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The direct resynthesis of precursor from spent lithium-ion batteries (LIBs) via

co-precipitation is a crucial step in closed-loop cathode recycling systems.

However, design and operation strategies for producing high-purity precursors

have not been comprehensively explored or optimized. Herein, we propose the

optimization of co-precipitation during the recovery of spent LIBs to achieve

impurity-free precursor resynthesis. By incorporating the thermodynamic

equilibrium model of the leaching solution of spent LIBs into a population

balance equation (PBE) model, we identified the operating ranges that

prevented the formation of impurities. Bayesian optimization was employed

within the screened operating ranges to determine the optimal operating

conditions for minimizing both operation time and maximum particle size. This

optimization was performed for both unseeded batch and semi-batch systems.

The results demonstrate that the selection of an optimal semi-batch operation

can reduce the operation time by 23.33% and increase the particle size by

54.75%, owing to the high nucleation and particle growth rate during the initial

time step. By employing an optimization approach based on the PBE model, this

study provides detailed operational guidelines for batch and semi-batch co-

precipitation, enabling the production of high-purity precursor materials from

spent LIBs, while minimizing both operating time and maximum particle size.

1. Introduction

The ongoing energy transition towards renewable power is

driving the expansion of the rechargeable battery market.

Specifically, lithium-ion batteries (LIBs) have experienced

remarkable expansion in the global battery market, surging

from 12.9 billion USD in 2012 to 52 billion USD by 2021, with

projections towards a further increase to 77.42 billion USD by

2024 (Asif & Singh, 2017). Among LIBs, LiNixMnyCo1� x� yO2

(NCM) batteries, which currently occupy 69% of the global

production market, are expected to surpass 80% (Curry,

2017). This dominance is attributed to the superior power

rating and energy density compared with LiFePO4 batteries.

With the dramatic expansion of NCM production, the accu-

mulation of spent LIB is estimated to range from 120000 to

170000 tons, solely within the electric vehicle sector (Nshizir-

ungu et al., 2021). Given the limited reserves of NCM sources,

recycling of the main metals, such as Li, Co, Mn and Ni, has
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emerged as the sole solution for achieving a closed-loop

battery manufacturing cycle.

The spent NCM battery recycling industry currently relies

on hydrometallurgy and pyrometallurgy processes with annual

recycling capacity ranging from 1000 to 100000 tons of spent

LIB (Baum et al., 2022). In pyrometallurgy, a battery under-

goes thermal decomposition and reductive roasting to convert

it into a metal alloy. Owing to the flexibility of feed and

availability of existing facilities, pyrometallurgical processes

are commonly employed in large-scale recycling of over

20000 tons of spent LIB per year (Baum et al., 2022). Owing to

the formation of alloys, the recovery of valuable metals,

including cobalt, nickel and lithium, of high purity is impos-

sible (Makuza et al., 2021; Jeon, Kim, Eun et al., 2022). In

contrast, valuable metals, including cobalt, nickel, manganese

and lithium, can be selectively extracted with high purities via

hydrometallurgy (Yao et al., 2018). After chemical leaching of

cathodes, pH adjustment or liquid–liquid extraction are

conducted to selectively extract metals as salts (Vasilyev et al.,

2019; Fan et al., 2021; Kim, Kim et al., 2023; Liang et al., 2024;

Li et al., 2021). Due to the mild operating conditions (80 �C,

1 bar) and high recovery efficiency, most research and indus-

trial efforts have been directed towards advancing the

hydrometallurgy processes, by optimizing leaching agents and

chemical precipitants (Jung et al., 2021; Jeon, Kim, Kim et al.,

2022). Despite the advantages of the selective extraction of

valuable metals, secondary conversion processes are essential

for regenerating cathodes for new batteries (Wan et al., 2022).

This limitation hinders the direct application of the process in

closed-loop battery manufacturing cycles.

To address this issue, recent experimental studies have

proposed the direct regeneration of NixCoyMnz(OH)2

precursors from leaching solutions (Fang et al., 2022; Lee et al.,

2023; Yang et al., 2018; Yu et al., 2023). Typically, ammonia is

injected into leaching solutions as a complexing agent to

obtain metal–ammonia complexes. Under basic conditions

(pH > 10), these complexes prevent undesired precipitation

reactions (e.g. metal hydroxides) (van Bommel & Dahn, 2009)

and release metal cations to form spherical hydroxide parti-

cles:

M2þ þ nNH3 ! ½MðNH3Þn�
2þ
; ð1Þ

½MðNH3Þn�
2þ
þ 2OH� ! MðOHÞ2 þ nNH3: ð2Þ

Fang et al. (2022) added NH3·H2O (0.4 mol L� 1) to the

reactor after adjusting the pH to 8.0, to trigger co-precipita-

tion. Following a 12 h batch operation, a spherical

Ni0.5Co0.2Mn0.3(OH)2 precursor with a diameter of 10–15 mm

was successfully regenerated from spent LIBs. Park et al.

(2019) investigated the impact of Fe as an impurity in regen-

erated precursors to test the feasibility of the direct resynth-

esis of precursors from spent LIBs. Co-precipitation was

performed in a simulated leaching liquor with varying Fe

compositions ranging from 0 to 1.0%. The gradual increase in

the Fe concentration of the leaching solution resulted in the

deterioration of structural perfection, ultimately leading to a

degradation in the capacity and Coulombic efficiency of

regenerated cathodes. Consequently, for cathodes derived

from a 1% Fe leaching solution, the discharge capacity and

Coulombic efficiency were 3.2 and 2.5% lower than those of

cathodes obtained from pure leaching solutions, respectively.

Previous experimental studies have successfully proved the

feasibility of the direct resynthesis of precursors from spent

LIBs. However, industrial application of the resynthesis

concept still faces challenges in process operation. First,

impurities, including Al, Fe and Cu ions, should be filtered to

ensure the yield and quality of precursors. Impurity ions are

commonly precipitated by increasing the pH, but this also

results in the precipitation of the target metals, such as Ni, Co

and Mn, owing to the overlapping pH range of metal hydro-

xide precipitation (Song & Zhao, 2018). The loss of the target

metals in this step increases the operating cost because addi-

tion of pure metal sulfates (NiSO4, CoSO4 and MnSO4) would

be required in the co-precipitation process for the crystalliza-

tion of the target precursors, including Ni0.5Co0.2Mn0.3(OH)2

and Ni0.3Co0.3Mn0.3(OH)2 (Feng et al., 2018). Additionally,

there is still the chance of undesired precipitation from the

other ions in the leaching solutions, including SO4
2� , Na+ and

NH4
+, even after impurity removal. Second, the dynamics of

crystallization (e.g. nuclei formation and secondary particle

growth) in the co-precipitation steps are strongly affected by

the operating conditions and complex equilibrium of the other

ions in the leaching solution. The ammonia injection,

temperature and NaOH addition (for pH control) should be

carefully controlled to minimize the particle size under

minimum operation time, while constraining undesired side

reactions.

To address the aforementioned challenges, reliable

modeling is essential to capture the dynamics of particle size

evolution and reduce the need for extensive experiment. Once

the model is established, feasible operating conditions can be

identified, allowing for operation optimization. However,

unlike conventional precursor synthesis, resynthesis from the

spent LIB introduces modeling complexities due to the

presence of impurity ions. During crystallization, complex

equilibria between metal ions, the chelating agent and impu-

rities affect the kinetics of nucleation and particle growth. The

intricate interaction between kinetics and thermodynamic

equilibria makes it difficult to track particle size evolution and

complicates operation optimization while preventing impurity

formation.

To overcome these issues, we developed a population

balance equation (PBE) model of crystallization, integrated

with the thermodynamic equilibrium model of complex

equilibria, salts and ion dissociation within the leaching solu-

tions. Using the developed model, we first focused on deter-

mining the feasible operating conditions that constrain the

precipitation of salts other than the precursors. Under these

feasible conditions, the optimization aimed to minimize both

operation time and particle size distribution. Smaller and

narrower particle size distributions are typically more desir-

able, as they reduce Li-ion transport distances and increase

the cathode’s specific surface area, leading to improved

charge/discharge rates and overall battery performance. Thus,
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the operating trajectories were optimized to achieve shorter

operation times and optimal particle size distribution.

The high nonlinearity of the PBE model makes it impos-

sible to represent the feasible domain of operating conditions

using linear hyperplanes. This complexity significantly

increases the search time for feasible operating conditions and

leads to higher computational costs during the optimization

procedure. To address this limitation, this study employed

surrogate modeling using a deep neural network (DNN).

After the DNN has been trained on a dataset of operating

conditions and impurity formation, the pre-trained model

predicts the probability of a given operating condition

belonging to the feasible domain. This allows the optimizer to

pre-screen operating conditions without requiring full PBE

simulations, thus reducing both computation time and the

search space for feasible solutions.

Additionally, in terms of operation strategies, both batch

and semi-batch modes offer distinct advantages and limita-

tions. Batch operation is easy to control but can lead to longer

operational times due to decreasing supersaturation, espe-

cially with fixed feed concentrations. Semi-batch operation

allows high supersaturation to be sustained by adjusting

chelating agents or temperature but increases the risk of

impurity formation and unfavorable increase of particle size,

which can affect NCM cathode performance. As this is the first

study to model and optimize precursor resynthesis, both

unseeded batch and semi-batch modes were explored, with a

performance comparison conducted to highlight the strengths

of each mode. The novelty and major contributions of this

study are as follows:

(i) A thermodynamic equilibrium model of the leaching

solution is used to screen the feasible operation range of the

resynthesis process. The formation of numerous impurities

helps determine the reliable operating conditions for

obtaining high-purity precursors from a leaching solution. By

integrating the equilibrium model with the PBE model,

simulations can be conducted to track the evolution of the

particle size distribution (PSD) while considering the intricate

equilibria of ions during leaching.

(ii) Optimization can provide the operating trajectories of

chelating agent concentration, flow rate and temperature, for

minimizing the operating time and particle size. The optimal

trajectory driven by this model-based approach provides

detailed guidelines regarding the operation of the resynthe-

sized precursor. Additionally, by pre-screening the infeasible

operational domains, the optimal trajectory can ensure the

production of a theoretically pure precursor in the presence of

impurity ions.

(iii) Two different operation options (batch and semi-batch)

were optimized within the feasible operating domains. A

comparison of the optimal PBE dynamics and performances

of different options can help in selecting the appropriate

operation to achieve the target performance (e.g. reducing the

operation time and minimizing the particle size).

2. Mathematical modeling

Fig. 1 illustrates the process of resynthesizing the NCM

precursor from the cathode of a spent LIB. Initially, the spent

NCM cathode undergoes sulfuric leaching for conversion into

a metal slurry. Prior to precursor resynthesis, metal impurities

in the slurry, such as Al3+ and Cu2+, are filtered out as metal

hydroxides at pH values above 9. Subsequently, the purified

slurry is fed into a reactor with aqueous NH4OH (aq) for co-

precipitation. Controlling the NH4OH (aq) feed facilitates the

formation of metal–ammonium complexes, while preventing

the formation of metal hydroxides. These metal complexes co-

precipitate above the equilibrium concentration, forming

NCM precursor particles. Unlike conventional precursor

synthesis using pure metal sulfates, co-precipitation from

leaching solutions requires consideration of the equilibrium

shifts among impurity ions during PSD evolution.

Thus, in this section, a PBE model of co-precipitation,

incorporating the thermodynamic equilibria of metal ions and
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Figure 1
Schematic diagram of the resynthesis of NCM precursors from spent NCM cathodes.



impurities (e.g. Na+ and SO4
2� ) in leaching solutions, is

developed. As detailed in Section 2.1, the PBE model governs

the PSD evolution through the nucleation and 1D particle

growth rates. By integrating the PBE model with the ther-

modynamic equilibria of the leaching solutions, the mass and

energy balances in the reactor were iteratively solved in

discretized time steps, as detailed in Section 2.2. The kinetic

parameters of the PBE model were estimated using experi-

mental data, as explained in Section 2.3. Additionally, the

operating conditions affect the formation of impurities during

co-precipitation. Hence, a feasible operating domain to ensure

impurity-free precursor production is identified in Section 2.4.

Furthermore, an additional data-driven classifier model was

trained to selectively screen feasible operating conditions. To

optimize the operating trajectory, the trained model was

utilized to filter out feasible operating conditions. To simplify

the problem, the molar composition of the leaching solution

per kilogram of the NCM cathode material is utilized in

Section 2.4, and further optimization is presented in Section 3.

Details regarding the operating conditions of the leaching

process and composition of the leaching solution are provided

in Section S1 of the supporting information.

2.1. Population balance model

Under the assumption of semi-batch and unseeded opera-

tions, the PBE describing the evolution of the population

density under nucleation and particle growth is given by

equation (3) (Rawlings et al., 1993):

@Vf L; tð Þ

@t
þ V

@ G Lð Þf L; tð Þ½ �

@L
¼ VB� L � L0ð Þ; ð3Þ

where V is the slurry volume, f is the population density of the

particles, L is the particle size, G is the particle growth rate, B

is the nucleation rate and �(L) is the Dirac delta function. The

Dirac delta function is used for establishing spatial boundary

conditions, signifying the occurrence of nucleation at the

minimum nucleus size, L0.

The particle growth rate depends on the temperature,

particle size and supersaturation ratio, and it can be expressed

by equation (4):

G Lð Þ ¼ k0 exp � Eg=RT
� �

1þ k1Lð Þ
k2 S � 1ð Þ

�
; ð4Þ

where k0, Eg, k1, k2 and � are parameters estimated from

experimental data. S is the supersaturation ratio, which is the

driving force of co-precipitation given by (Mersmann, 2001)

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð½NiðNH3Þn�
2þ
Þ

0:3
ð½MnðNH3Þn�

2þ
Þ

0:3
ð½CoðNH3Þn�

2þ
Þ

0:3
½OH� �

2

Ksp

3

s

ð5Þ

where [M(NH3)n]2+ is the total concentration of the metal–

ammonia complex (M is Ni, Mn or Co) and Ksp is the solubility

product of the metal hydroxides.

The nucleation rate can be expressed as follows:

B ¼ kb S � 1ð Þ
�
; ð6Þ

where kb and � are parameters estimated from experimental

data.

Under the batch and semi-batch operations, the mass

balance of the solute is defined as follows (Hu et al., 2004):

Batch:
dciV

dt
¼ � 3�ckvV

Z1

0

fL2G dL;

Semi-batch:
dciV

dt
¼ Qin tð Þcin tð Þ � 3�ckvV

Z1

0

fL2G dL;

ð7Þ

where ci is the solute concentration in the slurry, Qin and cin

are the flow rate and concentration, respectively, of the input

stream, and �c and kv are the precursor density and volumetric

shape factor, respectively.

The energy balance of the slurry is defined as follows:

Batch: �cpV
dT

dt
¼ � 3�Hc�ckvV

Z1

0

fL2G dL � Hext;

Semi-batch: �cpV
dT

dt
¼
X

k

Qk tð ÞHk tð Þ

� 3�Hc�ckvV

Z1

0

fL2G dL � Hext;

ð8Þ

where � and cp are the density and specific heat of the slurry,

respectively; Qk and Hk are the flow rate and enthalpy of the

input stream, respectively; �Hc is the heat of co-precipitation;

and Hext is the heat removed by the cooling system.

2.2. Model solution with thermodynamic equilibrium

The evolution of the PSD should be trackable for model

validation and operation optimization. Thus, instead of using

moment methods (Luo et al., 2017; Hulburt & Katz, 1964;

Brock & Oates, 1987), the solution technique reported by Hu

et al. (2004) was employed to simulate the PSD evolution in

each time step. In the discretized PBE [equation (3)], the

population balance and particle growth can be converted into

a set of algebraic equations, simplifying the process compared

with solving complex partial differential equations. Formula-

tion was performed only in batch operations with a constant

slurry volume. However, the experimental data were collected

during a semi-batch operation (Feng et al., 2018). Thus, in this

study, a set of algebraic solutions was reformulated as a semi-

batch operation for parameter fitting. Details of the refor-

mulation can be found in Section S2 of the supporting infor-

mation.

Consequently, the population density of the precursor is

expressed as follows:

f ðLjþ1;iÞ �
f ðLj;i� 1ÞVj

1þ @G
@L

�
�

L¼Lj;i� 1

� �
Vjþ1�t

; ð9Þ
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where the first index j denotes the time interval, the second

index i indicates the series number of particle size points, and

Lj,i and Vj are the particle size points and slurry volume at time

interval j, respectively.

Lj+1,i is given by the following equation:

Ljþ1;i � GðLj;iÞ�t þ Lj;i: ð10Þ

To update the PSD according to equations (9) and (10), the

supersaturation ratio [equation (5)] should first be estimated

in the equilibrium state of the leaching solution system. In

contrast to conventional precursor synthesis systems based on

metal sulfates, complex equilibria involving impurities present

challenges for this process. The concentration of the metal–

ammonia complex [M(NH3)n]2+ [equation (5)] can be affected

by the side reactions of metal ions with impurities, which

ultimately leads to the depletion of metal resources for

precursor production. Additionally, under various operating

conditions, there is a possibility of undesired generation of

impurities. To address these complexities in the thermo-

dynamic equilibrium modeling of the system, a Pitzer–Debye–

Huckel model (Chang & Lin, 2019) based equilibrium solver

within the commercial process simulator Aspen Plus V12 (Al-

Malah, 2022) was used. This solver considers the metal–

ammonia complex equilibria and all potential side reactions

involving ionic equilibria and salt formation. Further details

on the reactions are provided in the supporting information

(Section S3).

The overall simulation algorithm for the PBE model is

shown in Fig. 2. The operating conditions including the

temperature, concentration and flow rate of NH4OH (aq) in

the thermodynamic model were updated according to the

molar composition of the leaching solution. A process simu-

lator computed the mass and energy balance of the thermo-

dynamic equilibrium in the leaching solution. To ensure

convergence, a maximum of 500 iterations were considered

with a relative error tolerance of 0.01 for computing the mass

and energy balance in the simulator. If the equilibrium

simulation failed to converge, the PBE simulation was termi-

nated. Otherwise, the supersaturation ratio (S) and pH at

equilibrium were calculated. To maintain the pH at the target

value (pHtarget), the input volume of NaOH (aq) is iteratively

updated using parameter � until the current pH meets the

error criteria of pHtarget. Here, for faster convergence, an �

value of 5 is used, while allowing for an errorpH of 0.05. Once

the pH condition is satisfied, the PSD is updated using a

discretized PBE model [equations (9) and (10)] at the jth time

step with an interval of �t. In this study, a time step of 1 min is

chosen. On the basis of the updated PSD, the process simu-

lator solved the mass and energy balances of the system

[equations (7) and (8)] at thermodynamic equilibrium. Finally,

depending on the updated molar concentration of the system,

the preceding calculation steps were iteratively performed

either until the end of the simulation time or until the S value

was less than 1, while ensuring the mass and energy balances

of the process simulator.

2.3. Parameter estimation

To estimate the kinetic parameters in the PBE model, in situ

data of the median diameter of the secondary particles of the

NCM 111 precursor [Ni1/3Mn1/3Co1/3(OH)2] at a pH of 10.6

were used (Feng et al., 2018). Additionally, the maximum
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Figure 2
Simulation framework of the PBE model integrated with a thermodynamic model.



particle size of the secondary particles after co-precipitation

and concentration of the precursor was used for parameter

estimation. The following experimental setups were consid-

ered as the operating conditions of the simulation: 1 bar and

60 �C, with flow rates of 20 mL h� 1 of 2.0 M MSO4 (aq) and

15 mL h� 1 of 5.0 M NH3 (aq); additionally, a 4.0 M NaOH

solution was added to maintain a pH of 10.6, and a semi-batch

operation was conducted over a duration of 180 min. Here,

seven unknown parameters, namely k0, Eg, k1, k2, �, kb and �,

are estimated using three different types of experimental data

(median diameter, precursor concentration and maximum

particle size). The PBE model is highly nonlinear and has a

high computational cost owing to its integration with a ther-

modynamic solver for the calculation of thermodynamic

equilibrium. Thus, Bayesian optimization (BO) (Martinez-

Cantin, 2014), which demonstrates superior performance

within resource limitations, was chosen over an evolutionary

algorithm. BO operates in a feedback loop of two main steps:

surrogate modeling of targeted objective functions, and

selecting the next searching point via an acquisition function.

The surrogate modeling is commonly built upon a Gaussian

process (GP) with posterior mean and variance based on

previously searched points. The acquisition function then uses

the GP to identify the next optimal point for exploration,

balancing exploration of uncertainty and exploitation of

searched regions. This reduces the number of function

evaluations required to find an optimal solution. In contrast,

evolutionary algorithms typically require a large number of

evaluations to search the entire space, as they rely on popu-

lation-based exploration methods without incorporating

probabilistic knowledge of the search space. As a result,

evolutionary algorithms tend to be less efficient, especially in

high-dimensional or computationally expensive problems.

BO’s ability to quantify uncertainty makes it especially well

suited for cases like this, where each function evaluation is

computationally costly and the search space is highly

nonlinear (Kim, Han et al., 2023).

Given the parameter ranges listed in Table 1, BO was

implemented to minimize the error in the simulation results,

and it is formulated as follows:

�� ¼ argmin
�2D

"

w1

1

n

Xn

i¼1

D
exp
50;i � Dsim

50;i

� �2
þw2 conexp � consim

�
�

�
�

þ w3 Dexp
max � Dsim

max

�
�

�
�

#

; ð11Þ

where � and D are the parameter and its domain, respectively;

the first term is the mean squared error (MSE) of the median

particle size between experiment (D
exp
50;i) and simulation

(Dsim
50;i), the second term is the error of the precursor concen-

tration after co-precipitation, and the third term is the

maximum particle size error after co-precipitation. All these

terms are combined into a single objective function using w1,

w2 and w3.

Owing to the different scales of the experimental data, w1,

w2 and w3 in equation (11) were set to 1, 1000 and 1, respec-

tively. In this study, BO employed the upper confidence bound

(UCB) acquisition function (Kaufmann et al., 2012), denoted

as a(�; �) = �(�) + ��(�), where � is set to 2.5. The choice of �

emphasizes the exploration of parameter regions in light of

the highly nonlinear nature of the PBE model.

2.4. Feasible operating domain

In the presence of various ions, such as Cu2+, Al2+, Fe2+, Na+

and SO4
2� , along with the target metal ions, there are

numerous chances for the formation of impurities, including

metal hydroxides [e.g. Al(OH)3, Cu(OH)2 and Fe(OH)2] and

metal sulfates (e.g. CoSO4, MnSO4, NiSO4, Al2SO4,

Na3SO4OH and Na2SO4) in the leaching solution under basic

conditions. By targeting the pH required for the precipitation

of impurities into metal hydroxides, impurities such as Cu2+

and Al2+ can be screened out without the loss of target metal

ions, particularly at a pH of approximately 10. However,

during the co-precipitation of the metal slurry, impurity salts

can persist owing to the presence of Na+ and SO4
2� in

conjunction with the chelating agent (NH4
+), as governed by

the complex equilibria listed in the supporting information

(Table S2). Thus, the selection of operating conditions,

including the concentration and flow rate of the chelating

agent and operating temperature of the NCM precursor

resynthesis process, not only affects the dynamics of the PSD

evolution but also influences the formation of impurity salts.

Thus, in this study, prior to optimizing the operating trajec-

tories, we identified the feasible domain of the operating

conditions using the thermodynamic equilibrium model

described in Section 2.2, to ensure the absence of impurities.

To simplify this problem, the pH of the leaching solution was

maintained at 10.6. The molar composition of the cathode

material and operating conditions of the leaching process can

be found in Section S1 of the supporting information.

To identify the feasible domains, the operating conditions

are firstly sampled from the following ranges with 8000

samples. NH4(OH) (aq) concentration: 0–10 M; NH4OH (aq)

flow rate ratio multiplied by leaching volume: 0–10; and co-

precipitation temperature: 25–90 �C (Bommel & Andrew,

2009; Feng et al., 2018; Barai et al., 2019). Latin hypercube

sampling (LHS) [equation (12)] (Loh, 1996), which divides

each range into equivalent probabilities, was chosen for

sampling to ensure a broad investigation of the equivalent

operating domain. For a given leaching solution under the

sampled conditions, the required volume of 4 M NaOH (aq)

for a pH of 10.6 was calculated using the thermodynamic
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Table 1
Kinetics parameters and ranges for parameter estimation.

Parameter Range Units

Eg [10000–70000] J mol� 1

k0 [0–2000] m min� 1

k1 [0–1000] m� 1

k2 [0–10] Dimensionless
kb [10000–200000] Particle number (kg� 1 min� 1)
� [0–2] Dimensionless
� [0–2] Dimensionless



equilibrium models, and the model finally calculated the moles

of solid impurities:

x
j
LHS ¼

1

n
�j 1ð Þ � uj 1ð Þ; �j 2ð Þ � uj 2ð Þ; . . . ; �j nð Þ � uj nð Þ
� �

ð12Þ

where x
j
LHS represents the samples for dimension j, �j is a

random permutation of indices, uj is an independent and

identically distributed sample of the uniform distribution, and

n is the number of samples.

The nonlinearity of thermodynamic equilibrium makes

representing a feasible domain using linear hyperplanes

impossible. This complexity poses a challenge in screening out

the infeasible operating domain during the optimization of the

operating trajectories of crystallization. To address this

limitation, a DNN was employed to classify whether a given

operating condition fell within the feasible domain. In the

classifier, the inputs comprised the operating conditions,

including the concentration and flow rate of NH4(OH) (aq)

and temperature. The output was the probability of belonging

to a feasible domain. For training and validation, the 8000

samples were randomly divided into training (80%) and

validation (20%) sets. The network architecture was

constructed by stacking five fully connected layers with 128,

64, 32, 16 and four hidden nodes, employing leaky-ReLU

activation. In the output layer, a sigmoid function was used as

the activation function. Training was conducted to minimize

the binary cross-entropy (BCE) loss [Lðy; ŷÞ]. For training, we

used an adaptive moment-estimation optimizer with a learning

rate of 0.0001. Training and validation of the DNN were

performed using PyTorch version 2.1.1 (Paszke et al., 2019).

L y; ŷð Þ ¼ �
1

N

XN

i¼1

yi log ŷið Þ þ 1 � yið Þ log 1 � ŷið Þ
� �

; ð13Þ

where yi represents the label of the ith sampled operating

condition (zero for infeasible and one for feasible), ŷi repre-

sents the predicted probability of belonging to a feasible

domain and N represents the batch size of the training dataset.

3. Problem formulation

The co-precipitation of the leaching solution involves several

factors, including PSD, metal recovery from the leaching

solution and operation time. To minimize the operation time

with a certain level of metal recovery, maintaining a high

supersaturation ratio by operating at the upper limits of the

feasible domain may seem reasonable owing to the high rates

of nuclei formation and particle growth rate, represented in

equations (4)–(6). However, owing to the rapid growth of

particles and consistent formation of large nuclei, a narrow

PSD is unachievable. A large particle size increases the

operating time of the lithiation process and degrades the

electrode performance (Zhang et al., 2022). Consequently,

relying solely on a high supersaturation ratio is impractical for

controlling the properties of the PSD.

To effectively optimize both the operational time and PSD,

the operating conditions should be adjusted in accordance

with the evolution of the PSD. Optimal trajectories of oper-

ating conditions exist to minimize the operation time while

satisfying the specific criteria for the required PSD. In this

study, the simulation framework outlined in Section 2 was

employed to optimize the operating conditions. Additionally,

the selection of the operation mode can affect the operational

time, metal recovery and PSD, whether using batch or semi-

batch operation. Consequently, optimization was carried out

separately for both batch and semi-batch operations.

3.1. Batch operation optimization

For optimization, three operating conditions were consid-

ered: temperature of co-precipitation, injection concentration

and volume of the chelating agent, NH4OH (aq). In batch

operations, the chelating agent is initially fed into the leaching

solution at a given concentration and volume, and co-preci-

pitation proceeds while the given temperature is maintained.

The optimization aims to minimize both the operation time

required for the complete recovery of metal ions from the

NCM precursor and the PSD of the final product. In the

dynamics of the NCM precursor, it is noted that the maximum

particle size is positively associated with the coefficient of

variation in the PSD, as referenced in Section S4 of the

supporting information. Thus, rather than adopting a multi-

objective approach, a single objective function was formulated

through the summation of operational time (min) and

maximum particle size (mm). This ensured the convergence of

the optimization in the presence of high-dimensional decision

variables and the high nonlinearity of the PBE model. The

operating conditions were constrained to the feasible domain,

to facilitate the convergence of the PBE simulation. In this

study, a penalty method was employed to address constraint

violations (Freund, 2004).

Therefore, the operating condition optimization problem is

formulated as follows:

min
T;c;V

t þ dmax þ p1 þ p2

� �
; ð14Þ

p1 ¼
0; if T; c;V 2 Dfeasible;

pinfeas; otherwise;

�

ð15Þ

p2 ¼
0; if errorPBE � 0:01;

perror; otherwise;

�

ð16Þ

where t is the co-precipitation time; dmax is the maximum

particle size after co-precipitation; T, c and V are the

temperature, concentration and volume flow rate of NH4OH

(aq), respectively; Dfeasible is the feasible domain; errorPBE is

the mass and energy balance error of the PBE model; and

pinfeas and perror are the penalty values.

BO was employed with the UCB acquisition function, as

described for parameter estimation in Section 2.3. To ensure

that simulations are conducted only within the feasible

domain (Dfeasible), the data-driven classifier model trained in

Section 2.4 was utilized to filter out the operating conditions
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during optimization. Thus, the new operating conditions

obtained via the optimizer were fed into the classifier. If the

operating condition is determined to fall within the infeasible

domain, then the penalty term (pinfeas) is returned to the

optimizer without conducting a PBE simulation, prompting

the optimizer to search for the next operating condition. This

approach guarantees that the BO dynamically explores only

the feasible operating conditions throughout the optimization

loop. Additionally, to address the PBE simulation conver-

gence issues, an additional penalty term was included in the

objective function. If the PBE simulation terminates because

of mass or energy balance errors in the process simulator (Fig.

2), then the penalty term perror is added to the objective

function. By imposing high positive values of pinfeas (1000) and

perror (100), the optimizer searches for the optimal operating

conditions that ensure impurity-free production of the NCM

precursor, while achieving PBE simulation convergence.

3.2. Semi-batch operation optimization

In a semi-batch operation, additional chelating agent

injection during co-precipitation is permitted with tempera-

ture control. Beyond the selection of operating conditions,

optimization of the operating trajectory can be effective in

controlling the particle growth and nucleation rate by regu-

lating the supersaturation ratio and temperature. Herein, the

complexity of optimization was reduced by discretizing the

operating trajectory into five points corresponding to metal

recovery percentages ranging from 0% to 100% with intervals

of 20%. The operating conditions considered were the

temperature, concentration and volume flow rate of NH4OH

(aq). Consequently, with the three types of operating condi-

tions, each comprising five points, 15 decision variables were

considered for optimization. The objectives and constraints

were the same as those of the batch operation optimization

described in Section 3.1.

The operating trajectory optimization problem is formu-

lated as follows:

min
Ti;ci;Vi

X5

i¼1

ti þ dmax þ p1 þ p2

" #

; ð17Þ

where i denotes the discretized interval point of metal

recovery; ti is the co-precipitation time at the ith metal

recovery point; dmax is the maximum particle size after co-

precipitation; Ti, ci and Vi are the temperature, concentration

and volume flow rate, respectively, of NH4OH (aq) at the ith

metal recovery point; and p1 and p2 are the penalty functions,

as described in equations (15) and (16), respectively.

For equivalent comparison with the batch operation opti-

mization, the semi-batch operation optimization follows the

same optimization procedure with identical penalty values for

constraint handling, as described in Section 3.1.

4. Results and discussion

In Section 4.1, the results of the parameter estimation are

presented through a comparison between the PBE simulation

and experimental results, focusing on the in situ measurement

data of the median diameter, maximum particle size and

concentration of the particles after co-precipitation. Section

4.2 details the identification of the feasible domain and

training results of the operating condition classifier. Finally, in

Section 4.3, operating optimization is conducted using the

PBE model integrated with the trained classifier. This section

compares the results obtained from two different operating

modes: batch and semi-batch.

4.1. Parameter estimation result

For parameter estimation, BO was implemented to mini-

mize the summation of three different errors [equation (11)]:
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Figure 3
PBE model simulation under optimal parameters: (a) median particle size
evolution, (b) concentration of precursor and (c) PSD evolution.



median particle size, maximum particle size and concentration

of the precursor after co-precipitation. The parameters

obtained after 1000 iterations of the BO step are listed in

Table 2. With an MSE of 9.85, the median particle size

evolution was in reasonable agreement with the experimental

data, as depicted in Fig. 3(a). Furthermore, the precursor

concentration and maximum particle size at the culmination of

co-precipitation were calculated to be 91.8 mM and 63 mm,

respectively, while the corresponding experimental data were

measured to be 85 mM and 50 mm, respectively [Figs. 3(b),

3(c)]. The PSD after co-precipitation did not perfectly align

with the experimental data, owing to the limitations of the 1D

PBE model. To avoid the precise kinetics of the PSD evolu-

tion, high-fidelity model development supported by in situ

experiments is necessary. However, this entails a significant

increase in computational costs, rendering it impractical for

subsequent operational optimization. Hence, the current

results regarding the precursor concentration indicate that the

fitted parameters offer a reasonable mass balance for co-

precipitation, accompanied by a low MSE error during the

evolution of the PSD. Operating optimization was conducted

using the PBE model with the fitted parameters, and the

corresponding results are described in Section 4.3.

4.2. Identification of feasible operating domain

Fig. 4 presents the calculated results of the thermodynamic

equilibrium for the sampled operating conditions described in

Section 2.4. The scattered points represent the operating

conditions associated with the formation of the solid impurities.
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Figure 4
Infeasible operating domain for resynthesis from the leaching solution with different types of impurity formations. Type 1: CoSO4·6H2O and Na2SO4;
type 2: Na2SO4; type 3: (NH4)2SO4 and CoSO4·6H2O; type 4: (NH4)2SO4; type 5: CoSO4 and Na2SO4; type 6: (NH4)2SO4 and CoSO4.

Table 2
Parameter fitting results.

Parameter Value

Eg 61041.97

k0 588.51
k1 161.65
k2 1.26
kb 176404.20
� 0.38
� 1.36



Within the infeasible domain, distinct types of impurity

formation become apparent with the formation of the

following solid impurities: CoSO4, CoSO4·6H2O, Na2SO4 and

(NH4)2SO4. Due to the predominant concentration of Na+ and

SO4
2� , the formation of Na2SO4 was widely distributed in the

infeasible domain. Furthermore, the high equilibrium con-

stants of CoSO4 and CoSO4·6H2O contributed to unavoidable

Co2+ losses throughout the entire infeasible domain.

Increasing both the concentration and volume of aqueous

NH4(OH) led to the formation of (NH4)2SO4. During co-

precipitation, this solid formation not only degrades the purity

of the NCM precursor but also hinders the formation of

metal–ammonia complexes, limiting rapid nucleation and

particle growth owing to the low supersaturation ratio.

The DNN model was trained using 8000 samples to repre-

sent the nonlinearity of the identified infeasible domains.

Instead of predicting the types and quantities of impurities

produced, this study employed a model to classify whether the

given operating conditions fall within an infeasible domain.

Thus, the BCE loss for both training and validation sets,

plotted in Fig. 5, shows sharp decreases from 0.73 and 0.75,

respectively, to 0.01. The low dimensionality of the input and

simplicity of the model contributed to this rapid reduction in

loss. Fig. 6 shows the confusion matrix for the trained classifier,

indicating a high accuracy of 99.75%. This level of accuracy

underscores the reliability of the classifier in filtering the

operating conditions for the co-processes, ensuring that only

the NCM precursor is produced, while excluding the forma-

tion of solid impurities. The trained model was employed to

filter out the feasible operating conditions during operating

optimization, as described in Section 3.

4.3. Operating optimization

4.3.1. Batch operation

Fig. 7 illustrates the search trajectory of the operating

conditions during BO. In the pre-trained classifier, penaliza-

tion for selecting an infeasible region aids in reducing the

number of searches in that region during optimization.

Consequently, the search points converged to the optimal

points, as listed in Table 3, after 196 functional evaluations. In

the infeasible domain, most of the searched points were

concentrated at NH4OH (aq) concentrations exceeding

6 mol L� 1. Although a high concentration can boost metal

conversion into the precursor, it is unsuitable for leaching

solutions owing to the formation of impurities. Hence, the

optimizer selected a concentration at least 51.4% lower than

the infeasible point to ensure impurity-free production. To
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Figure 5
BCE loss evolution of the solid impurity classifier.

Figure 6
Confusion matrix of the trained operating condition classifier.

Figure 7
Search space of operating conditions of batch mode via Bayesian opti-
mization.



validate the optimal case, we selected 19 base cases with

objective functions at most 20% higher than the optimal case.

The corresponding operating conditions were simulated and

compared with the optimal results in terms of PSD, recovery

and purity.

In the base cases, the operating conditions spanned the

following range: c from 1.53 to 2.97 mol L� 1, V from 214.83 to

637.77 L and T from 56.36 to 75.73 �C. Fig. 8 illustrates the co-

precipitation dynamics for both optimal and base cases.

Regarding c, the optimal case deviated by only 1.68% from the

upper limit of the base cases. A high c leads to an increased

concentration of metal–ammonium complexes, which in turn

results in a higher supersaturation ratio. However, the selec-

tion of a large V in the optimal case reduced the overall

concentration of metal complexes in the leaching solution,

resulting in an intermediate supersaturation ratio, as shown in

Fig. 8(a). Particle growth and nucleation rates were deter-

mined using the supersaturation ratio and temperature, as

described in equations (4) and (6), respectively. In the optimal

case, the T value fell within the range of the base case.

Consequently, the optimal operating conditions yielded

intermediate nucleation and particle growth rates compared

with those of the base cases, as shown in Figs. 8(b) and 8(c).

Fig. 9 illustrates the evolution of the particle size and

recovery of the precursor from the leaching solution in both

base and optimal cases. The base cases ranged from a

minimum operation time of 58 min to a maximum of 81 min,

with corresponding maximum particle size in the PSD of 35.57

and 22.26 mm, respectively, as depicted in Fig. 9(a). Conver-

sely, in the optimal case, employing intermediate nucleation

and growth rates effectively minimized both the maximum

particle size and operation time, as detailed in Table 3.

Moreover, compared with the base cases, the optimal case

yielded competitive metal recovery from the leaching solution,

achieving 78% recovery of precursors with 100% purity.

4.3.2. Semi-batch operation

In contrast to the batch operation mode, semi-batch

operation permits the additional injection of NH4OH (aq)

feed with temperature control during operation, resulting in

the optimization of 15 operating conditions. The search
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Figure 8
Comparison of the PBE dynamics of the optimal and base cases of batch
operation: (a) supersaturation ratio, (b) nucleation rate and (c) maximum
growth rate.

Table 3
Optimization results of batch operation.

Optimal operating condition Value

c (mol L� 1) 2.92

V (L) 540.16
T (�C) 64.36

Optimization results Value

t (min) 60
dmax (mm) 24.53
Metal recovery 0.78

Figure 9
Comparison of batch performance of the optimal and base cases: (a)
maximum particle size and (b) recovery of the NCM precursor.



trajectory for the average operating conditions is shown in

Fig. 10. Compared with the batch mode, the semi-batch mode

involves a higher dimension of decision variables, leading to

convergence after 528 function evaluations despite the

support of a pre-trained classifier. Notably, the infeasible

points were mostly concentrated at NH4OH (aq) concentra-

tions higher than those of both optimal and base cases. The

optimization results for the semi-batch operation are

summarized in Table 4. The optimal case was validated by

comparing its simulation results with those of 18 base cases

with objective functions at most 50% higher than those of the

optimal case.

As illustrated in Fig. 11, the operating trajectory of the 18

base cases is depicted as a bounded area, whereas the trajec-

tory of the optimal case is enclosed within this area. This

indicates that the optimization process effectively balances the

operating conditions to minimize both the operation time and

particle size within the boundaries of the base cases. For

instance, during the initial stages of co-precipitation (metal

recovery < 20%), NH4OH (aq) was injected at high concen-

tration and low volume, nearing the upper and lower bounds,

respectively, as observed in Figs. 11(a) and 11(b). However, for

metal recovery of 20–80%, the optimal case selects a high

volume with concentrations near the lower bounds. Addi-

tionally, in terms of temperature, the optimal case maintained

a high operating temperature until a metal recovery of 40%,

then shifted to a lower value during the intermediate stage

(metal recovery from 40% to 60%), as shown in Fig. 11(c).

Given the trajectories of the base and optimal cases, Fig. 12

shows the dynamics of the PBE in semi-batch operation mode.

The supersaturation ratio in the optimal case followed the

concentration trajectory, initially peaking at 27.85, before

dramatically decreasing to 3.99 owing to the injection of a low-

concentration NH4OH (aq) solution at a high volume, as

depicted in Fig. 12(a). Because the nucleation and growth

rates are determined by the temperature and supersaturation

ratio, these rates follow the trajectory of the supersaturation

ratio, as shown in Figs. 12(b) and 12(c). Sustaining high

nucleation and growth rates in the early stages facilitates the

efficient recovery of the metal ions during leaching into the
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Table 4
Optimization results of semi-batch operation.

Optimal operating trajectory Value

ci (mol L� 1) [8.99, 0.34, 1.60, 0.52, 5.64]

Vi (L) [49.95, 237.95, 217.81, 166.45, 247.82]
Ti (�C) [75.70, 76.58, 57.73, 71.52, 51.08]

Optimization results Value

t (min) 46
dmax (mm) 37.96
Metal recovery 0.80

Figure 11
Optimal operating trajectory of semi-batch mode: (a) NH4OH injection
concentration, (b) NH4OH injection volume and (c) operating
temperature.

Figure 10
Search space of the operating conditions of the semi-batch mode via
Bayesian optimization.



precursor, thereby reducing the operation time. However,

maintaining a high growth rate throughout the operation is

inefficient for particle size minimization. Thus, a significant

shift to lower rates helps restrict particle growth during the

remaining operation time.

To support the effectiveness of the optimal trajectory, Fig.

13 presents the progress of the maximum particle size and

metal recovery for both the optimal and base case trajectories.

The base cases span from a minimum operation time of 54 min

to a maximum of 88 min, with corresponding maximum

particle sizes in the PSD of 43.61 and 28.23 mm, respectively, as

depicted in Fig. 13(a). In contrast, the optimal case effectively

balanced both operation time and particle size, resulting in a

14% reduction in operation time compared with the base

cases. Although the maximum particle size was 34.47% higher

than the minimum particle size among the base cases, the

optimal case achieved a 47.78% reduction in operation time

compared with the corresponding base case. Additionally, in

comparison with the base cases, the optimal trajectory

demonstrated competitive metal recovery from the leaching

solution, achieving 80% precursor recovery with 100% purity.

4.3.3. Comparison of batch and semi-batch operation

In the preceding section, the effectiveness of the optimal

operating conditions was demonstrated through comparisons

with base cases across batch and semi-batch operation modes.

To find out which operation mode is the most feasible for the

co-precipitation of the leaching solution in terms of mini-

mizing both the particle size and operation time, this section

compares the dynamics and performance of different opera-

tion modes under optimal operating conditions.

In the batch operations, the initial supersaturation and

temperature values determine the dynamics of particle

nucleation and growth, as shown in Fig. 14(a). For instance,

selecting high initial supersaturation and temperature values

can effectively decrease the operational time but increase the

maximum particle size. Specifically, the growth rate [equation

(4)] is proportional to k2 (1.26) of the particle size term. This

implies that a large particle size at the initial time leads to fast

growth of particles owing to operating conditions, but it

cannot guarantee minimum particle size after crystallization.

Consequently, the optimizer selects intermediate points as the

optimal conditions, as listed in Table 3, resulting in lower

nucleation and growth rates than those in the semi-batch

mode, as shown in Figs. 14(b) and 14(c). In contrast, the

primary advantage of semi-batch operation is that it allows the

control of the driving forces of nucleation and particle growth

(supersaturation ratio and temperature) during co-precipitation.

Thus, to optimize the semi-batch operation, a significant

decrease in supersaturation from a high initial value to a low

value was selected, as shown in Fig. 14(a). This enabled the

attainment of a large number of particles during the early

operation time and restricted particle growth after reaching a
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Figure 12
Comparison of the PBE dynamics of the optimal and base cases of semi-
batch operation: (a) supersaturation ratio, (b) nucleation rate and (c)
maximum growth rate.

Figure 13
Comparison of the semi-batch performance of the optimal and base cases:
(a) maximum particle size and (b) recovery of the NCM precursor metal.



certain level of metal recovery. As a result, at operation times

below 18 min, the nucleation and growth rates were higher

than those of the batch mode but decreased thereafter. Fig. 15

shows the maximum particle size and metal recovery across

different operation modes. Because of its high nucleation and

growth rates, the semi-batch mode achieved 80% metal

recovery within 46 min, as shown in Fig. 15(b). In contrast, the

operation time in the batch mode was 30.43% higher than that

in the semi-batch mode. The lower nucleation and growth

rates employed in the batch operation achieved a maximum

particle size of 24.53 mm, which is 35.36% lower than that of

the semi-batch operation, as shown in Fig. 15(a). Although the

current study was conducted with limited computational

resources (1000 iterations of BO), the comparison results

clearly demonstrate that the semi-batch operation offers

advantages in terms of saving operation time. When the

maximum particle size is larger than that of the base case,

further optimization settings or algorithms can be considered

to effectively reduce the maximum size. Potential approaches

include reducing the discretized interval of the operating

trajectories and employing multi-objective BO.

5. Conclusions

This study proposes an operational optimization process for

co-precipitation during the production of NCM precursor

from spent LIB cathode materials. By employing a data-driven

classifier, 1D PBE simulations were conducted within an

impurity-free operation domain. A PBE model was integrated

with a data-driven classifier to enable the optimization of

operating trajectories and minimize both operation time and

particle size while ensuring 100% purity of the produced NCM

precursor.

Unlike conventional co-precipitation methods, utilizing

leaching solutions from spent LIB requires consideration of

the complex equilibrium between the source metal ions (Mn2+,

Co2+ and Ni2+) and impurities (e.g. Na+, SO4
2� , Al3+ and

Cu2+) during PSD evolution. To address this issue, a thermo-

dynamic equilibrium model was integrated into the numerical

solver of the 1D PBE model. This integrated model accounts

for the potential side reactions in the calculation of the

supersaturation ratio, which is the driving force for nucleation

and particle growth. Consequently, the proposed model can

effectively handle the impact of impurities during PSD

evolution, which is crucial for determining the purity of the

produced precursor. The infeasible operating conditions,

which lead to impurities [CoSO4·6H2O, Na2SO4 and (NH4)2-

SO4], were identified using the thermodynamic model of the

leaching solution. A DNN model served as the operating

condition classifier to screen the infeasible domains with a

high accuracy of 99.75%. This pre-screening reduces the

number of operating conditions to be searched for minimizing

both the operation time and maximum particle size of the final

PSD. Under the optimal operating conditions, simulation
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Figure 15
Performance comparison of the batch and semi-batch operation: (a)
maximum particle size and (b) recovery of the NCM precursor metal.

Figure 14
Comparison of the PBE dynamics of the batch and semi-batch opera-
tions: (a) supersaturation ratio, (b) nucleation rate and (c) maximum
growth rate.



results demonstrated that 100% purity of precursor could be

theoretically achieved.

Two operating modes, namely batch and semi-batch modes,

were optimized. In the batch mode, a maximum particle size of

24.53 mm with a metal recovery of 78% was achieved after

60 min of operation. Comparatively, employing the semi-batch

mode saved 23.33% of operation time with a metal recovery of

80% but resulted in a 54.75% increase in the maximum

particle size of the PSD. A comparison of the co-precipitation

performance in different operation modes not only provided

detailed operating guidelines but also assisted in the selection

of the most suitable operation mode based on different

objectives, including the reduction of the operation time and

particle size of the product.

The current exploration of NCM precursor regeneration

from spent LIBs is confined to experimental studies that lack

the optimization of operating conditions or detailed investi-

gations of performance, including impurity formation, opera-

tion time and particle distribution evolution. Addressing this

critical gap is imperative to implement recycling approaches

on an industrial scale. This study addresses this need by

offering insights into the theoretical performance of the

recycling process through modeling and optimization under

different operation modes.

Despite its major contribution, this study has limitations

that should be considered in future studies to improve the

reliability of modeling and optimization. First, regarding PBE

modeling, several kinetic factors, including multimodal

distribution, agglomeration and breakage kinetic terms, can

ensure the reliability of the simulation results. Additionally,

integrating the PBE model with the kinetic Monte Carlo

simulation would allow for the capture of more detailed

microscopic kinetics (Kim, Pahari et al., 2024; Kim, Shah et al.,

2024), particularly in relation to the multi-dimensional growth

and morphology of both primary and secondary particles. This

integration would enhance the reliability of proposed opera-

tion optimization, enabling operating conditions to more

effectively meet target microscopic properties, such as particle

shape and morphology, which are key factors influencing the

electrochemical performance of the final cathode product

(Koshika et al., 2022). However, expanding to a high-fidelity

model without experimental studies can lead to issues

regarding model convergence, overfitting and computational

cost. Thus, developing a high-fidelity model should be

accompanied by experimental studies to screen the model

components on the basis of the real-world behavior of the

NCM regeneration process. Furthermore, implementing

surrogate modeling can potentially address the computational

cost associated with a high-fidelity model during operational

optimization (Choi et al., 2023; Zheng, Zhao et al., 2022;

Zheng, Wang et al., 2022; Wu et al., 2023). Specifically, incor-

porating physical information into the model, such as using the

physics-informed neural network approach, can embed the

fundamental physical laws of crystallization directly into the

surrogate model (Wu et al., 2023). This method effectively

reduces the risk of overfitting by ensuring that the model

respects known physical behavior. Moreover, it enables more

reliable predictions of PSD and other detailed particle prop-

erties, even when computational resources are limited.

Second, regarding optimization, this study discretized the

operating trajectory and formulated single objective functions

owing to limited computation resources. Supporting profile

generation algorithms (Choong & Smith, 2004) and employing

multi-objective algorithms, such as expected hypervolume

improvement (Li et al., 2018), the non-sorting genetic algo-

rithm (Deb et al., 2002; Joo et al., 2024) and the particle swarm

algorithm (Hong et al., 2022; Hong et al., 2023), can improve

the optimization results, specifically in the semi-batch opera-

tion model. To ensure the reliability of the current study, the

proposed model and optimization must be expanded in future

studies.

6. Related literature

The following references are cited only in the supporting

information for this article: Kazakov et al. (2012), Van’t Hoff

(1884) and Zhang et al. (2018).
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