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The present study introduces a processing strategy for synchrotron scanning 3D

X-ray diffraction (s3DXRD) data, aimed at addressing the challenges posed by

large, highly deformed, polyphase materials such as crystalline rocks. Leveraging

symmetric Bragg reflections known as Friedel pairs, our method enables

diffraction events to be precisely located within the sample volume. This method

allows for fitting the phase, crystal structure and unit-cell parameters at the

intra-grain scale on a voxel grid. The processing workflow incorporates several

new modules, designed to (i) efficiently match Friedel pairs in large s3DXRD

datasets containing up to 108 diffraction peaks; (ii) assign phases to each pixel or

voxel, resolving potential ambiguities arising from overlap in scattering angles

between different crystallographic phases; and (iii) fit the crystal orientation and

unit cell locally on a point-by-point basis. We demonstrate the effectiveness of

our technique on fractured granite samples, highlighting the ability of the

method to characterize complex geological materials and show their internal

structure and mineral composition. Additionally, we include the characteriza-

tion of a metal gasket made of a commercial aluminium alloy, which surrounded

the granite sample during experiments. The results show the effectiveness of the

technique in recovering information about the internal texture and residual

strain of materials that have undergone high levels of plastic deformation.

1. Introduction

Three-dimensional X-ray diffraction (3DXRD), or high-

energy diffraction microscopy (HEDM), are synchrotron

diffraction techniques based on the rotation method with hard

monochromatic X-rays (10–100 keV). They allow the non-

destructive investigation of the internal structure of poly-

crystalline materials on a per-grain basis, with a penetration

depth of up to a few millimetres (Bernier et al., 2011; Bernier

et al., 2020; Poulsen et al., 2004; Poulsen, 2012). The technique

relies on the measurement of a series of spotty diffraction

images on a 2D detector during the rotation of the sample

relative to the incident X-ray beam. Each diffraction spot

comes from the crystal lattice planes of each grain when it

passes through the Bragg diffraction condition. Provided spot

overlap is not excessive, the diffraction spots can be

segmented into discrete diffraction peaks. These peaks are

then assigned to grains, a process called ‘indexing’. This

process is a search–match of known crystalline phases to

determine the unit cell, followed by an orientation search

(Bernier et al., 2011; Ludwig et al., 2009; Schmidt, 2014;

Wright, 2024). The indexed data allow per-grain estimation of

the position, orientation, shape and unit cell of hundreds to

thousands of grains simultaneously. If a reference unit cell is
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available, then elastic strain and stress can be derived from the

unit-cell parameters.

Since its first introduction about two decades ago (Poulsen

et al., 2004), the method has been refined and deployed in

various synchrotron radiation facilities globally. It has diver-

sified into various techniques, using either ‘far-field’ or ‘near-

field’ acquisition modes and different beam geometries. Near-

field setups use a detector pixel size much smaller than the

X-ray beam size (e.g. a pixel size of a few mm, sample-to-

detector distances from �2 to �20 mm). This geometry opti-

mizes the information on grain shapes and position and allows

complete tomographic reconstruction of the grains in the

sampled volume (Ludwig et al., 2009; Reischig et al., 2013). In

contrast, far-field setups use larger pixel detectors that are

further back from the sample (pixel size >20 mm, sample-to-

detector distance from�50 to 2000 mm). The far-field data are

dominated by angular dispersion and optimize recovery of the

diffraction pattern to determine grain orientation and strain,

but reduce the precision on grain position and shape in the

results (Poulsen, 2012). Different beam geometries can be

used, ranging from a wide 2D ‘box beam’ covering a 3D

volume in the sample, through a ‘line’ focus that illuminates a

2D slice across the sample, to a point-focused beam illumi-

nating only a thin pencil line across the sample. The 3DXRD

technique and its derivatives have become popular tools for

the materials science community and have been successfully

applied to a wide range of topics, including recrystallization,

annealing, plastic deformation, fatigue crack growth in metals

and mechanical loading of granular materials (Hurley et al.,

2018; Naragani et al., 2017; Oddershede et al., 2012; Thakur et

al., 2023).

However, 3DXRD still faces major challenges in investi-

gations of complex samples, such as highly deformed and/or

multi-phase materials. This is especially the case for geological

materials. First, they commonly feature hierarchical structures,

with a large range of grain sizes that can span from sub-

micrometre-size crystallites to millimetre- or centimetre-size

crystals within the same sample (e.g. for detrital sedimentary

rocks containing large clasts cemented in a thin matrix). This

complexity results in diffraction patterns that feature a mix of

discrete spots and more continuous rings, similar to powder

diffraction. Although 3DXRD analysis only works with

discrete spots, other techniques such as diffraction tomo-

graphy (Artioli et al., 2010) and texture tomography (Frewein

et al., 2024; Mürer et al., 2021; Zhao et al., 2024) can be applied

to extract information on crystal phase and orientation from

the continuous rings.

Second, geological materials generally display various

degrees of brittle and/or ductile deformation, as a conse-

quence of their tectonic history. This results in the presence of

cracked crystals, twins, low-angle grain boundaries and large

internal misorientation gradients within single grains. All

these features complicate the segmentation of the diffraction

spots on the detector. Fragmented grains with low misor-

ientation form clusters of closely grouped spots, which are

difficult to separate. Twins have systematically overlapping

diffraction peaks. Plastic strain results in more diffuse spots,

covering a large azimuthal range and resulting in peak over-

laps. After segmentation, indexing of these peaks is also

challenging. The large spread of orientations in plastically

deformed grains implies that the orientation distribution

function of each grain covers a relatively wide domain in the

orientation space, with a common overlap between the

orientation distribution functions of spatially disconnected

grains. Thus, grain indexing strategies based on a search–

match process in reciprocal space can yield misleading results.

Then, problems arise from the fact that there is no canonical

definition of what a grain is. Grain boundaries can be defined

on the basis of a misorientation threshold between two

contiguous domains, but the threshold angle is an arbitrary

value. In materials that have crystallized statically, e.g. during

an annealing process, this is usually not a problem, because the

grains are delimited by sharp high-angle discontinuities and do

not show a large internal misorientation (Passchier & Trouw,

2005). In materials with a large strain, or which have under-

gone dynamic recrystallization, there is significant spatial

heterogeneity in terms of grain size, grain boundary misor-

ientation and internal grain misorientation (Passchier &

Trouw, 2005), which implies that there is no best threshold to

be chosen. This is a fundamental problem for indexing because

grain segmentation (‘grain mapping’) and fitting of orientation

and unit cell are done simultaneously over the whole sample,

using a single set of threshold criteria to decide which peaks

are assigned to which grain. Therefore, a given set of indexing

parameters cannot capture all the microstructural features of a

rock at the same time. For example, a given set of indexing

parameters may be suitable for identifying large grains with

large plastic strain and internal misorientation but may be

ineffective in separating a cluster of small grains delimited by

low-angle grain boundaries.

Rocks typically consist of complex mineral assemblages,

many of which have low symmetry (monoclinic or triclinic)

and/or form complex solid solutions with spatial composition

zoning. Low symmetry results in a large number of indepen-

dent scattering angles (2�) for each phase, related to the

different {hkl} families. Compositional zoning also adds

variability to the unit cell. Finally, large samples, at least a few

millimetres wide, are usually required to obtain a repre-

sentative rock volume (Thakur et al., 2023), implying that the

position of the diffraction peaks in the detector is significantly

affected by the position of the grains within the sample.

Altogether, these effects result in complex datasets, in which

diffraction spots are not positioned on the Debye–Scherrer

rings familiar from powder diffraction, as usually observed in

far-field 3DXRD. Assigning diffraction peaks to a phase, a

prerequisite step for indexing, is therefore not trivial, and

often cannot be performed using simple thresholding around a

set of pre-computed 2� angles for each phase.

These issues have greatly hampered the application of

3DXRD to geoscience problems, despite its huge potential for

in situ mineral characterization during experiments, non-

destructive investigation of rare and valuable samples, or

investigation of strain and stress related to rock deformation.

Studies undertaken so far on geological materials have been
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limited to single-phase samples such as rock salt (Alshibli et

al., 2021; Borthwick et al., 2012) or artificial analogs, for

example replacing natural quartz grains with hydrothermally

grown artificial quartz (Hurley et al., 2016; Hurley et al., 2018;

Thakur et al., 2023).

The different variations of the 3DXRD/HEDM technique

each have their own advantages and drawbacks, which make

them variably suitable for investigating geological materials.

Near-field techniques, such as near-field high-energy X-ray

diffraction microscopy (nf-HEDM) and diffraction contrast

tomography (DCT), require full-field illumination of the

sample, with either a line beam or a box beam (Ludwig et al.,

2009; Bernier et al., 2020). This approach has the advantage of

relatively fast acquisition, and recent developments have

enabled the retrieval of intra-grain orientation and strain with

reasonable precision (Shen et al., 2020; Reischig & Ludwig,

2020). These setups are well suited for samples up to a few

millimetres in size with a limited number of grains. Typically,

these techniques may be the perfect fit for investigating micro-

inclusions in isolated minerals such as zircon or diamond, with

direct application for instance in mantle petrology (Walter et

al., 2011) or for studying early Earth processes in Hadean

zircon (Harrison et al., 2017). However, they are unsuitable for

large, highly deformed samples, as spot overlaps are almost

inevitable in such cases, which can impede accurate recon-

struction using DCT/nf-HEDM algorithms (Shen et al., 2020;

Reischig & Ludwig, 2020).

For such large and/or deformed samples, the pencil beam

scanning technique (Hayashi et al., 2015), known as scanning

3DXRD (s3DXRD), seems the most promising method. This

technique employs a pencil beam to illuminate thin sub-

volumes of the sample one at a time, thereby reducing

diffraction spot overlap on the detector. However, the

acquisition time is considerably extended compared with that

for regular 3DXRD or DCT, as the sample must undergo

multiple translations and rotations to cover a full slice. This

scanning technique facilitates the mapping of intra-grain

orientation and strain fields, through either a point-by-point

fitting procedure (Hayashi et al., 2017) or more advanced

regression methods exploiting tomographic principles

(Henningsson et al., 2020; Henningsson & Hendriks, 2021).

Point-by-point fitting also has the advantage of being agnostic

to the notion of grain, because it is performed on a fixed grid

of pixels/voxels that does not depend on the definition of grain

boundaries.

However, several challenges remain before the technique

can be applied to geological samples. The representative

volume element required for rock samples is at least a few

millimetres and this gives significant shifts in 2� peak positions

due to the sample thickness. Algorithms exist to address this

problem for powder data with continuous diffraction rings

(Liang et al., 2022; Vamvakeros et al., 2020), but for spotty data

the usual far-field indexing approaches assume that 2� angles

are known. Moreover, the challenges posed by 2� overlaps

between different phases remain unresolved. Solutions using

conical or spiral slits have been proposed to physically filter

the range of scattering angles captured by the detector

(Lienert et al., 2000; Hayashi et al., 2019; Hayashi et al., 2023),

which reduces spot overlap and allows the selection of peaks

arising from a chosen phase or a sub-region in the sample.

However, this approach is limited to certain crystal symme-

tries and does not allow simultaneous data acquisition from

many phases.

The present study proposes a new experimental and

processing strategy for s3DXRD data, specifically designed to

tackle the multiple challenges raised by large, highly

deformed, polyphasic materials, particularly rocks. A key

element of this procedure is the use of symmetric Bragg

reflections hkl, hkl, also known as Friedel pairs, which are

measured using inverse beam geometry (180� rotation). These

pairs determine the direction of scattering vectors and the

location from which they arise in the sample. This approach

combines the ray tracing of Friedel pairs from a DCT

experiment (Ludwig et al., 2009) with the tomographic infor-

mation from s3DXRD scanning (Bonnin et al., 2014; Hayashi

et al., 2017) to give the maximal spatial and angular informa-

tion from experiments. Friedel pairs are then mapped on a 2D

pixel grid, allowing phases to be labeled in each pixel, with

subsequent local fitting of local crystal lattice orientations and

unit cells. This procedure can be extended to a 3D voxel grid

by stacking multiple 2D slices.

The article is structured as follows. The next section offers a

comprehensive description of the method, detailing each step

involved in generating a processed grain map from a set of

diffraction peaks segmented from 2D diffraction frames. The

following section demonstrates the application of the data

processing pipeline on two distinct datasets obtained from

large samples of granite (ca 5 mm wide) at different scanning

resolutions. Finally, the last section discusses the advantages,

existing limitations and potential future improvements of this

technique.

2. Method

2.1. Prerequisites and overview of the workflow

The method is designed to process s3DXRD data. This

implies that data collection has been done using a pencil beam

scanning procedure, with a series of constant-speed rotations

along the vertical axis of the sample, and translating the

sample in a direction orthogonal to the plane formed by the

beam and the rotation axis after each rotation. A full 360�

rotation is needed to recover symmetrical hkl and hkl reflec-

tions for each crystal plane. In the following, notations defined

by Poulsen & Vaughan (2019) for the 3DXRD geometry setup

are employed. Coordinates ðxl; yl; zlÞ correspond to the fixed

Cartesian laboratory reference frame, and coordinates

ðx!; y!; z!Þ correspond to the sample reference frame,

obtained by successively applying a translation ð0; dy; dzÞ and

a rotation of angle ! along the z axis. By convention, the

incident X-ray beam is parallel to xl, and the rotation axis z is

taken as close as possible from the vertical axis zl, although a

small misalignment (wedge angle) inevitably occurs. During

scanning, translations in the yl direction are repeated from
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positions � ymax toþymax, with an increment dy greater than or

equal to the beam width. If the acquisition is performed on a

3D volume, the scanning procedure is repeated from z posi-

tion zmin to zmax with an increment dz between each slice.

The data processing pipeline starts from segmented

diffraction peaks obtained after pre-processing the raw

diffraction images. Pre-processing here includes accurate

calibration of the detector geometry (detector distance,

center, tilt and wedge) using a calibration material (e.g. NIST

CeO2 powder), subtraction of background noise, if needed,

from raw diffraction frames, segmentation of diffraction spots

into discrete diffraction peaks, and correction of peak coor-

dinates using detector geometry parameters previously fitted

with the calibration data. Peaks are characterized by the

center-of-mass coordinates of connected components – ‘spots’

– in ðydet; zdet; !Þ space, where ydet and zdet are spatially

corrected detector coordinates and ! is the rotation along the

z axis. The peak intensity I corresponds to the integrated

intensity of the corresponding 3D spot. The method also

works on 2D spots, which are not integrated along !, but the

pros and cons of working on 2D versus 3D peaks will not be

discussed here. Finally, the method extensively relies on

ImageD11 Python tools (Wright, 2024), especially regarding

manipulation and storage of diffraction peak data and local

fitting of lattice orientation and unit cell.

The processing workflow consists of four different steps in

addition to pre-processing, which are summarized in Fig. 1: (i)

Friedel pair identification; (ii) point-by-point phase labeling;

(iii) point-by-point fitting of crystal orientation and unit cell;

(iv) grain mapping. A more detailed flowchart is available in

the supporting information. Identifying the different phases in

the sample involves azimuthal integration of the diffraction

data to generate a powder-like diffraction pattern, which can

then be processed by Rietveld or Le Bail analysis to identify
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Figure 1
Schematic workflow for processing s3DXRD data using the Friedel pairs method. The four steps to obtain a processed grain map from a set of segmented
diffraction peaks are detailed in Section 2.
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phases and refine crystal structures (Rietveld, 1969; Le Bail et

al., 1988). Strain and stress analysis from point-by-point fitted

pixel/grain maps is also straightforward from the map

obtained by local indexing (Fig. 1) but will not be discussed

here.

2.2. Friedel pairs

Friedel pairs are symmetric Bragg reflections arising from

the (hkl) and (hkl) planes of a grain, which occur 180� apart

during a full 360� rotation of the sample perpendicularly to the

beam. Their symmetric properties allow the separation of the

component of a scattered wavevector related to the lattice

state (spacing and orientation) – the ‘true’ scattered wave-

vector – from the component related to the offset from the

rotation center, considerably simplifying data analysis.

Indexing strategies based on Friedel pairs have been imple-

mented for a long time for near-field setups, in particular for

DCT (Ludwig et al., 2009; Reischig et al., 2013). They have also

been proposed for 3DXRD in a box beam setting (Moscicki et

al., 2009) but, to our knowledge, they have so far not been

used for s3DXRD.

2.2.1. Friedel pair geometry

As pointed out by Ludwig et al. (2009), the benefits of

Friedel pairs are better visualized in a reference frame where

the sample is fixed and the detector and the beam are rotated

around it. In this setup, it becomes clear that two symmetrical

reflections hkl and hkl arising from the same origin in the

sample form two parallel vectors u1 and u2 pointing in

opposite directions [Fig. 2(a)]. Thus, the orientation of the true

(offset-corrected) scattered wavevector is given by 2uc ¼

u1 � u2, independently of the origin in the sample. This allows

us to retrieve the accurate diffraction angles 2� and the

azimuth angles � from peak coordinates on the detector,

without a priori knowledge of where the diffracted X-rays

arise from in the sample. Moreover, the norm of 2uc is

approximately twice the norm of u1 and u2 [Fig. 2(a)], effec-

tively doubling the sample–detector distance and increasing

angular resolution.

With regular (box beam) 3DXRD, a unique Friedel pair

ðP1; P2Þ is insufficient to fit the position of the diffracting

region Pðdx; dy; dzÞ in the sample. Indeed, if P1ðx1; y1; z1Þ and

P2ðx2; y2; z2Þ are the intersections of the two diffracted rays

with the detector at position ð!; !þ 180�Þ, the set of possible

solutions for ðdx; dy; dzÞ corresponds to the intersection

between the line P1P2 and the sub-volume of the sample S

illuminated by the beam [Fig. 2(a)], which corresponds to a

linear segment P1P2 \ S, with

ðP1P2Þ :
x � x1

xc

¼
y � y1

yc

¼
z � z1

zc

; ð1Þ

where ðxc; yc; zcÞ are the coordinates of the offset-corrected

scattered wavevector uc parallel to ðP1P2Þ. This system is

under-determined with one degree of freedom, meaning that

any combination of two coordinates can be written as a

function of the third one, but all three cannot be constrained

at the same time. To address this limitation, it is possible to

identify the four peaks, constituting two Friedel pairs, arising

from a single set of (hkl), (hhk) crystal planes during a full

360� rotation. Grain center-of-mass positions are then fitted

using a least-squares approach, considering all experimentally

found Friedel pairs for each grain (Ludwig et al., 2009;

Moscicki et al., 2009).
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Figure 2
Friedel pair geometry for a s3DXRD acquisition in a reference frame fixed relative to the sample. (a) Sketch of the setup, with two detector positions at
angles ! and ! + 180�, and an arbitrary translation ty of the sample relative to the rotation center. A single hkl reflection arising from the green spot in
the sample at rotation angle ! is shown, together with its paired reflection hkl occurring at ! + 180�. The two incident beams i1 and i2 are thin pencil
beams of negligible dimension in y and z, and are coincident. The two diffracted beams u1 and u2 are also coincident and intersect the detector at P1 and
P2, respectively. (b) View of the plane containing i1, i2, u1 and u2. 2� is the real scattering angle between i1 and u1 (or i2 and u2), and � is the azimuth angle
on the detector. 2�1 and 2�2 are apparent scattering angles, computed assuming that the diffracting point in the sample has no offset along the x axis, i.e. it
is at distance L from the detector. h0 is the radial distance from the detector center to the spot, which would be observed both for P1 and P2 if there was
no offset along the x axis. �h is the offset from this position resulting from the offset xl of the diffracting source along the x axis.



With s3DXRD data, the use of a thin pencil beam simplifies

the problem and eliminates the need to match the four peaks

for each (hkl) plane. Indeed, the beam size in the y and z

directions is typically smaller than the pixel size of the

detector, reducing the illuminated volume to a thin line in the

sample. The diffracting region then corresponds to the inter-

section point between this line segment and ðP1P2Þ, which can

be fully constrained from the peak positions on the detector.

In other words, for a given rotation ! of the sample, to

illuminate a specific point Pðdx; dy; dzÞ in the laboratory

reference frame, the sample must be translated by a precise

distance � dy and � dz along the laboratory y and z axes,

respectively, to position P in the beam path [Fig. 2(a)].

Therefore, dy and dz are constrained by the sample translation

needed to place P within the incident X-ray path, leaving only

the x coordinate dx along the beam as unknown. The lack of

offset in the y and z directions also implies that the offset

affects only the 2� angle, while the azimuth angle � remains

unmodified. This is better visualized in the plane defined by

the incident beam and the two scattered wavevectors u1 and u2

[Fig. 2(b)]. P1 and P2 are, respectively, the intersection of u1

and u2 with the detector, L is the sample–detector distance, 2�

is the true scattering angle, and 2�1 and 2�2 are, respectively,

the apparent scattering angles for u1 and u2, modified by the x

offset dx. Using trigonometry relationships, it can be demon-

strated that

tanð2�Þ ¼
1

2
½tanð2�1Þ þ tanð2�2Þ� ð2Þ

and

dx ¼ L
tanð2�1Þ � tanð2�2Þ

tanð2�1Þ þ tanð2�2Þ
: ð3Þ

The diffraction source position in the sample reference frame

is then obtained by applying successively a translation and a

rotation to the point ðdx; 0; 0Þ in the laboratory frame:

x!

y!

z!

0

B
@

1

C
A ¼ �� 1

dx

0

0

0

B
@

1

C
Aþ

0

dy

dz

0

B
@

1

C
A

2

6
4

3

7
5

where � ¼

cosð!Þ � sinð!Þ 0

sinð!Þ cosð!Þ 0

0 0 1

2

6
4

3

7
5: ð4Þ

Thus, assuming that a Friedel pair has been correctly identi-

fied, the true orientation of the scattering vector and the

position of the diffracting region in the sample are derived

from (2), (3) and (4). However, these relationships depend on

the assumption that the diffracting source can be approxi-

mated as a single point, which is typically not accurate. While

the beam width constrains the y and z coordinates of the

diffracting volume, only the average x position is determined

by (3) and (4). The spread of the source along the x direction

remains unknown.

Peak source coordinates ðx!; y!; z!Þ in the sample frame

are then mapped onto a grid, with the voxel size set by the

width of the incident beam. This grid can be used to obtain a

reconstruction of the scanned volume, by computing the sum

of diffracting intensity within each voxel. The result is similar

to diffraction tomography maps obtained by applying the

inverse Radon transform on the global sinogram of diffraction

intensity (Artioli et al., 2010).

2.2.2. Finding Friedel pairs

To exploit the properties of Friedel pairs, these pairs need to

be identified first. The pair-matching algorithm employed for

DCT can reliably identify pairs in datasets of 102–103 grains,

typically yielding 103–104 pairs of spots (Ludwig et al., 2009).

However, the number of peaks in a s3DXRD experiment is

considerably larger and typically increases with higher scan-

ning resolution (smaller beam size and thinner angular inte-

gration step size), larger sample size or a greater number of

grains in the sample. For the geological samples investigated in

this study (5 mm diameter), the number of peaks in a single

360� rotation scan typically ranges between 104 and 106,

depending on the scanning resolution, and the total peak

count reaches up to 108 peaks for the highest-resolution

dataset. Pair identification in such large datasets requires a

computationally efficient algorithm to complete the task in a

reasonable time.

The strategy employed exploits the symmetry of the

s3DXRD data acquired by doing complete 360� rotations

along the z axis. Assuming that a null translation (dy ¼ 0)

corresponds to the alignment of the pencil beam with the

rotation center, two scans acquired with translations � ty and

þty of the sample along the y axis [Fig. 3(a)] should contain

the same information, except that ð!; �Þ coordinates of the

diffraction peaks acquired at � ty are flipped compared with

those acquired at þty. More precisely, applying the transfor-

mation f : ð!; �Þ ! 180þ !ð Þmod 360; 180 � �ð Þmod 360½ �

to the subset of peaks fdy ¼ � tyg leads to a very good overlap

with peaks in the subset fdy ¼ þtyg [Fig. 3(b)], which provides

a good starting guess for matching Friedel pairs. Two peaks

forming a pair should also display similar intensity I and

scattering angle 2�. Thus, the pair-matching problem can be

framed as a nearest-neighbor search in a 4D space formed

using 2�, �, ! and I. Because these four variables represent

different quantities, re-scaling is needed to form a consistent

4D Euclidian space in which a distance matrix can be

computed. For intensity, logarithmic scaling is used because

the peak intensity spans over several orders of magnitude and

significant intensity variations are better represented on a

logarithmic scale than on a linear scale. Logarithmic re-scaling

is also needed for 2�, because variations in apparent 2� related

to the geometrical offset xl become larger with increasing

scattering angle. In contrast, the difference in ln½tanð2�Þ� only

depends on the detector distance L and geometrical offset xl.

The nearest-neighbor search is done in a computationally

efficient way using k-dimensional tree structures (KD-trees),

implemented in Scipy (Virtanen et al., 2020). KD-trees are

space-partitioning data structures built by recursive binary

splitting of the k-dimensional space using axis-aligned
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hyperplanes, which allow efficient identification of nearest

neighbors by quickly eliminating large portions of the search

space (Maneewongvatana & Mount, 1999). Two KD-trees are

computed, for two symmetric subsets of peaks fdy ¼ � tyg and

fdy ¼ þtyg. Then, a sparse distance matrix between the two

subsets is computed, writing values in the matrix only when

the distance between two peaks lies below a specified

threshold. This sparse matrix is screened to retain only the

smallest value in each row and column, ensuring each pair is

unique, i.e. each peak in the first subset is paired with at most

one peak from the second subset, and conversely. Iterations of

this procedure are repeated on the remaining unpaired peaks,

increasing the distance threshold until a maximum distance is

reached. The steps above are repeated for each pair of

symmetric scans in the dataset. This procedure allows fast

identification of Friedel pairs in large datasets containing up to

108 peaks, with relatively good completeness: the proportion

of pairs matched typically reaches 70% to 90%, usually

representing >80–90% of the total diffracting intensity.

2.3. Point-by-point phase mapping

2.3.1. Mapping procedure

Once Friedel pairs have been identified and assigned to a

pixel on a 2D grid, the dataset is processed pixel by pixel, in

the same way as an electron backscatter diffraction map. The

first step consists of creating a phase map, where each pixel is

labeled with a phase. This step assumes that the space group

and lattice parameters of all possible phases in the sample are

known, allowing computation of theoretical diffraction angles

2� for each independent {hkl} family of crystal planes of each

phase. In the following, � ¼ f�0; �1; . . . ; �pg refers to the set of

possible phase candidates, Qði; j; kÞ to an arbitrary pixel on the

map, and fQg to the subset of peaks relocated within pixel Q.

Boolean selection masks are computed to assign diffraction

peaks to each phase in �, using a tolerance threshold around

theoretical 2� angles of individual {hkl} families. For a phase �j,

f�jg is the subset of peaks in this mask. A peak pi can belong to

a multiple of these subsets, in the case of overlap between

{hkl} rings from different phases. The sharp reduction of the 2�

dispersion provided by the Friedel pair correction allows a

reduction of the tolerance threshold, limiting the possibility of

overlap between different {hkl} rings. In the easiest cases,

where the sample contains only a few phases of high

symmetry, overlaps are rare to non-existent. An unambiguous

selection of peaks from the different crystallographic phases

can then be achieved using these Boolean masks, from which a

2D phase label map is easily computed.

However, significant 2� overlaps persist in more complex

samples. In this case, treating overlapping conflicts pixel by

pixel on the 2D grid can significantly improve the quality of

the resulting phase map. Ambiguous situations where multiple

phases overlap do not affect equally all regions of the sample.

Overlaps are more prominent near grain boundaries than in

grain centers and are also more common between phases

sharing similar crystal structures than between phases of

completely different symmetry and lattice parameters. Thus,

confidence in phase assignment can vary greatly between

different regions of the map. Pixel-by-pixel processing allows

us to evaluate this confidence locally and to assign a label only

to pixels for which a unique phase can be attributed with

reasonable certainty. Phase labeling is done by summing the

diffracting intensity of peaks in f�ig over pixel Q for each

phase candidate in the set �. The phase that collects the

highest cumulated intensity over this pixel is retained,

provided that the total peak count for this phase on pixel Q

exceeds a minimal threshold Nmin, to avoid labeling pixels with

only a few peaks. Hence, the best-matching phase �best on pixel

Q is the one maximizing the quantity

Itotð�j \QÞ ¼
X

pi2ðf�jg\fQgÞ

Ii; ð5Þ
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Figure 3
Friedel pair identification in a s3DXRD dataset. (a) Possible pairs are found in symmetric scans acquired at opposite y translation � ty and þty from the
rotation center ðy ¼ 0Þ. (b) ! ðmod 360Þ versus � ðmod 360Þ for a subset of paired peaks from symmetric scans (�: dy ¼ � 1:5; +: dy ¼ þ1:5) in sample
WGSI3, after transforming ð!; �Þ coordinates of the subset fdy ¼ � 1:5g to make paired peaks overlap. Peaks are colored by Friedel pair index, a unique
identifier for each pair in the dataset. Thus, two peaks forming a correct Friedel pair appear as overlapping ‘�’ and ‘+’ symbols of the same color. Spot
size depends on log(intensity). Overall, there is a good match of Friedel pairs in ! and �. Isolated data points belong to unreliable pairs, where two peaks
with very different ð!; �Þ coordinates were associated together.



where Ii refers to the intensity of peak pi. This process can be

viewed as an approval voting procedure, where all peaks

belonging to Q have to ‘approve’ or ‘disapprove’ each phase

candidate �i, allowing selection of multiple candidates by each

peak. This latter point is crucial, as it allows us to correctly

take into account the preferences of each peak, accounting for

existing ambiguities when two or more phases can match.

2.3.2. Confidence assessment

Confidence in phase assignment may vary on each pixel of

the map. To provide some quantification of how good is the

match for a given phase on a given pixel, we introduce a

confidence index, computed on each pixel. Considering a

phase �i and a pixel Q, confidence in assigning �j to Q is a

combination of two different quantities: the completeness cj

which quantifies the proportion of total diffracting intensity

arising from Q that is collected by phase �j, and the uniqueness

of the selection uj which quantifies the proportion of this

diffracting intensity uniquely assigned to Q, i.e. not collected

by any other phase. They are defined as follows:

cjðQÞ ¼
Itotð�j \QÞ

ItotðQÞ
; ð6Þ

where ItotðQÞ is the total diffracting intensity on pixel Q, and

ujðQÞ ¼
Itotð�j \ �i;i6¼j \QÞ

Itotð�j \QÞ
; ð7Þ

where the numerator corresponds to the integrated intensity

of peaks in pixel Q that have been assigned to phase �j, and

only to �j. If the total peak count in f�jg \ fQg is below Nmin,

the pixel is kept unlabeled and both cjðQÞ and ujðQÞ are set to

zero. Assigning a phase with high confidence requires both

high completeness and high uniqueness of the peak selection.

Low completeness implies that the chosen phase matches

poorly with the diffraction data. High completeness with low

uniqueness implies that several phases possibly match, but

cannot be easily discriminated.

However, the definition of completeness has one pitfall:

assuming that the initial phase identification is complete, i.e.

most of the peaks in fQg have been assigned to at least one

subset f�ig, with p possible phase candidates, the lowest frac-

tion of intensity collected by the best-matching phase �best

cannot be zero but will tend towards 1=p if the diffraction

intensity arising from Q is uniformly distributed between the

different phase candidates. Thus, the range of possible values

for completeness depends on the number of phases being

mapped and its lower bound tends to decrease with an

increasing number of phase candidates. To avoid this effect, a

normalization is introduced using the number of phases p:

hcji ¼

1

p � 1
pcj � 1
� �

if p> 1;

cj otherwise:

8
<

:
ð8Þ

The confidence index C
j
indðQÞ is then defined as the product of

the two quantities hcjðQÞi and ujðQÞ:

C
j
indðQÞ ¼

hcjðQÞiujðQÞ if nðf�jg \ fQgÞ>Nmin;

0 otherwise:

�

ð9Þ

In the case p ¼ 1, ujðQÞ is trivial and takes only values 1 or 0

depending on whether the total number of peaks in f�jg \ fQg

exceeds the threshold Nmin. Thus, C
j
ind is merely a measure of

completeness in this case.

The phase mapping process applied to test samples (see

Section 3 below) produced maps with noticeable noise,

emphasizing the necessity to implement a smoothing method

to generate more realistic phase maps. This improvement can

be realized by adopting a peak selection approach based on a

moving kernel, rather than selecting peaks on individual

pixels. The criteria for selecting the optimal phase and asses-

sing confidence remain consistent with the definitions

provided above, except that the selection domain Q encom-

passes an n� n group of pixels centered on the pixel of

interest, where n is an odd positive integer. This results in a

better correlation between neighboring pixels, since the data

used to determine the best-matching phase are partly shared

between them.

2.4. Local indexing and grain mapping

Conventional processing of s3DXRD data involves

indexing and grain mapping steps to produce a grain map. A

grain is considered here as a continuous 3D domain consisting

of a unique phase, over which lattice orientation is constant or

varies smoothly within a limited range. It is characterized by a

unit-cell matrix, formed by the real-space lattice vectors in

sample coordinates. This matrix is usually denoted as a

product ðUBÞ� 1, where U is the crystal rotation matrix giving

the grain orientation in the sample frame and B the matrix

formed by the reciprocal unit-cell vectors (Busing & Levy,

1967). The rows of the matrix are the real-space lattice vectors.

Indexing aims to identify grains in the dataset by finding

clusters of diffraction vectors in reciprocal space (g vectors)

compatible with a unique orientation U, assuming B constant

and equal to a known reference cell. Each unit-cell matrix

found corresponds to a grain candidate of orientation U. Once

this step has been done, a refinement procedure is run to

exclude peak outliers, remove spurious grains, refine B and fit

the grain center of mass. The grain shapes are then recon-

structed using the filtered back-projection of the sinogram of

peaks assigned to each grain. This procedure usually works

well for samples that have experienced small deformations.

With increasing strain, the assumption that lattice orientation

is close to constant over a grain becomes less and less valid, as

large internal misorientation can occur. Moreover, this

procedure is done simultaneously over an entire 2D slice of

the sample, with potentially hundreds to thousands of grains to

match at a time, increasing both computation time and the

probability of orientation overlaps between different grains.

Thus, indexing becomes increasingly challenging with

increasing strain and sample size.

Starting from the labeled pixel map with diffraction peaks

assigned to each pixel, the problem can be seen from a

different perspective: each pixel is characterized by a unique
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matrix of real-space unit-cell vectors, which is fitted using the

set of diffraction peaks assigned to it. The fitting process is

done separately for each phase using indexing functions from

ImageD11. If no compatible unit-cell vector matrix is found, or

if too few peaks match with the best matrix, the pixel remains

unindexed.

Similarly to phase mapping, the local indexing procedure

tends to generate noisy and incomplete maps when applied

pixel by pixel. Again, this issue is solved by introducing a

kernel selection approach of peaks used to fit the local unit-

cell vector matrix. However, this comes at the expense of a

rapid increase in computation time with increasing kernel size,

because the number of g vectors to fit for each pixel scales with

the square of the kernel size n.

The output of the local indexing procedure is a map where

orientation is defined on a per-pixel basis, but no grains have

been defined yet at this stage. A grain map can be obtained

a posteriori by grouping pixels together. Various methods can

be used. The most straightforward is to cluster pixels by

orientation. First, each local orientation is mapped to the

symmetry-reduced fundamental zone of orientation space

corresponding to the symmetry of the phase being mapped.

Then, a clustering algorithm is run to find groups of pixels with

similar orientation (Johnstone et al., 2020). Once pixels have

been clustered, grain masks are defined, and mean grain lattice

vectors are fitted using the full set of peaks collected over the

whole grain masks. This approach works as long as orientation

clusters corresponding to different grains are well separated,

but it becomes ineffective for highly strained, highly textured

samples containing many grains with overlapping orientation

distribution functions. More advanced grain reconstruction

algorithms may be used in this case, such as the fast multi-scale

clustering algorithm implemented in MTex (McMahon et al.,

2013).

3. Applications

3.1. Sample description

The workflow described above has been applied to two

samples of Westerly granite (WG102 and WGSI3). This rock is

a fine-grained equigranular granite quarried in the Westerly

area (Rhode Island, US) and has been used for a long time as a

reference material for rock physics studies (Brace & Byerlee,

1966; Lockner, 1998). Westerly granite is actually a quartz

monzonite to granodiorite, mainly composed of quartz,

potassic feldspar (microcline) and plagioclase (oligoclase) in

similar proportions, in addition to subordinate amounts of

biotite, white mica, and magnetite and hematite iron oxides

(Fairbairn, 1951). The two samples WGSI3 and WG102 were

recovered from dynamic loading ‘shock’ experiments

performed using split-Hopkinson pressure bars, such that they

have been damaged dynamically (Doan & Gary, 2009).

Therefore, they feature high internal brittle damage that

consists of multiple tensile cracks, mainly opened along a

direction orthogonal to the propagation of the compression

wave. These two samples were imaged after the shock

experiment using X-ray microtomography on beamline ID19

(ESRF), with a voxel size of 6.2 mm. Sample WG102 [Fig. 4(b)]

is a 5 mm-diameter by 10 mm-height core, which was placed in

a 0.5 mm-wide gasket made of commercial aluminium alloy to

avoid complete pulverization during the shock. WGSI3 [Fig.

4(a)] is ca 5 mm wide. It has a more complex T-shape than

WG102 and was not placed in a metal gasket, but nevertheless

survived the shock experiment without being pulverized so

that the entire damaged sample could be recovered. These two

samples represent the archetypal materials that geologists

need to investigate. They feature almost all the different types

of complexities prevalent in geological samples, including

large sample sizes, the presence of multiple low-symmetry

phases and substantial internal damage. However, these

samples lack significant ductile deformation. The aluminium

gasket surrounding sample WG102 provides in addition a

relevant example of a ductile material that features large

plastic strain.

Diffraction data were acquired at beamline ID11 of ESRF,

using a pencil beam scanning 3DXRD procedure. One slice of

sample WGSI3 was scanned at a low resolution (50 mm beam

size) on the 3DXRD experimental station of ID11, equipped

with a FReLoN 2K detector (47 mm pixel size). One slice of

sample WG102 was scanned at a higher resolution (10 mm

beam size) on the nanofocus station, equipped with an Eiger2

X CdTe 4M detector (75 mm pixel size). Details about X-ray

beam characteristics and scanning procedure are summarized

for each sample in Table 1. Examples of raw diffraction frames

for these two samples are provided in the supporting infor-

mation. Calibration and pre-processing of diffraction frames

were performed using ImageD11 (Wright, 2024). Calibration
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Figure 4
Microcomputed X-ray tomography (mCT) reconstructions of Westerly
granite samples WGSI3 (a) and WG102 (b). The red surface shows the
approximate position of s3DXRD scans in each sample. The blue domain
in sample WGSI3 corresponds to open fractures with an aperture larger
than 12.4 mm. The lower panels show the corresponding mCT slice, with
different minerals labeled. bt: biotite; fsp: feldspar (orthoclase or oligo-
clase); mt: magnetite; qtz: quartz.



of detector geometry (distance, center, wedge and tilt) was

performed before each scan using a NIST reference CeO2

powder and a piece of a pristine, hydrothermal quartz

monocrystal sampled in the massif of Belledonne (western

Alps).

3.2. Matching Friedel pairs

Friedel pairs were matched for each dataset, using the

algorithm introduced in Section 2. The proportion of matched

pairs is fairly reasonable, around 71% for WG102 and 76% for

WGSI3. The geometric correction using Friedel pairs was

applied to recover the offset-corrected 2� angles and relocate

the diffraction source in the sample. The effect of this

correction on 2� angles appears clearly when plotting the

histogram of 2� for corrected and uncorrected peaks (Fig. 5).

The spread of 2� angles is greatly reduced and these angles

match with pre-computed 2� positions of theoretical {hkl}

rings, meaning that accurate measurements of the real 2�

angle are obtained for each crystal plane.

Diffraction image reconstructions of the scanned sample

slices are obtained from the relocated peak sources by plotting

a 2D histogram of cumulated diffraction intensity on each

pixel [Fig. 6(left)]. The reconstructions obtained through this

method exhibit a good correlation with tomographic recon-

structions achieved using the filtered back-projection algo-

rithm on the sinogram of total diffracted intensity [Fig.

6(right)]. On these specific samples, the Friedel pair recon-

struction appears to outperform the filtered back-projection

method, generating fewer artifacts. Specifically, the presence

of the Al gasket surrounding granite in sample WG102

resulted in pronounced artifacts in the reconstruction of the

granite core. This was likely caused by the much higher

diffracting intensity of the metal gasket compared with the

rock sample. To produce a filtered back-projection recon-

struction wherein different grains can be distinguished, the

diffraction peaks of aluminium had to be cropped out, while

the Friedel pair method easily reconstructed the entire sample

slice, including the aluminium gasket.
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Figure 6
Comparison of 2D slice reconstruction using the Friedel pair method and
the filtered back-projection method, for the two samples WGSI3 (low
scanning resolution) and WG102 (high scanning resolution). The gray
color scale is indicative of the total diffraction intensity arising from each
pixel (brighter color = higher intensity). The filtered back-projection
algorithm performed very poorly with the aluminium jacket surrounding
sample WG102, so the filtered back-projection reconstruction (bottom
right) has been obtained after filtering out the diffraction peaks of this
metal.

Figure 5
Probability density of 2� data for raw (blue) versus corrected (orange)
diffraction peaks for sample WGSI3, in the low 2� (top) and the high 2�
(bottom) range. The Friedel pair geometric correction results in a sharp
decrease of 2� broadening, revealing Bragg peaks corresponding to the
different crystal phases in the sample, which were completely blurred in
the non-corrected dataset. Vertical ticks on the bottom of each plot show
the position of computed Bragg peaks for the different phases.

Table 1
Acquisition parameters for the two Westerly granite samples WGSI3 and
WG102.

Sample WG102 WGSI3

Workstation Nanofocus 3DXRD
Detector Eiger2 X CdTe 4M FReLoN 2K

Beam size (mm) 10 50
Beam energy (keV) 43.56 43.57
! step size (�) 0.05 0.8
! range (�) [0–360] [0–360]
dy step size (mm) 10 50
y scanning range (mm) 6.21 5.45

Acquisition time (1 slice) 4h30 2h30



3.3. Phase mapping

Phase maps were obtained considering a simplified mineral

assemblage for granite in both samples, consisting of quartz,

oligoclase, orthoclase, biotite and magnetite. This miner-

alogical composition excludes any accessory or secondary

alteration phases that may be present in minor proportions in

the rock, which are likely to be insignificant in the total

diffracting intensity. Oligoclase and orthoclase represent

idealized compositions of the two types of feldspar, respec-

tively, plagioclase and potassic feldspar, occurring in the

granite, which are here considered as phases of fixed compo-

sition rather than solid solutions. In addition, face-cubic-

centered aluminium was included for the gasket in sample

WG102.

The resulting phase maps [Figs. 7(b), 7(c); Table 2] are

plotted next to X-ray microtomography (mCT) reconstruc-

tions of the same 2D slice [Fig. 7(a)] for both samples. Gray

tones on the mCT images represent different minerals and

exhibit a strong correlation with the phase maps. Specifically,

Fe-bearing phases such as biotite and magnetite, which appear

the brightest and are easily identifiable in mCT, demonstrate a

notable overlap with the s3DXRD phase maps. However,

achieving perfect registration between the mCT and 3DXRD

images proved challenging. This is because the mCT scanning

was conducted at a higher resolution (6.2 mm voxel size) than

the s3DXRD, resulting in imperfect matching of the sampled

volumes for a given slice. Additionally, the s3DXRD and mCT

data were acquired on different instruments, with sample
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Figure 7
Phase maps for samples WGSI3 and WG102, placed next to mCT images (a) of the same slice for comparison. The different minerals considered for
phase mapping are listed on the right. Corresponding space groups and lattice parameters are summarized in Table 2. Two mapping options are shown,
using either single-pixel selection (b) or kernel selection (c). With single-pixel selection, the best-matching phase on a pixel is assessed considering only
diffraction peaks assigned to this pixel. With kernel selection, the best-matching phase on a pixel is assessed considering all peaks belonging to a 3 � 3
square of pixels around the central pixel, resulting in smoother and more complete phase maps.

Figure 8
Completeness (a), uniqueness (b) and normalized confidence index (c) maps for samples WGSI3 and WG102, computed using a 3 � 3 kernel peak
selection. These indexes are used to evaluate confidence in phase assignment over each pixel. See Section 2 for more details.



mounting leading to slightly different rotation axis directions

in the sample, further complicating image registration.

Although the phase maps in Fig. 7(b) appear quite satis-

factory to first order, they still exhibit noticeable noise and

incompleteness, with many pixels remaining unlabeled. This is

particularly evident for phases with low symmetry, such as

oligoclase and orthoclase, and at high spatial resolutions

(sample WG102). To improve phase maps, we used the kernel

mapping procedure, using a 3 � 3 kernel. This step led to

significant improvement in terms of both noise reduction and

completeness of the phase maps [Fig. 7(c)], although the high-

resolution map (WG102) is still not completely satisfactory.

However, mapping artifacts are primarily observed in low-

symmetry phases, whereas the maps of higher-symmetry

phases (quartz, magnetite, aluminium) are of much better

quality.

As depicted in Fig. 7, the quality of phase maps varies

significantly from phase to phase, underscoring the disparity in

confidence levels regarding phase assignment. This confidence

can be quantified using the uniqueness, completeness and

normalized confidence indexes defined in Section 2. These

three criteria are plotted in Fig. 8 for the phase maps obtained

using the 3 � 3 kernel method [Fig. 7(c)].

Completeness exhibits substantial variation across different

phases, with values close to 1 for high-symmetry phases like

quartz and magnetite, and declining significantly for phases

with lower symmetry, sometimes dropping below 0.3. Grain

boundaries are notably discernible on the maps [Fig. 8(a)] as

regions with lower completeness. Uniqueness, on the other

hand, shows a more uniform distribution and is less phase

dependent, albeit still influenced by grain boundaries [Fig.

8(b)]. However, it rarely exceeds values above 0.7, indicating

significant overlapping in scattering angles between different

phases. The normalized confidence index, computed as a

combination of these two values [Fig. 8(c)], consequently

ranks highest for quartz and magnetite, is lower for Al and

biotite, and is notably poor for the two feldspars (oligoclase

and orthoclase). This disparity explains the high levels of noise

and incompleteness exhibited by these two phases.

3.4. Lattice orientation fitting and grain mapping

Point-by-point fitting of the unit-cell vector matrix is illu-

strated for quartz, which produced the highest confidence

score during phase mapping and is present in significant

proportions in the granite. Quartz unit-cell matrices were
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Figure 9
Orientation of quartz pixels for samples WGSI3 and WG102, shown as inverse pole figure (IPF) color maps relative to the vertical z axis in the sample
reference frame (a) and as lower-hemisphere pole figures for a selection of Miller indices (b). Orientation obtained using peak selection over single pixels
generates noisy maps. Peak selection using an n� n kernel significantly improves the quality of orientation maps, especially for sample WG102.
Computation with kernel selection took ca 2 h for sample WG102 and ca 5 min for sample WGSI3, using a full node (40 cores) of the Nice cluster at
ESRF. Orientation-to-color mapping and pole figure plots were obtained using the orix library (Ånes et al., 2024).

Table 2
Crystallographic phases in granite samples WGSI3 and WG102.

Phase Space group a (Å) b (Å) c (Å) � (�) � (�) � (�)

Quartz P3221 4.913 4.913 5.412 90 90 120

Oligoclase P1 8.154 12.823 7.139 94.06 116.50 88.59
Orthoclase C2=m 8.589 13.013 7.197 90 116.02 90
Biotite C2=m 5.355 9.251 10.246 90 100.15 90
Magnetite Fd3m 8.396 8.396 8.396 90 90 90
Aluminium Fm3m 4.050 4.050 4.050 90 90 90



computed for samples WGSI3 and WG102, utilizing either the

single-pixel selection method or a kernel selection. For sample

WG102, a larger 5 � 5 kernel was necessary to achieve a

satisfactory level of smoothing and ensure complete mapping

of quartz orientation. The resulting pixel orientation maps are

shown in Fig. 9(a) for both samples, illustrating the results of

the single-pixel method (left panels) and the kernel method

(right panels).

The quartz pixel orientation distribution function plotted

for a selected set of ½hkil� Miller indices [lower-hemisphere

pole figure, Fig. 9(b)] reveals distinct clusters, corresponding

to different grains within the scanned volume. However,

orientations have not been defined yet at the grain level, which

requires grouping of contiguous pixels sharing similar orien-

tations. Considering the nearly discrete nature of the quartz

orientation distribution function, a basic clustering approach

in orientation space is sufficient to yield a satisfactory grain

map. The grain mapping process is shown for sample WG102.

The density-based spatial clustering of applications with noise

(DBSCAN) algorithm from scikit-learn (Pedregosa et al.,

2011) was employed to cluster quartz pixels by orientation in

the symmetry-reduced fundamental zone (point group 3m). A

total of 136 grains were identified [Fig. 10(a)]. The mean grain

orientation and lattice parameters were then refined using the

full set of g vectors assigned to each grain. The misorientation,

as computed in Fig. 10(b), represents the deviation in degrees

between the pixel orientation and the mean grain orientation.

This map exposes significant internal orientation gradients

and sub-grains with misorientations of up to 5�, which were

challenging to discern on the orientation color map (Fig. 7).

Areas highlighted in red denote >5� misorientation,

pinpointing a few problematic sub-grains that were not accu-

rately identified as distinct grains.

The orientation clustering approach proved effective for

quartz because there are only a limited number of grains

forming well separated clusters in Euler angle space [Fig.

11(a)]. However, grain mapping is expected to become

increasingly difficult with increasing plastic strain and

decreasing grain size. A particularly challenging case is

provided by the Al gasket surrounding the granite sample.

This gasket was made by drilling and cutting a bar of

commercial aluminium alloy. Hence, it features a fine-grained

(grain size < 50 mm) and strongly anisotropic texture, with a

strong preferred orientation of {100} faces orthogonal to the

gasket. This texture is shown in Figs. 12(a) and 12(b) for a

sample similar to WG102, in which the Al gasket features

radial variations – lacking in WG102 – of crystal orientation

around the gasket. As visible on the inverse pole density map

[Fig. 11(b)], the aluminium orientation distribution function

shows a much broader range of orientation than the quartz

orientation distribution function, leading to highly unsa-

tisfactory results of DBSCAN clustering [Fig. 11(d)].

4. Discussion

4.1. Advantages of Friedel pairs

Relocation of diffraction peaks within the sample using

Friedel pairs allows the processing of s3DXRD data on a per-

pixel basis, which has several advantages over classical

indexing procedures.

First, there is no need to process the entire map. Once

diffraction peaks have been relocated in the sample, it

becomes possible to isolate peaks from a smaller sub-domain

for subsequent processing. This approach proves particularly

beneficial for fine-tuning tolerance parameters utilized in

phase mapping and local indexing before embarking on
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Figure 11
Pixel orientations and results of DBSCAN clustering for sample WG102,
plotted in inverse pole figure space relative to the z axis. Inverse pole
density for quartz (a) and aluminium (b) pixels. MRD: multiple of a
random (uniform) distribution. Scatter plot of pixel orientations colored
by grain label, for quartz (c) and aluminium (d). Each color corresponds
to a cluster identified by the DBSCAN algorithm and matches with the
grain colors in Fig. 10. For quartz, most of the orientation clusters visible
in the inverse pole figure were identified correctly. For aluminium, the
lack of well defined orientation clusters resulted in poor outcomes for
grain mapping.

Figure 10
Grain map of sample WG102, obtained by clustering pixel orientation in
the symmetry-reduced fundamental zone (Johnstone et al., 2020). (a)
Grains are colored by random colors. Red dots correspond to the grain
centroids. (b) Grain internal misorientation in degrees. Red areas
correspond to high misorientation (�5�) and highlight unreliable areas
that were not correctly identified as separate grains.



processing the entire map. Additionally, when the region of

interest (ROI) constitutes merely a fraction of a larger sample,

acquiring data across its entire width is unnecessary. Instead,

the sample can be precisely positioned to align the ROI with

the rotation center of the sample stage. Then, the point-

focused beam scanning procedure is conducted over a limited

range of y positions, encompassing the width of the ROI.

Friedel pairs relocated beyond the boundaries of the ROI are

subsequently filtered out, leaving only the data pertinent to

the ROI. This method improves the flexibility of the s3DXRD

technique, facilitating the straightforward selection of sub-

volumes without using slits to physically filter the range of

scattering angles reaching the detector.

Another advantage lies in the ability to derive local infor-

mation from diffraction data without requiring indexing and

grain mapping steps. Each diffraction peak is directly relo-

cated within the sample before indexing, enabling certain

properties to be mapped on a per-pixel basis, even in cases

where local indexing fails. This point is illustrated using the Al

gasket described in Fig. 12, which displays a strong preferred

orientation of aluminium grains, presumably resulting from

the large strain caused by extrusion during manufacturing. It

may be interesting to quantify residual strain and stress and

map their distribution within the gasket. However, the metal

constituting the gasket is too deformed to consistently identify

grains from the pixel map [Fig. 11(b)]. Nevertheless, orienta-

tions retrieved on a per-pixel basis appear to be consistent,

although resulting in a visually noisy map [Fig. 12(a)].

Furthermore, the unit-cell volume computed using the lattice

vectors fitted on each pixel exhibits variations of over 15%

across the sample, corresponding to unrealistic levels of elastic

strain. This discrepancy arises from the very elongated shape

of Al peaks on the detector and indicates that the unit-cell

matrix fitted on each pixel is unreliable and unsuitable for

accurate strain calculations.

While this approach fails, an alternative method involves

selecting peaks from a single {hkl} family and calculating the

{hkl} lattice strain "hkl as follows:

"hkl ¼
dhkl � d0

d0

¼
dhkl

d0

� 1; ð10Þ

where dhkl is the lattice spacing for the selected peaks and d0 is

the lattice spacing of an unstrained reference. It is computed

for each peak belonging to the selected {hkl} group. Then, the

median strain is determined for each pixel, generating a map

of strain variations across the sample. This process only

requires knowledge of which diffraction peaks are assigned to

a specific pixel, obviating the need for fitting a lattice vector

matrix. The resulting strain maps, depicted in Fig. 12(c) for the

{200}, {111} and {220} families of crystal planes, take the

median {hkl} d spacing over the entire sample as the d0

reference. The strain fluctuates from ca � 4� 10� 4 to

þ4� 10� 4 and exhibits a similar spatial distribution across

different {hkl} families [Fig. 12(c)], with certain regions of the

gasket experiencing compression (red) and others undergoing

tension (blue). Interestingly, this spatial distribution correlates
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Figure 12
Orientation and strain maps for the Al gasket surrounding a sample similar to WG102. (a) IPF color maps of pixel orientation relative to the z and x axes
in the sample reference frame. (b) Pixel orientation (lower hemisphere) for a selection of Miller indices. (c) Strain maps computed for several {hkl}
diffraction rings. d is the d spacing for crystal planes, and d0 corresponds to the median d spacing for all diffraction peaks belonging to the selected {hkl}
family over the whole sample. Strain is given in engineering convention (negative strain for shortening) and is expressed in a direction orthogonal to the
orientation of the selected {hkl} crystal planes.



with the lattice orientation U fitted for each pixel. This result

might be due to the elastic anisotropy of Al crystals (Kube,

2016), which hence respond differently to stress depending on

orientation.

However, the interpretation of these maps in terms of strain

field in the sample reference frame is not completely

straightforward: "hkl corresponds to strain orthogonal to a

given set of lattice planes in the crystal. Therefore, some

constraints on the crystal orientation U are needed to relate

these values to the strain in the sample reference frame.

Moreover, the set of reflections selected to compute the

median "hkl over each pixel corresponds to the whole {hkl}

family, including all possible (hkl) planes equivalent by

symmetry. If the multiplicity is greater than two, i.e. the {hkl}

family contains more than just the (hkl) and (hkl) planes, "hkl

will be the median of strain along different directions of the

crystal equivalent by symmetry. This can be difficult to inter-

pret intuitively, except in some specific cases. For example, for

a cubic system, dhkl is directly related to the unit-cell para-

meter a:

dhkl ¼
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ l2
p : ð11Þ

Therefore, "hkl can be related to volumetric strain

"vol ¼ ða=a0Þ
3 � 1:

"hkl ¼
dhkl

d0

� 1 ¼
a

a0

� 1 ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ "vol

p
� 1: ð12Þ

This analysis assumes however that strain is small and the unit

cell remains approximately cubic. For crystals of lower

symmetry, the relation with intuitive strain components may

not be as straightforward.

4.2. Current limitations and pitfalls

4.2.1. Completeness and robustness of Friedel pair matches

The Friedel pair matching algorithm has been optimized to

reduce computing time so that very large datasets containing

several tens to hundreds of millions of peaks – typical figures

for s3DXRD – can be processed. However, this to some extent

comes at the expense of completeness and robustness of pair

identification. The proportion of Friedel pairs matched usually

ranges between 70% and 90% depending on the sample.

Above a certain point, increasing the ‘max distance’ para-

meter, which controls the maximum distance between two

peaks forming a pair in the 4D search space, does not improve

this value any further, and mostly results in the random

pairing of residual peaks. The presence of residual single

peaks probably results from the fact that possible pairs are

searched only in symmetrical scans acquired at y translations

� ty and þty of the sample relative to the central position [Fig.

3(a)]. Thus, if the beam is not perfectly aligned with the

rotation center at the central position, some pairs will be

missed because sample illuminations at dy ¼ � ty and dy ¼ þty

will not be perfectly identical. This issue is likely to be

increasingly problematic with increasing scanning resolutions,

especially below sub-mm beam sizes. In such cases, very precise

positioning of the sample is required to ensure the symmetry

of the � ty and þty scan pairs. Slight inaccuracies in motor

positioning or small displacement of the sample during scan-

ning (if it is not correctly fixed on its holder) will result in

significant decorrelation of scans, hindering the correct iden-

tification of pairs.

More pairs could probably be recovered by extending the

search to neighboring scans, i.e. looking at peaks in scans

fdy ¼ þty � �yg to match with the peaks in fdy ¼ � tyg.

However, the proportion of pairs recovered is usually high

enough to allow robust mapping of phase and orientation over

each pixel. Moreover, the Friedel pair match is usually better

for the strongest peaks, i.e. unpaired peaks are more

frequently weak-intensity peaks. Hence, the fraction of total

intensity matched during the Friedel pair search is usually

high, typically above 80% to 90%. Therefore, further

improving the completeness of Friedel pair matching does not

appear to be very critical.

Robustness can also be an issue. The nearest-neighbor

search can yield ambiguous results if peaks arising from

different grains are very close to each other on the detector,

making the presence of false-positive pairs unavoidable. A few

can be spotted in Fig. 3(b), but they are rare, representing only

a minor proportion of peaks in the plot. A possible

improvement could be the implementation of a robustness

criterion, which would quantify the probability of a given pair

being a false positive, and could be used to filter out spurious

Friedel pairs. This criterion should depend on the distance

between paired peaks (the lower, the better), as well as the

number of other peaks in the close neighborhood (the lower,

the better) in the 4D search space.

Nevertheless, the false-positive pairs are already removed

to some extent during subsequent processing steps. Indeed, 2�

angle correction and peak relocation in the sample are likely

to be unreliable for such pairs. Some of them are relocated

outside of the sample and are readily removed. Some others

are also probably filtered out during the phase labeling step

because they have an incorrect 2� angle, which does not match

with any possible phase candidate. Finally, some unreliable

peaks are also removed during local indexing, which involves a

refinement stage where peak outliers are removed. Therefore,

the presence of a small proportion of false-positive Friedel

pairs in the dataset does not seem to be a critical issue for

further point-by-point mapping of phase and orientation.

4.2.2. Inaccuracy of the point-by-point fit method

The pixel-fit method introduced in the present study is

analogous to the point-fitting method proposed by Hayashi et

al. (2017). In the latter, the crystal structure (unit-cell vector

matrix) undergoes refinement on a point-by-point basis, using

the subset of reflections for which the designated point falls

within the path of the incident beam. Our method operates on

a similar principle, but the selection of the subset of reflections

used to fit the lattice state at a specific point is based on the

back-projection of diffraction peaks using Friedel pair prop-

erties. This step represents an improvement since it enables
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the direct selection of reflections originating from a single

grain in the sample. In contrast, the method proposed by

Hayashi et al. (2017) selects all reflections arising from rays

intersecting the point of interest at a particular ðdy; dz; !Þ

scanning position, necessitating subsequent filtering to retain

only the relevant diffraction peaks.

However, a major drawback of this approach stems from

the erroneous assumption that diffraction events originate

from individual points within the sample. As highlighted by

Henningsson et al. (2020) and Henningsson & Hendriks

(2021), the diffracting region within a grain intersected by a

pencil beam is more accurately described as a line segment

passing through the grain. Consequently, the resulting

diffraction spot on the detector corresponds to the integration

of the diffracting signal across this line, and the task of

reconstructing intra-grain orientation and strain from

s3DXRD data inherently involves a tomographic challenge.

Not acknowledging the tomographic nature of this problem

can result in artifacts in the reconstruction of intra-grain

orientation and strain (Henningsson et al., 2020).

The Friedel pair method does not offer a direct resolution

to this issue. Tomographic inversion methods (Henningsson et

al., 2020; Henningsson & Hendriks, 2021; Henningsson & Hall,

2023) have been proposed to address this problem, allowing

more robust fitting of the intra-grain strain and orientation

field. However, these methods might also be biased, particu-

larly in highly deformed materials. In such cases, the

assumption that the diffracting region within a grain inter-

sected by a pencil beam forms a continuous segment can

become invalid. Due to significant intra-grain misorientation,

only sub-portions of the X-ray path within the grain would be

positioned in the Bragg diffraction condition at a given rota-

tion angle. Thus, the actual diffracting region at a given

ðdy; dz; !Þ scanning position constitutes only a sub-region,

possibly discontinuous, of the ray path through the grain.

Developing a robust method to accurately fit the intra-grain

lattice strain and orientation fields in such a case remains a

challenge.

A possible direction for future improvements can never-

theless be proposed, building upon the method introduced in

this article. Instead of relocating the source of paired

diffraction peaks to a discrete point in the sample, one could

envisage defining the peak source position as a probability

density function over the ðx!; y!Þ coordinates in the sample

frame. This probability function should take into account the

various sources of uncertainty related to detector pixel size,

distance and center, as well as the spatial extent of the

diffraction spot on the detector. Then, for a given point

Pðx!p
; y!p
Þ in the sample, the fitting of the phase and lattice

vectors would be based on the subset of peaks associated with

a non-zero probability at this position, weighting each peak

contribution using the value of the probability density func-

tion at point P.

Put another way, this would spread the contribution of each

peak over an area wider than one single pixel. The kernel

smoothing method introduced in this article for local phase

matching and indexing already does something similar but in a

very rough way: using an n� n kernel is equivalent to

assigning to each peak a uniform probability density over an

n� n pixel region. However, this probability density is the

same for each peak, regardless of diffracting intensity and

peak shape on the detector. Using probability functions

defined on a per-peak basis would allow a more accurate and

physically consistent characterization of intra-grain lattice

properties.

4.2.3. Handling complex phases

Finally, another limitation of the technique pertains to

phase mapping and indexing of complex phases such as feld-

spars, which have low symmetry and form solid solutions. As

demonstrated by the phase maps (Figs. 7 and 8), dealing with

these phases is challenging and the mapping strategy used

resulted in poor outcomes, particularly evident in the high-

resolution map (sample WG102 in Fig. 7). The poor results

obtained with these phases probably stem from two issues.

First, the low symmetry of feldspars – orthoclase is mono-

clinic and oligoclase is triclinic – leads to a multitude of

independent Bragg scattering angles corresponding to

different {hkl}. Peak selection masks based on a simple

angular threshold around each Bragg peak end up covering a

substantial portion of the 2� spectrum, with considerable

overlaps between these two phases. A more optimized

approach could involve selecting only diffraction data from

the N-strongest Bragg peaks or adjusting the width of the 2�

threshold for each peak on the basis of modeling of the full

X-ray spectrum of each phase, to achieve a more accurate

peak selection in each phase mask. Alternative decision

criteria could also be used to select the best-matching phase

over a given pixel. For the sake of computation efficiency, we

simply took the total peak count, weighted by intensity, over

each binary phase mask, retaining the phase with the highest

completeness on each pixel. Other procedures could be

considered, for instance retaining the phase that minimizes the

sum of the 2� distance between each measured hkl reflection

and the closest pre-computed Bragg peak.

Second, these minerals form solid solutions spanning a wide

range of possible compositions, resulting in variations of the

crystal lattice parameters. Intra-grain composition zoning or

the coexistence of multiple generations of the same mineral

with different compositions are extremely common in rocks.

These heterogeneities imply that the lattice parameters of a

given phase are not constant across the entire sample, thereby

adding complexity to phase mapping. The combination of

s3DXRD and X-ray fluorescence tomography (XRF–CT)

within a multi-modal acquisition framework could be a

promising approach to address this challenge. Mineral

segmentation methods based on multi-channel X-ray fluores-

cence maps – obtained from electron microprobe analyzers or

X-ray micro-fluorescence instruments – are relatively

straightforward, assuming the minerals being analyzed are not

polymorphs of the same composition (Lanari et al., 2014;

Lanari et al., 2019; Lanari et al., 2024). When combined with

s3DXRD, this multi-modal X-ray mapping approach would
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offer a comprehensive in situ characterization of phase,

composition, orientation and strain within rocks and other

polycrystalline materials, paving the way for fully integrative

3D in situ mineralogy.

5. Conclusions

The application of synchrotron 3DXRD/HEDM techniques to

complex, polyphase materials, especially natural rock samples,

represents a significant challenge. We have presented here a

strategy to address these complexities, based on two key

principles. First, using the geometric properties of hkl, hkl

Friedel pairs, both the precise orientation and the origin of

individual scattering vectors in a s3DXRD dataset can be

recovered, allowing per-pixel fitting of crystallographic prop-

erties, in a manner that is independent of grain definitions. We

have introduced a new algorithm which allows efficient iden-

tification of Friedel pairs in datasets containing up to 108

peaks, with relatively good completeness (70% to 80% of peak

match). Second, overlapping 2� conflicts between different

phases, which are particularly prominent in geological samples

and hamper accurate phase segmentation, are better resolved

on a per-pixel basis rather than at the whole sample scale.

Using an appropriate decision criterion for each pixel, accu-

rate phase maps can be obtained, even when large 2� conflicts

exist between different phases.

The application of the s3DXRD technique on fractured

granite samples, a representative complex geological material,

demonstrates the effectiveness of the method in addressing

the above-mentioned challenges. Despite the inherent

complexities of multi-phase materials and highly deformed

structures, the s3DXRD technique offers robust phase and

orientation mapping capabilities, providing valuable insights

into the internal structure and behavior of such materials.

However, these capabilities reach their limits when dealing

with particularly complex phases such as feldspar minerals,

highlighting the need for further improvement and develop-

ment. While achieving complete and accurate segmentation of

these phases seems within reach, accurately fitting their lattice

orientation and strain remains a challenge.
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