

made in the same GUI. First, the user selects the desired

binning and symmetry/normalization settings. For the isosur-

face plotter, which plots three-dimensional isosurfaces of

intensity, the user must specify the isovalue level below which

the intensity is cut off. An isovalue guidance button is

provided which gives the percentiles of binned pixel inten-

sities. Often an isovalue near 99% is optimal to display the

computer programs
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Figure 3
Comparison between options for data symmetrization and normalization within GRIP. The same data are plotted in all plots integrating over qz with
different symmetrization/normalization options. The two top plots (a, b) do not normalize the number of pixels per bin, while the two bottom plots (c, d)
do. The two left plots (a, c) do not symmetrize the data q! � q, while the two right plots (b, d) do. The data are from the superconducting vortex lattice
of elemental niobium measured on the SANS-I instrument, Paul Scherrer Institute, Switzerland.



diffraction peaks, but some experimentation may be necessary

to optimize the plot. For the isosurface plot, the user can also

add translucent planes for qx = 0, qy = 0 and qz = 0, as well as

colored lines and surface coloring, as is shown in Fig. 4 for data

of an incommensurate magnetic material measured on the

SANS-I instrument, Paul Scherrer Institute, Switzerland

(Kurumaji et al., 2024).

Volumetric plots where the opacity and color of a cuboid

are modified by the scattering intensity can also be produced

within MATLAB’s Volume Viewer interface. Again, first

binning and symmetrization/normalization is specified. Volu-

metric plots can also be specified to be displayed with a

logarithmic or linear intensity scale. When the ‘Make Vol.’

button is pressed, a new Volume Viewer window is created,

and the user can choose a colorscale and manipulate the

opacity scaling. The upper window shown in Fig. 5 includes a

zoom-in of a linear scaled dataset, while the lower portion of

Fig. 5 provides a logarithmic volumetric plot of the same

dataset, but zoomed out to also show the volume mapped out

by additional side-detector panels of the instrument. Both

scales can be useful to highlight different aspects of the data.

Additionally, in our experience the volumetric plotter is often

the easiest way to discover subtle, inherently 3D features in

the data, such as subtle three-dimensional peak shapes,

mosaicity and harmonic peaks. The eye can detect these

patterns across multiple voxels in three dimensions when

using the volumetric plotter, which is not possible when the

data are projected into two or one dimension. Note that this

plotting option requires the MATLAB Image Processing

Toolbox to be installed.
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Figure 4
Example screenshot of main GRASP interface with data loaded from SANS-I (left), GRIP 3D plotting interface (lower right) and GRIP isosurface plot
(upper right) for example data of an incommensurate magnetic material measured on the SANS-I instrument, Paul Scherrer Institute, Switzerland
(Kurumaji et al., 2024).

Figure 5
Example volumetric plots. (a) A linear-scaled plot of the main detector
and (b) the same data with a logarithmic scale.



Both the volumetric and isosurface plotters include an

anisotropic 3D Gaussian smoothing option and an aspect ratio

option to adjust the relative scale of each axis. In particular,

enlarging the scale of qz is helpful when examining data from

SAND experiments where the intensity is largely located near

the qx-qy plane.

3.1.2. Pixel plotter

Though the isosurface and volumetric plotters plot the

binned data only, it may sometimes be useful to directly

visualize the intensity distribution of the actually measured

detector pixels (i.e. with no binning) in three-dimensional

space. The 3D pixel plotter option enables this. Every expo-

sure of each detector panel is plotted, curved into Cartesian

momentum space. This is helpful to understand the region of

computer programs
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Figure 6
Example 3D pixel plot. Every pixel of each detector is plotted indivi-
dually in the sample’s 3D reciprocal space for each angle in a rocking
curve. The opacity and color of each pixel is scaled by its intensity.

Figure 7
Screenshot of GRIP Cartesian 1D/2D multiplot viewer. Multiplot viewers of additional coordinate systems are provided in Appendix A. (a) qx–qy 2D
colorplot with dataset integrated over qz. (b) qy–qz 2D colorplot with dataset integrated over qx. (c) qx–qz 2D colorplot with dataset integrated over qy.
(d) qx 1D lineplot with dataset integrated over qy and qz. (e) qy 1D lineplot with dataset integrated over qx and qz. ( f ) qz 1D lineplot with dataset
integrated over qx and qy.



momentum space sampled by a given rocking curve. The pixels

can be given a uniform transparency value, or the transpar-

ency of each pixel can be scaled by its intensity. An example

pixel plot is shown in Fig. 6.

3.2. 1D/2D plotting

In addition to 3D plotting, 1D and 2D plots can be

produced in GRIP. These are often useful for a subsequent,

more detailed quantitative analysis. The user can choose

either to make a single 1D or 2D plot or to make a multiplot

which includes six 2D and 1D cuts of the same dataset, as is

shown in Fig. 7 and in Appendix A in Figs. 10, 11 and 12. These

plots can be produced in Cartesian, cylindrical, spherical and

RLU coordinates. The user must specify the coordinate

system, the binning and which axes to integrate over, the

symmetrization/normalization options, whether to plot in a

logarithmic scale, and the colorscale. When using the multi-

plotter, the axes of all six plots can be linked together,

allowing the user to zoom in to specific features. Then the

limits can be transferred back to the 1D/2D plotting GUI or

peak fitting GUI (discussed below) to easily plot only a

specific volume of reciprocal space.

4. 3D peak fitting and resolution function

To more accurately obtain peak positions, heights and widths

for quantitative analysis, GRIP includes functionality to fit a

diffraction peak to a 3D Gaussian ellipsoid with a linear

background function:

IðqÞ ¼
I0

ð2�Þ
3
jRj

� �1=2
exp �

1

2
ðq � qcÞ

T
R� 1ðq � qcÞ

� �

þ l � qþ C: ð11Þ

Here qc is the peak center, l is a vector of linear background

coefficients, C is a uniform background offset and R is a

covariance matrix:

R ¼

�2
11;T �2

12;T �2
13;T

�2
12;T �2

22;T �2
23;T

�2
13;T �2

23;T �2
33;T

0

@

1

A: ð12Þ

The fitting can be done in any coordinate system, so {1, 2, 3}

correspond to the first, second and third dimensions in the

coordinate system of choice. The covariance �2
ij;T quantifies

how correlated the peak shape is along axes i and j, with �ii,T

being the variance (square of the standard deviation) along

computer programs
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Figure 8
Screenshot of 3D peak fitter. (a–c) Data binned into 2D colorplots on the indicated axes, with one axis integrated in each. (d–f ) Fit binned in the same
way into 2D colorplots. (g–i) Residuals of data minus fit. The red ovals indicate the one standard deviation contour of the Gaussian ellipsoid fitting
function.( j–l) 1D lineplots with the data binned to q�,  and ! respectively, each integrated over the other two axes. The data are shown with blue circles,
the residuals with red circles, the fit with a black line and the linear background with a blue line. The error bars shown are statistical. The fit parameters
are output to the terminal.



axis i. First, the user should select a volume of momentum

space which only contains one peak. This can be done quickly

by linking the axes of the multiplotter, zooming in to the

desired region and pressing ‘Get Lims’ in the fitting GUI.

Then the user can choose to symmetrize the data and apply

any angular misalignment offset. The peak fitter automatically

guesses the initial fit parameters and performs a nonlinear

least squares fit of equation (11) directly to all detector pixels

within the selected limits, not the binned data. The number of

bins selected does not affect the fitting result and is only used

in the fitting result visualization as shown in Fig. 8. This is why

some fit results may not look like smooth Gaussians when

binned.

One of the key advantages of SAND measurements is that

they can be used to obtain information about sample corre-

lation lengths in all three dimensions from the widths of

diffraction peaks (Pedersen et al., 1990; Harris et al., 1995). If a

peak has total width (standard deviation) �ii,T along axis i, this

is due to a convolution of the instrument resolution in that

direction, �ii,I, with the intrinsic width of the peak from the

sample, �ii,S, such that �ii;T ¼ �2
ii;I þ �

2
ii;S

� �1=2
. If �ii,S is

provided in units of Å� 1 or nm� 1, then the sample correlation

length in that direction is given by �i = 1/�ii,S in units of Å or

nm. The standard deviations � can be converted to a full width

at half-maximum (FWHM) by multiplying by 2(2 ln2)1/2 �

2.355, and similarly the FWHM correlation length is obtained

by dividing �i by 2(2ln2)1/2. The principal axes of the SAND

resolution function lie approximately along the red axes

depicted in Fig. 9: one along q, one perpendicular to the

surface of the Ewald sphere (we note that the lineshape in this

direction is often of more Lorentzian or Voigt character) and a

third orthogonal to those. GRIP implements several methods

of estimation of the instrument resolution, which are discussed

in detail in Appendix B. The results of the calculations by

these methods can be compared with one another by the user

and provide a sense of the uncertainty in estimations of the

instrument resolution.

Once the instrument configuration is input into the instru-

ment resolution estimator, the results can be combined with

the 3D peak fitter to obtain an estimate of the correlation

length of a sample in all three directions. This is most easily

performed with a peak fit in spherical coordinates, as a stan-

dard SANS instrument will possess an instrument resolution

ellipsoid whose principal axes are along q�,  and ! which are

locally parallel to the red axes in Fig. 9.

5. General guidance for a SAND experiment

Generally, little needs to be changed in a SAND experiment

from a conventional SANS experiment on three-dimensional

structures. Similar collimation and sample-to-detector selec-

tion choices apply. The greatest potential differences lie in the

choice of rocking angle step size, range and axes. For the best

results, the rocking axes and range should be selected to

completely rock through each feature of interest at least once.

At the extreme, a full 180� rocking curve (or 360� if the

detector is offset from the beam center) covers the full volume

of reciprocal space. Then the step size should be chosen to

take multiple steps to pass through each peak, and ideally

should be less than or equal to the instrument resolution in !

at the wavevectors of interest. Neglecting considerations of

overhead for motors to change etc., sampling with denser

rocking curve steps for less time each is strictly better for

GRIP, because these data can always be rebinned to a courser

grid. If the step size is too large, some binned voxels will

contain no detector pixels and will be blank in the cuts unless a

very course binning is chosen. Exploitation of the GRIP

resolution estimator allows the operator to estimate reason-

able rocking curve step sizes when planning SANS intensity

mapping measurements.

6. Conclusion

Here, we have described the implementation of a 3D SANS

plotting and analysis package called GRASP Integrated 3D

Plotter (GRIP), which is integrated into the GRASP program

(Dewhurst, 2023). The GRIP module enables SANS users to

easily observe three-dimensional scattering information in

near real time during a beamline experiment and plot and

analyze the data in detail after the experiment. The GRIP

module significantly extends the capabilities of GRASP,

enabling a more comprehensive analysis of 3D intensity

distributions collected using SANS instruments. We envisage

the module as being a routinely used tool for analyzing data

from intrinsically three-dimensional volume datasets, such as

incommensurate spin textures, SANS tomographic measure-

ments (Henderson et al., 2023) etc.

The presently described GRIP module is developed for

handling data obtained in monochromatic SAND experi-

ments, as well as for Gaussian fitting of volumetric data. Our

approach is not limited to these cases however, and extensions

to the GRIP module can be easily implemented to include new

features. For example, routes for further development include

more peak fitting options catering for non-Gaussian functions,

1D and 2D fitting, dealing with overlapping/multiple peaks,

numerical approaches to resolution function calculations (e.g.

with Monte Carlo methods), compatibility with scripting,

more flexible goniometer setups, additional ways to cut the

data, implementation of a generalized Bayesian analysis

approach (Holmes, 2014) to 3D volumetric data, and handling

data obtained in time-of-flight modes. New instruments or

detector upgrades can be easily accommodated, as GRIP is

built within GRASP, which is built to flexibly handle a variety

of instruments.
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Figure 9
Coordinate system used in defining the principal axes of the SANS
resolution function.



APPENDIX A

Multiplots in additional coordinate systems

The data plotted in Fig. 7 can also be plotted in other coor-

dinate systems as defined in Fig. 2. Figs. 10, 11 and 12 provide

screenshots of the same data plotted in cylindrical, spherical

and RLU coordinates, respectively.

APPENDIX B

Approaches to calculating the instrument resolution

Several methods of resolution estimation are implemented in

GRIP. In the following, a quantity with angled brackets h . . . i

indicates the nominal value, while a quantity without signifies

the true value. Quantities with � indicate a FWHM while

computer programs
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Figure 11
Screenshot of GRIP spherical 1D/2D multiplot viewer. (a)  –q� 2D colorplot with dataset integrated over !. (b)  –! 2D colorplot with dataset
integrated over q�. (c) q�–! 2D colorplot with dataset integrated over  . (d) q� 1D lineplot with dataset integrated over  and !. (e)  1D lineplot with
dataset integrated over q� and !. ( f ) ! 1D lineplot with dataset integrated over q� and  .

Figure 10
Screenshot of GRIP cylindrical 1D/2D multiplot viewer. (a)  –qr 2D colorplot with dataset integrated over qz. (b)  –qz 2D colorplot with dataset
integrated over qr. (c) qr–qz 2D colorplot with dataset integrated over  . (d) qr 1D lineplot with dataset integrated over  and qz. (e)  1D lineplot with
dataset integrated over qr and qz. ( f ) qz 1D lineplot with dataset integrated over qr and  .



quantities with � indicate a standard deviation. Consider an

instrument with FWHM wavelength spread ��/h�i (typically

�0.1), a first aperture width and height wx1 and wy1, respec-

tively, a collimation length (distance from first aperture to

sample) l1, a second aperture or sample size, whichever is

smaller, width and height wx2 and wy2, respectively, a sample-

to-detector distance l2, and pixel size wx3 by wy3. The following

equations assume circular collimating apertures; if rectangular

apertures are used, then wx1, wy1, wx2 and/or wy2 should be

multiplied by 2(31/2)/3. We consider the resolution in q~x, q~y

and q~z along the red axes in Fig. 9 for nominal scattering

vector magnitude hqi.

B1. Method 1: Taylor expansion

One can consider the reported wavevector hqi and the

actual wavevector q as a function of the expected and true

values, respectively, of the neutron flight path through the

SANS instrument. First, the neutron has a wavelength �. Then,

the vertical and horizontal position where the neutron entered

the first collimating aperture is (x1, y1). Similarly we have

(x2, y2) for the second aperture, and the position on the

detector (x3, y3). Each of these parameters has a nominal

value hx1i = hx2i = hy1i = hy2i = 0, hx3i, hy3i and h�i, as well

as an uncertainty �xi = wxi / 4, �yi = wyi / 4 and �� = ��=

�2ð2 ln 2Þ1=2
� �

. If the aperture is circular instead of rectangular,

the 4 should be replaced with 121/2. q can be written in the

laboratory Cartesian coordinate system as a function of these

parameters as

ki ¼
2�

�

x2 � x1; y2 � y1; � l1ð Þ

ðx2 � x1Þ
2
þ ðy2 � y1Þ

2
þ l2

1

� �1=2
;

kf ¼
2�

�

x3 � x2; y3 � y2; � l2ð Þ

ðx3 � x2Þ
2
þ ðy3 � y2Þ

2
þ l2

2

� �1=2
;

q ¼ kf � ki:

ð13Þ

Inserting the nominal values of these parameters, we obtain

q
� �
¼ k0

hx3i

l
;
hy3i

l
; 1 �

l2

l

� �

ð14Þ

with k0 = 2�/h�i and l ¼ hx3i
2 þ hy3i

2 þ l2
2

� �1=2
, which is

equivalent to equation (1). We can then transform into the
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Figure 12
Screenshot of GRIP RLU 1D/2D multiplot viewer. (a) H–K 2D colorplot with dataset integrated over L. (b) K–L 2D colorplot with dataset integrated
over H. (c) H–L 2D colorplot with dataset integrated over K. (d) H 1D lineplot with dataset integrated over K and L. (e) K 1D lineplot with dataset
integrated over H and L. ( f ) L 1D lineplot with dataset integrated over H and K.



spherical/principal resolution function coordinate system and

propagate the uncertainty in q as

�q ¼
@2q

@x2
1

�
�
�
�
hqi

x1 � hx1ið Þ
2
þ � � � þ

@2q

@�2

�
�
�
�
hqi

� � h�ið Þ
2

 !1=2

; ð15Þ

where jhqi is a shorthand meaning to evaluate with the nominal

values of all parameters. This propagation is not concise but

can easily be performed exactly with symbolic computations in

MATLAB. This is a first-order estimate of the uncertainty in q,

assuming each parameter is independent.

B2. Method 2: Monte Carlo

We can use a simple Monte Carlo approach to simulate the

instrument resolution function. In addition to all above values,

we include the range and step size of rocking of GRIP_san.

For each neutron, a wavelength is chosen randomly, distrib-

uted as a Gaussian/triangle distribution about h�i with the

correct FWHM. Next, a random position on each of the first

and second apertures is chosen under the assumption that

both apertures are uniformly illuminated. For the momentum

vector hqi under consideration, it is determined which value, if

any, of GRIP_san satisfies the Bragg condition for this inci-

dent neutron. Then, the outgoing neutron direction is calcu-

lated and used to obtain the location where this neutron will

hit the detector. The four possible solutions for GRIP_san

are

GRIP san ¼ � cos� 1 ða� bÞ=c½ � ð16Þ

with

a ¼ � kixq3
x þ 2kixkiyqxqy þ kizq2

xqz þ 2kiykizqyqz

þ kixqxq2
z þ kizq3

z þ ðkixqx þ kizqzÞq
2
y;

b ¼
�
ðkizqx � kixqzÞ

2
½4k2

izq2
x � q4

x � 4kiyq2
xqy

� 4k2
iyq2

y þ 4k2
izq2

z � 2q2
xq2

z � 4kiyqyq2
z � q4

z

þ 4k2
ixðq

2
x þ q2

zÞ � 2ðq2
x þ 2kiyqy þ q2

zÞq
2
y � q4

y�
�

1=2;

c ¼ 2ðk2
ix þ k2

izÞðq
2
x þ q2

zÞ;

ð17Þ

where the valid solutions can be identified by confirming that

jkij ¼ jkfj. The location where the neutron hits the detector

and the value of GRIP_san are both binned into the specified

binning mesh. The standard deviation along each direction is

then calculated. This approach allows one to simulate how the

data would look for a given rocking curve and even permits

the data to be exported back to GRASP for further analysis

and comparison.

B3. Method 3: estimation

The SANS instrument resolution function can be estimated

(Pedersen et al., 1990; Harris et al., 1995) as originating from

three sources: the wavelength spread, the angular collimation

from the collimating apertures and the detector resolution.

The following assume that q lies in the horizontal scattering

plane; for scattering out of the plane, wxi and wyi must be

appropriately mixed.

The wavelength spread only affects the resolution along q~x.

This contribution is

�~x~x;� ¼
��

h�i

hqi

2ð2 ln 2Þ
1=2
: ð18Þ

The collimation affects all three components as

�~x~x;coll ¼ k0

cosh�i��1

2ð2 ln 2Þ
1=2
;

�~y~y;coll ¼ k0

��2

2ð2 ln 2Þ
1=2
;

�~z~z;coll ¼ min
wx2

l2

;
wx1

ðl2 þ l1Þ

� �

hqi=121=2

ð19Þ

with k0 = 2�/h�i and � = arcsin(hqi/2k0). ��1 and ��2 are

given by

��1 ¼

wx1

l1

�
1

4

w2
x2

wx1

cos4h2�i

l2
2l1

�ðl1 þ l2= cos2h2�iÞ
2
; for a1 � a2;

wx2

1

l1

þ
cos2h2�i

l2

� �

�
1

4

w2
x1

wx2

l2

l1

�
1

cos2h2�iðl1 þ l2= cos2h2�iÞ
; for a1 < a2

8
>>>>>>>><

>>>>>>>>:

ð20Þ

and

��2 ¼

wy1

l1

�
1

4

w2
y2

wy1

cos2h2�i

l2
2l1

�ðl1 þ l2= cos2h2�iÞ
2
; for a1 � a2;

wy2

1

l1

þ
cosh2�i

l2

� �

�
1

4

w2
y1

wy2

l2

l1

�
1

cosh2�iðl1 þ l2= cosh2�iÞ
; for a1 < a2;

8
>>>>>>>>><

>>>>>>>>>:

ð21Þ

where a1 = wx1/[2(l1 + l2)] and a2 = wx2/(2l2). Finally, the

detector resolution is

�~x~x;D ¼
�wx3

31=2l2h�i
cosh�i;

�~y~y;D ¼
�wy3

31=2l2h�i
;

�~z~z;D ¼
�wx3

31=2l2h�i
sinh�i:

ð22Þ

These are all added in quadrature to obtain the complete

instrument resolution along all three axes as

�~x~x;I ¼ �2
~x~x;� þ �

2
~x~x;coll þ �

2
~x~x;D

� �1=2
;

�~y~y;I ¼ �2
~y~y;coll þ �

2
~y~y;D

� �1=2
;

�~z~z;I ¼ �2
~z~z;coll þ �

2
~z~z;D

� �1=2
:

ð23Þ

B4. Method 4: semi-empirical

The angular collimation of the beam and detector resolu-

tion can be directly measured by measuring the size of the

(attenuated) direct beam on the detector. This has the

advantage of including all effects of divergence without any

computer programs
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assumptions of perfect optics alignment etc. The following

analysis is valid for small angles (cos � � 1). If the direct beam

is measured to have an FWHM size wD on the detector, then

the beam has an effective angular spread of

�� ¼
1

2ð2 ln 2Þ
1=2

wD

l2

: ð24Þ

The resolution along qx is then approximately

�~x~x;I ¼ �2
�k2

0 þ �
2
~x~x;�

� �1=2
; ð25Þ

the qy component is

�~y~y;I ¼ ��k0 ð26Þ

and the qz component is

�~z~z;I ¼ hqi��: ð27Þ

Acknowledgements

We thank Joseph G. Checkelsky, Takashi Kurumaji, Charles D.

Dewhurst, Lisa Debeer-Schmitt, Robert Cubitt, Joshua P.

Wakefield, Caolan John and Daniel Mayer for stimulating

discussions and support. This work is based partly on experi-

ments performed at the Swiss spallation neutron source SINQ,

Paul Scherrer Institute, Villigen, Switzerland.

Funding information

This work was funded, in part, by the Air Force Office of

Scientific Research (AFOSR) under award FA9550-22–1-0432

(code development). JSW acknowledges support from the

Swiss National Science Foundation (SNSF) project grant

200021_188707.

References

Arnold, O., Bilheux, J.-C., Borreguero, J. M., Buts, A., Campbell, S. I.,
Chapon, L., Doucet, M., Draper, N., Ferraz Leal, R., Gigg, M. A.,
Lynch, V. E., Markvardsen, A., Mikkelson, D. J., Mikkelson, R. L.,
Miller, R., Palmen, K., Parker, P., Passos, G., Perring, T. G.,
Peterson, P. F., Ren, S., Reuter, M. A., Savici, A. T., Taylor, J. W.,
Taylor, R. J., Tolchenov, R., Zhou, W. & Zikovsky, J. (2014). Nucl.
Instrum. Methods Phys. Res. A, 764, 156–166.

Blazek, J. & Gilbert, E. P. (2011). Carbohydr. Polym. 85, 281–293.
Bunjes, H. & Unruh, T. (2007). Adv. Drug Deliv. Rev. 59, 379–402.
Busing, W. R. & Levy, H. A. (1967). Acta Cryst. 22, 457–464.
Chen, S.-H. (1986). Annu. Rev. Phys. Chem. 37, 351–399.
Dewhurst, C. D. (2023). J. Appl. Cryst. 56, 1595–1609.
Fert, A., Reyren, N. & Cros, V. (2017). Nat. Rev. Mater. 2, 17031.
Fujishiro, Y., Kanazawa, N., Nakajima, T., Yu, X. Z., Ohishi, K.,

Kawamura, Y., Kakurai, K., Arima, T., Mitamura, H., Miyake, A.,
Akiba, K., Tokunaga, M., Matsuo, A., Kindo, K., Koretsune, T.,
Arita, R. & Tokura, Y. (2019). Nat. Commun. 10, 1059.

Gabel, F., Bicout, D., Lehnert, U., Tehei, M., Weik, M. & Zaccai, G.
(2002). Q. Rev. Biophys. 35, 327–367.

Gebel, G. & Diat, O. (2005). Fuel Cells, 5, 261–276.
Harris, P., Lebech, B. & Pedersen, J. S. (1995). J. Appl. Cryst. 28, 209–

222.
Henderson, M. E., Heacock, B., Bleuel, M., Cory, D. G., Heikes, C.,

Huber, M. G., Krzywon, J., Nahman-Levesqué, O., Luke, G. M.,
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