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Structure refinement with reverse Monte Carlo (RMC) is a powerful tool for

interpreting experimental diffraction data. To ensure that the under-constrained

RMC algorithm yields reasonable results, the hybrid RMC approach applies

interatomic potentials to obtain solutions that are both physically sensible and in

agreement with experiment. To expand the range of materials that can be

studied with hybrid RMC, we have implemented a new interatomic potential

constraint in RMCProfile that grants flexibility to apply potentials supported by

the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

molecular dynamics code. This includes machine learning interatomic potentials,

which provide a pathway to applying hybrid RMC to materials without currently

available interatomic potentials. To this end, we present a methodology to use

RMC to train machine learning interatomic potentials for hybrid RMC appli-

cations.

1. Introduction

The first step to understanding fundamental material struc-

ture–property relationships is understanding the structure. For

disordered materials, the X-ray and neutron total scattering

techniques simultaneously probe long- and short-range order

by considering both Bragg and diffuse scattering information

(Egami & Billinge, 2012). These reciprocal-space diffraction

measurements are often more easily interpreted in real space

by applying Fourier transformations to generate pair distri-

bution functions (PDFs), which represent histograms of

interatomic distances within a material. It is straightforward to

simulate a diffraction pattern and PDF from an atomistic

model of a structure, so it is natural to ask the inverse question

– what structure could have produced the observed diffraction

pattern? This can be answered using the reverse Monte Carlo

(RMC) method, which aims to derive an atomistic model that

fits experimental data (McGreevy & Pusztai, 1988).

Over many iterations of stochastically displacing or swap-

ping atoms, moves that improve the agreement between the

simulated and experimental diffraction patterns are accepted

to drive the model towards a structure consistent with

experimental data. This is analogous to Metropolis Monte

Carlo (MMC), except the model is driven by a �2 measure of

the fit quality instead of the system energy (Metropolis et al.,

1953). To co-refine a model against multiple experimental

measurements, the RMC �2 can include contributions from a

combination of X-ray and neutron total scattering (McGreevy

et al., 1992), Bragg diffraction (Tucker et al., 2001), extended

X-ray absorption fine structure (Krayzman et al., 2009), single-
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crystal diffuse scattering (Krayzman & Levin, 2012) and

fluctuation microscopy (Maldonis et al., 2017).

In practice, it is rarely possible to uniquely determine the

three-dimensional structure of a material from diffraction data

alone. This can be attributed to multiple factors, including

weakly scattering elements, instrument resolution limitations

(Zhang et al., 2020), under-constrained partial radial distri-

bution functions (Soper, 1996) and many-body interactions

between atoms that are not directly measurable with pair

(two-body) distribution functions (McGreevy & Howe, 1991;

Howe et al., 1993). When combined with the inherently

stochastic Monte Carlo algorithm, this uniqueness problem

can lead RMC to yield excessively disordered structures. To

prevent unphysical arrangements of atoms, additional

restraints like bond distance limits, target coordination

numbers or bond valence sums can be applied. However,

identifying certain arrangements of atoms as unphysical and

preventing them with ad hoc restraints requires chemical

intuition and RMC expertise from the practitioner.

An alternative solution is to combine the RMC and MMC

approaches into hybrid RMC (HRMC), where the energy of

the system is considered in the RMC �2 to quantitatively

discourage unphysical arrangements of atoms (Opletal et al.,

2008). Ideally, this yields structures that are both physically

sensible and in good agreement with experiment. The barrier

to using this method is that one needs a fast and accurate

interatomic potential to calculate the energy for different

arrangements of atoms. For this reason, HRMC has primarily

been applied to material systems that benefit from decades of

potential development, such as disordered carbons (Jain et al.,

2006; Farmahini & Bhatia, 2015), metallic glasses (Hwang et

al., 2012), and some oxides and carbides (Khadka et al., 2020;

Pandey et al., 2015). Likewise, RMC software packages that

currently support HRMC are oriented towards these usually

non-crystalline materials (Gereben et al., 2007; Gereben &

Pusztai, 2012; Opletal et al., 2014). For polycrystalline mate-

rials and systems without potentials compatible with existing

RMC codes, the technical barrier to leveraging HRMC has

been prohibitively high.

To enable HRMC for a wider variety of materials, we have

expanded the interatomic potential constraints in RMCProfile

(Tucker et al., 2007; Zhang et al., 2020), the most developed

RMC framework for polycrystalline materials. The new

potential constraint leverages the Large-scale Atomic/Mol-

ecular Massively Parallel Simulator (LAMMPS) code

(Thompson et al., 2022) to calculate the energy, allowing users

to utilize a wider range of interatomic potentials, including

many archived in databases like the NIST Interatomic

Potentials Repository (Hale et al., 2018; Becker et al., 2013)

and OpenKIM (Tadmor et al., 2011). For material systems

without a currently available potential, LAMMPS also

enables the use of highly accurate, material-specific machine

learning interatomic potentials (MLIPs). By encoding the

local atomic structure into a high-dimensional descriptor, a

machine learning model can accurately reproduce energies,

forces and stresses from reference density functional theory

(DFT) calculations. However, like many machine learning

models, MLIPs can be poor at extrapolation, so they should be

trained on structures that cover the bounds of possible local

environments that the MLIP needs to reliably describe. This

makes RMC, which inherently tends to sample the most

disordered local environments consistent with experimental

data, a promising method of generating robust training data

for MLIPs. We demonstrate how the statistical nature of RMC

can be leveraged to generate diverse training structures for an

MLIP, which, in turn, can be applied to reinforce confidence in

interpretations of experimental data through HRMC refine-

ments.

2. LAMMPS potential energy constraint in RMCProfile

2.1. Implementation

To refine an atomistic model consistent with experiment,

RMC uses a Monte Carlo algorithm to minimize a �2 measure

of the difference between the experimental and calculated

data patterns (McGreevy & Pusztai, 1988; Tucker et al., 2007).

To optimize fits to multiple data sets simultaneously, the total

�2
RMC is composed of contributions from individual �2

i values

weighted by factors �i to balance the relative significance of

each constraint:

�2
RMC ¼

X

i

�2
i =�

2
i : ð1Þ

On each iteration, an atom is randomly displaced or

swapped with another atom, and the change in the overall

quality of the fit ��2
RMC is calculated. If a move improves the

fit (��2
RMC < 0), it is accepted. Otherwise, it is accepted with

probability expð� ��2
RMC=2Þ to allow some number of ‘bad’

moves that may be necessary to escape from local minima.

Like the harmonic bond stretching and bending potential

constraints previously implemented in RMCProfile, the new

interatomic potential constraint penalizes energetically unfa-

vorable moves by adding the MMC term ��2
LAMMPS =

�E=kBT to the total ��2
RMC, where �E is the change in

energy from the proposed move, normalized by the product of

temperature T and Boltzmann constant kB. The new potential

constraint calculates �E by interfacing with LAMMPS to

expand the range of potentials that can be used with

RMCProfile. Currently, the only restriction is that the poten-

tial must be purely local, meaning atoms only interact within

some short (usually <10 Å) cutoff radius. This way, only the

region around the moved atom needs to be considered in the

energy calculation. For typical RMC supercell sizes of >1000

atoms, this approximation allows the computational cost of the

potential constraint to remain small compared with the normal

RMC routines. However, it introduces a trade-off between the

number of atoms considered in the calculation and the accu-

racy in the calculation of �E and ��2
LAMMPS. This is discussed

in more detail in Appendix B. For most traditional interatomic

potentials and descriptor-based MLIPs, this local assumption

is reasonable. Some non-local exceptions that would be

unsuitable as RMCProfile constraints are graph neural

network MLIPs and potentials that handle electrostatic

interactions in reciprocal space. This local requirement is only
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necessitated by computational limitations, which may be

overcome in the future.

3. Application: oxygen vacancy ordering in CeO2� x

3.1. Background

To illustrate an application of the new potential constraint,

we apply it to the study of oxygen vacancy ordering in partially

reduced ceria (CeO2� x). Cerium(IV) oxide has a fluorite

structure (space group Fm�3m), shown in Fig. 1(a), with a face-

centered cubic arrangement of cerium atoms and oxygen

atoms occupying tetrahedral holes. The fluorite phase can

accommodate a significant number of oxygen vacancies within

concentrations between CeO2 and �CeO1.7 (Panlener et al.,

1975; Hull et al., 2009). While Bragg diffraction analysis of the

average structure suggests a random distribution of vacancies,

DFT studies predict that pairs of vacancies order along certain

crystallographic directions, avoiding nearest-neighbor sites in

favor of h110i and h111i chains (Murgida et al., 2014). Because

this short-range oxygen vacancy ordering changes the number

of O–O pairs at various interatomic distances, it can be probed

by neutron total scattering and PDF analysis. In Fig. 1(b), the

effect is simulated for CeO1.71 with vacancies ordered along

h111i chains and compared with a random vacancy distribu-

tion. While the effect of vacancy ordering on the neutron PDF

is small, it is significant enough that careful RMC analysis has

previously corroborated the prediction that the nearest-

neighbor h100i ordering is less stable than the h110i and h111i

orderings (Hull et al., 2009). Since this phenomenon is a result

of many-body interactions, we use it to demonstrate how the

new potential constraint can be leveraged to make RMC

refinements more sensitive to structural features that are

otherwise challenging to study with experimental data alone.

3.2. RMC refinements

To isolate the effect of the potential constraint, we apply it

to RMC refinements of simulated X-ray and neutron PDF

data. This way, the ground-truth structure that RMC aims to

reproduce and the underlying interatomic interactions are

known. In this case, the underlying physics of the system is

defined by a ReaxFF potential designed for CeO2 nano-

particles and partially reduced CeO2� x (Broqvist et al., 2015).

Ground-truth structures were obtained from constant NVT

molecular dynamics (MD) simulations, using an 8 � 8 � 8

supercell of the CeO1.71 fluorite average structure from Hull et

al. (2009; Inorganic Crystal Structure Database 246972). To

redistribute oxygen vacancies, the structure was equilibrated

at 1273 K for 50 ps, then quenched to 100 K over 10 ps before

taking a snapshot of the MD simulation. This annealing cycle

was repeated 30 times to obtain structures with independent

vacancy distributions. The X-ray and neutron total scattering

data used in the RMC fitting were obtained by averaging the

calculated patterns for the 30 MD snapshots, using a Qmax of

20 and 30 Å� 1 for X-ray and neutron data, respectively.

Representations of the total scattering data were fitted in

reciprocal space to the structure function F(Q) = S(Q) � 1

and in real space to the differential correlation function DðrÞ =

ð2=�Þ
R Qmax

0
QFðQÞ sinðQrÞ dQ, defined according to the

RMCProfile convention (Keen, 2001; Tucker et al., 2007;

Peterson et al., 2021). The automatic weight optimization

routine (Zhang et al., 2020) was used in the RMC fitting, so

minimum �2
i limits for each constraint were set to the average

�2
i values across the 30 MD snapshots. The initial atomic

configuration was an 8 � 8 � 8 supercell of the fluorite unit

cell (6144 atoms), with randomly distributed oxygen vacancies.

To allow the RMC algorithm to refine the oxygen vacancy

ordering, every fifth proposed RMC move swapped an oxygen

to a vacant site.

3.3. RMC refinements of simulated data

This RMC refinement of simulated data represents a case

with perfect data reduction procedures and instrument

corrections. Even so, with only X-ray and neutron total scat-

tering data constraints, there are unphysical features due to

the under-constrained nature of RMC. In this case, it arises
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Figure 1
(a) Fluorite average structure of ceria. (b) Simulated neutron PDF for
CeO1.71 with a random vacancy distribution (black) compared with the
same composition with all vacancy pairs ordered along h111i (red). The
ordering results in slight differences (blue, �10 magnification) in the
intensities of peaks from O–O interatomic distances.



because only two measurements are used to constrain three

partial radial distribution functions for Ce–Ce, Ce–O and O–O

pair correlations (Soper, 1996). As a result, the RMC algo-

rithm can fit the simulated data by cross-contaminating the

tails of peaks in the partial radial distribution functions, where

the Ce–O and O–O nearest-neighbor distances overlap

around 2.5 Å. This can be seen in the bottom panel of Fig. 2,

where there is an accumulation of O–O pairs at the 2.5 Å

minimum distance. This is a common unphysical feature in

RMC refinements, but whether it significantly influences

conclusions of the RMC analysis depends on the structural

feature of interest. Here, the question is whether the RMC

refinement can reproduce the ground-truth oxygen vacancy

ordering, which is represented by the number of h100i vacancy

pairs in Fig. 3. In this case, because the vacancy ordering is

derived from the number of O–O correlations at each distance

(i.e. the area of each peak), this unphysical mixing of the Ce–O

and O–O partials prevents the RMC refinement from reaching

the correct ordering with nearly zero h100i vacancy pairs.

In RMCProfile, these unphysical features can be addressed

ad hoc by constraining the tails of the Ce–O and O–O partials

to lie below user-defined sigmoid functions. In practice, the

exact choice of sigmoid function parameters will influence the

area of the O–O peak, so the result is still somewhat depen-

dent on intuition. To consider the best-case scenario for the

tail constraint, the sigmoid parameters were obtained from the

true partial radial distribution functions, which are only known

because the data are simulated. Application of this constraint

yields a slight improvement, shown in Fig. 3. With appro-

priately chosen tail constraint functions, the RMC refinement

slowly converges towards the correct h100i vacancy pair

concentration.

The slow convergence of the vacancy ordering can be

attributed to the fact that it is a result of many-body interac-

tions, but the experimental PDF data only explicitly contain

information about two-body correlations. The effect of

vacancy ordering on the experimental data is small (see Fig. 1),

but the energetic penalty of creating a h100i vacancy pair is

large, on the order of several hundred meV (Murgida et al.,

2014). With the expanded capability to use many-body

potentials as constraints, this information can be considered in

the RMC refinement. When the same ReaxFF potential used

to generate the simulated data is applied to constrain the

RMC fitting, it correctly eliminates the h100i vacancy pairs in

100 times fewer attempted moves. This is shown in Fig. 3 for

both the ground-truth ReaxFF potential and the MLIP trained

to reproduce it. As shown in Fig. 4, the HRMC refinement
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Figure 2
RMC refinement with simulated neutron and X-ray D(r) data constraints,
with difference curves drawn at 68� and 36� magnification, respectively.
The partial radial distribution functions gij(r) are shown in the bottom
panel, with an inset to magnify the region where unphysical features
appear in the Ce–O and O–O radial distribution functions.

Figure 3
Convergence of the concentration of h100i vacancy pairs over the course
of RMC refinements with and without potential constraints. The dashed
line near zero marks the target vacancy concentration in the ground-truth
structures.

Figure 4
RMC refinement with simulated neutron and X-ray D(r) data and a
ReaxFF potential constraint, with difference curves drawn at 28� and
84� magnification, respectively. The partial radial distribution functions
gij(r) are shown in the bottom panel.



yields a satisfactory fit to the simulated data, while eliminating

the unstable h100i vacancy pairs and the unphysical features in

partial radial distribution functions. This illustrates the utility

of the expanded potential constraint in RMCProfile.

4. RMC-trained machine learning interatomic

potentials

In this example, the ReaxFF potential used as an RMC

constraint captures the true physics of the system only because

it was used to generate the ground-truth structures from which

the diffraction patterns were simulated. In practice, there is

rarely an interatomic potential available for the specific

material system of interest, let alone one with perfect agree-

ment with experiment. Fortunately, it has recently become

more feasible to develop highly accurate MLIPs trained on

DFT calculations. By using RMC to generate training data for

an MLIP, the results of the ReaxFF constraint in Figs. 3 and 4

can be closely reproduced, which is encouraging for the

prospects of applying HRMC to new material systems. This

section discusses a methodology for training MLIPs suitable

for HRMC refinements.

4.1. Machine learning interatomic potentials

For many atomistic simulations, one needs to calculate the

energy and its derivatives (forces and stresses) for some

arrangement of atoms. Ideally, these would be calculated from

first principles with DFT. Unfortunately, the nonlinear scaling

of electronic structure optimization methods makes this

computationally impractical for applications like HRMC,

which require many calculations with more than several

hundred atoms. For these situations, the electronic structure

calculation must be circumvented by treating the interactions

between atoms classically, as parameterized by an interatomic

potential. In recent years, it has become more common to use

MLIPs as surrogates for expensive DFT force calculations

(Deringer et al., 2019; Behler, 2016). This is often accom-

plished by representing atomic positions as a high-dimensional

descriptor vector, which functions as the input to a machine

learning model trained to reproduce DFT-calculated energies,

forces and stresses for different structures. Numerous combi-

nations of descriptors and machine learning frameworks have

been demonstrated to be effective, such as deep neural

networks (Zhang et al., 2018), moment tensor potentials

(Shapeev, 2016), spectral neighbor analysis potentials

(Thompson et al., 2015), atomic cluster expansions (Drautz,

2019) and Gaussian approximation potentials (Bartók &

Csányi, 2015; Deringer et al., 2021).

Regardless of which MLIP is used, it must be trained on a

set of reference DFT calculations. An increasingly common

method of obtaining the reference structures needed to train

an MLIP is active learning, as it can significantly accelerate

and streamline the process (Podryabinkin & Shapeev, 2017;

Podryabinkin et al., 2019; Jinnouchi et al., 2020). The general

approach involves sampling an atomic configuration space by

proposing many possible structures of interest, but only

performing expensive DFT calculations for ones that are

significantly different from structures already represented in

the training data. The method used to sample the atomic

configuration space should be computationally inexpensive

and capable of generating diverse structures that span the

range of situations the MLIP needs to reliably describe.

Common methods are genetic algorithms (McCall, 2005) and

on-the-fly molecular dynamics (OTF MD) (Li et al., 2015).

After proposing many candidate structures, novel ones that

warrant an expensive DFT calculation can be identified with

uncertainty quantification, through Bayesian inference

(Vandermause et al., 2020; Deringer et al., 2021), extrapolation

grade determination (Lysogorskiy et al., 2023), query by

committee (Schran et al., 2020) or any other uncertainty

quantification method suitable for machine learning models

(Zaverkin & Kästner, 2021; Abdar et al., 2021). By limiting the

number of redundant DFT calculations, these active learning

approaches reduce the computational cost of training MLIPs

and improve their reliability by sampling more diverse

training structures (Chan et al., 2019).

4.2. Training MLIPs on RMC results

RMC refinements generate an ensemble of local environ-

ments that fit experimental data in an average sense. In

HRMC, the interatomic potential constrains RMC to a subset

of these local environments that are also physically sensible.

Thus, if the objective is to train an MLIP for HRMC, all

possible local environments that the MLIP needs to describe

should be represented in the original RMC results. For these

purposes, RMC can serve the same function as genetic algo-

rithms or OTF MD to generate candidate reference structures

for training via active learning.

We demonstrate this by leveraging RMC to train a sparse

Gaussian process regression (GPR) MLIP, using the FLARE

package (Vandermause et al., 2020; Xie et al., 2021). This

particular MLIP represents each atom’s local environment as

an atomic cluster expansion descriptor vector (Drautz, 2019).

To predict the forces acting on an atom and its contribution to

the total energy, the GPR model quantifies the similarity of its

local environment (as represented by its descriptor vector) to

ones in the reference structures, using a kernel function like a

dot product (Deringer et al., 2021). The primary advantage of

this kernel-based approach is that it enables uncertainty

estimation, as predictions on a local environment that is far

from any point in the training data should have higher

uncertainty. FLARE accomplishes this with Bayesian infer-

ence, which allows fast and robust uncertainty quantification

for active learning. To train an MLIP for HRMC, we use this

uncertainty quantification to iteratively search RMC results

for high-uncertainty local environments that warrant addi-

tional reference calculations.

The process of extracting training data from RMC results is

outlined in Fig. 5(a). Starting from a small number of refer-

ence structures – in this case, the CeO2 ground state before

and after small random displacements – the GPR model

was used to quantify the uncertainty in the local energy
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contribution for each atom in the RMC supercells. For each

high-uncertainty (>2%) local environment, a spherical cluster

of atoms within the cutoff radius of the MLIP (5.2 Å) was

extracted from the 8 � 8 � 8 RMC supercell and then

embedded in a smaller 2 � 2 � 2 supercell that would be

suitable for a DFT calculation [Fig. 5(b)]. The remaining

atomic positions in the DFT-sized supercell were defined by

the CeO2 average structure. This condensed �250000 local

environments generated by accepted RMC moves down to

�4500 candidate structures that would be novel additions to

the reference data. Of these, candidates with both high

uncertainty and low predicted energy were prioritized for

reference calculations. While the diversity of the training data

is important, excessively distorted structures are undesirable,

because they increase the error of the final MLIP and may

encounter DFT convergence issues (Miksch et al., 2021). For

these reasons, the candidate with the lowest 3� confidence

interval for the total cohesive energy was prioritized for a

reference calculation. The selected candidate structure was

used as the initial state of an on-the-fly damped dynamics

geometry optimization, as used in other methods of training

MLIPs (Choi & Jhi, 2020). The initial calculation and any

required during the structural relaxation were added to the

reference data set, the MLIP was retrained, and the energy

predictions and uncertainties for the next 1000 highest-priority

candidates were updated. Candidates without an atom in a

high-uncertainty local environment were discarded, and the

candidate with the lowest confidence interval for the cohesive

energy (E � 3�E) was selected for the next iteration. In this

example, only 111 candidate structures, with a total of 208

reference calculations, were necessary to describe all candi-

dates with energies <200 meV atom� 1 above the ground state.

The computational overhead from GPR predictions and

retraining required a total of 35 core-hours, which is accep-

tably small compared with the thousands of core-hours

expected for �200 accurate DFT calculations with �100

atoms. In this example, the ReaxFF potential provided the

reference ground truth instead of DFT.

4.3. Validation of CeO2 MLIP

To compare the effectiveness of the RMC-based training

method with other state-of-the-art methods, an MLIP was also

trained with OTF MD (Xie et al., 2021; Vandermause et al.,

2020). Constant NPT MD with a 2 � 2 � 2 CeO2 supercell

with 8 vacancies was run at 500, 900, 1300 and 1700 K for 50 ps

at each temperature. With the same uncertainty tolerance

used in the RMC-based training, 864 reference calculations

were required over the course of the OTF MD simulations. To
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Figure 5
(a) Process flow for training MLIPs on results from RMC refinements,
using an active learning approach. (b) Method for extracting a local
environment from an RMC supercell and embedding it in a supercell
suitable for DFT calculations. The colored atom positions are from the
RMC supercell, within the cutoff radius of the high-uncertainty local
environment. The remaining gray atoms are from the average positions.

Figure 6
(a) Parity plots of force predictions on RMC structures, using different training data sets. From left to right, results are shown for the MLIP trained on
reference structures generated with OTF MD, the RMC-based method presented here and the combined reference sets, respectively. The histogram
above each parity plot shows the distribution of true forces on a logarithmic scale, with bin colors corresponding to the 95th percentile absolute error
within each force range. (b) Mean absolute force error as a function of temperature for NPT MD up to 1750 K



avoid overfitting, the hyperparameters of the descriptor

(interaction cutoff radius rcut = 5.2 Å, number of radial basis

functions nradial = 10 and maximum angular momentum lmax =

4) and sparse GPR (dot product kernel variance � = 5.3 eV,

and energy/force/stress noise tolerances of �E = 2.1 eV

atom� 1, �F = 45 meV Å� 1 and �S = 0.81 kbar) were deter-

mined by maximizing the marginal likelihood, which balances

the accuracy and complexity of the GPR model (Deringer et

al., 2021; Vandermause et al., 2022).

To evaluate the suitability of the MD- and RMC-trained

MLIPs as constraints for HRMC refinements, they were tested

on 258500 local environments from RMC supercells collected

over the course of refinements with only data constraints. As

shown by the left parity plot in Fig. 6(a), the MD-trained

MLIP systematically underestimates the stability of more

distorted local environments that appear in the RMC results.

If applied as a constraint in an HRMC refinement, it could

introduce systematic errors in the RMC results by eliminating

structural features that are necessary to fit the experimental

data. If the stability were instead overestimated, the MLIP

constraint could introduce unphysical features. In either case,

it would be challenging to test this without some method of

uncertainty quantification, because the ground-truth forces of

>1000 atom RMC supercells cannot be calculated with DFT.

To ensure reliable predictions when using an MLIP as a

HRMC constraint, some of the MLIP reference structures

should be derived from RMC results. The RMC-based training

methodology eliminates the systematic errors, as confirmed by

the center parity plot in Fig. 6(a). It also reliably predicts the

interaction energies for pairs of vacancies, listed in Table 1.

These determine the vacancy ordering, so it is important that

the MLIP correctly predicts that h001i nearest-neighbor

vacancy pairs are at least 300 meV higher energy than other

orderings. For applications that only require a potential for

HRMC refinements, this example suggests that the presented

RMC-based training method can produce an accurate MLIP

with relatively few reference DFT calculations.

This is not to imply that the RMC-based method is superior

to state-of-the-art methods in general. Rather, they are

complementary. The most accurate potential was obtained by

combining the reference data sets from the RMC and OTF

MD training methods, as shown by the right parity plot in Fig.

6(a). The purely RMC-trained MLIP is also less reliable when

extrapolating to atomistic simulations beyond HRMC. This

was tested for CeO1.71 NPT MD simulations up to 1750 K,

with the mean absolute force error as a function of tempera-

ture shown in Fig. 6(b). For the RMC-trained MLIP, the error

quickly exceeded the force noise hyperparameter, before the

structure unphysically melted at �600 K. The MD-trained

MLIP did not encounter this issue. Combining the reference

structure sets from the RMC- and MD-based training methods

yielded an MLIP with accurate predictions for both RMC

refinements and high-temperature MD simulations. For

studies that might benefit from large-scale atomistic modeling

beyond just HRMC, the RMC- and MD-based training

procedures can be done in parallel.

5. Conclusions

We have implemented a new interatomic potential constraint

in RMCProfile to enable HRMC structure refinements for a

wider range of materials. The new constraint allows flexibility

to use potentials supported by LAMMPS, including machine

learning interatomic potentials for material systems without

currently available alternatives. We illustrated the utility of the

expanded HRMC capabilities for studying oxygen vacancy

ordering in CeO2, where the potential drove the RMC

refinement to the correct vacancy ordering and eliminated

unphysical features without the need for additional ad hoc

constraints. To accelerate interatomic potential development

for new materials, we demonstrated an active learning

approach that applied RMC to efficiently generate training

data for MLIPs. We found these RMC-trained interatomic

potentials are more reliable for HRMC purposes than

potentials trained by other state-of-the-art means, but, as with

all MLIPs, care should be taken when extrapolating to other

atomistic simulations. For developing MLIPs that are suffi-

ciently robust for both HRMC and other large-scale atomistic

modeling, the RMC-based training method is a complemen-

tary addition to existing methods.

APPENDIX A

Balancing potential and experimental constraint weights

In RMC refinements, the choice of weights for each

constraint’s contribution to the total �2 can significantly

influence the resulting converged structure. This is especially

true for energy-based constraints, where some energetically

unfavorable ‘bad’ moves are always needed to account for

thermal displacements. The weight of the potential constraint

directly affects how many of these bad moves are accepted. If

weighted too strongly, the convergence of the refinement will

be slow and possibly confined to a local minimum. If weighted

too weakly, the constraint will fail to prevent unphysical

behavior. Finding a balance that yields a satisfactory fit and

sensible partial radial distribution functions is somewhat

subjective, so we find it advantageous to apply a range of

potential constraint weights during the refinement. This is

accomplished here with the weight optimization routine in

RMCProfile (Zhang et al., 2020), which adjusts weights on the

fly to balance the relative importance of each constraint. To

avoid overfitting, individual constraints can be turned off
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Table 1
Relaxed interaction energies for pairs of vacancies (relative to isolated
vacancies) at increasing separation distances within the oxygen sublattice.

Results are compared for the ground-truth ReaxFF potential and the RMC-
trained MLIP.

Direction hhkli Distance (Å) EReaxFF (eV) EMLIP (eV)

h100i 2.73 0.584 0.541
h110i 3.87 0.117 0.108
h111i 4.74 0.235 0.161

h200i 5.47 0.301 0.313
h210i 6.12 0.001 0.012



(weight set to zero) when their �2 is below a specified

minimum value. For the potential constraint, the minimum �2

can be set to the expected total cohesive energy, causing the

energy of the configuration to oscillate about this expected

value. This is the weighting scheme used for the refinements in

Figs. 3 and 4. The advantage of this approach is it only requires

a single, physically justifiable parameter – the expected total

energy. A possible disadvantage is that completely turning off

the potential constraint may allow some number of unphysical

moves. In the CeO2 example presented here, this results in an

increase in the h100i vacancy pair concentration in the later

stages of the ReaxFF-constrained refinement (see Fig. 3).

These issues may be addressed by alternative weighting

schemes, such as gradually increasing the weight of the

potential constraint to perform a simulated annealing.

APPENDIX B

Locality assumption in RMCProfile

To minimize the computational cost of the potential

constraint, it is assumed that the potential is purely local, such

that atoms only interact within some cutoff radius rcut. In the

new RMCProfile potential constraint, a spherical cluster of

atoms within a distance rcluster of the moved atom are given to

LAMMPS to calculate the energy before and after the move.

A smaller rcluster will reduce the computational cost of the

potential constraint, but an excessively small rcluster will

introduce errors in the energy calculation. For a two-body

potential that only considers pairwise interactions within rcut,

the local approximation only introduces errors for rcluster <

rcut. For potentials that include three-body and higher inter-

actions, there may be errors for rcluster < 2rcut (Deringer et al.,

2021). If these errors cancel in the calculation of �E, a smaller

rcluster can still be used to reduce computation time. Fig. 7

demonstrates the error in the force calculation as a function of

rcluster, for a CeO2 structure with a series of 1000 random 0.1 Å

displacements, representative of typical RMC moves. The

ReaxFF potential is a bond-order potential with short-range

many-body interactions (Chenoweth et al., 2008), so the error

quickly decreases once rcluster exceeds the next-nearest-

neighbor Ce–O distance �4.5 Å. Small errors persist for high

rcluster values because of electrostatic interactions and a global

charge equilibration routine with an effectively infinite inter-

action radius. In contrast, the GPR MLIPs consider five-body

interactions within rcut. For rcut = 5.2 Å, an rcluster > 7 Å is

needed to reduce the average force error below 50 meV Å� 1

(approximately the MLIP force error hyperparameter). For

rcut = 6.5 Å, this requirement increases to rcluster > 9 Å, which

includes twice as many atoms and doubles the computational

cost of the potential constraint. When selecting a potential to

use as an RMC constraint, it will be most computationally

efficient to use one with short-range many-body interactions

like ReaxFF and embeded atom method potentials. When

training a many-body MLIP specifically for refinements in

RMCProfile, one should favor smaller rcut when possible, as

the typical improvement in accuracy with increasing rcut is lost

unless more atoms are included in the energy calculation.

Hierarchical MLIPs that use a many-body machine learning

descriptor for short-range interactions and two-body terms for

long-range interactions may give the best compromise

between accuracy and speed (Deringer et al., 2021). In this

CeO2 example with 5500 atoms (44.7 Å box dimensions), the

ReaxFF constraint reduced the number of RMC moves per

core-hour by a factor of �0.8, while the FLARE MLIP (with

rcut = 5.2 Å, rcluster = 8.0 Å, nradial = 10 and lmax = 4) reduced it

by a factor of �0.1. Since the locality assumptions decouple

the energy calculation time from the supercell size, the relative

computational cost of the potential constraint will be less

severe for larger supercells that have slower RMC routines.
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Figure 7
Error in force calculations as a function of the size of the cluster of atoms
considered in the RMCProfile energy calculation. The computation time
scales linearly with the number of atoms in the cluster (black dashed line).
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Miksch, A. M., Morawietz, T., Kästner, J., Urban, A. & Artrith, N.
(2021). Mach. Learn. Sci. Technol. 2, 031001.

Murgida, G. E., Ferrari, V., Ganduglia-Pirovano, M. V. & Llois, A. M.
(2014). Phys. Rev. B, 90, 115120.

Ohio Supercomputer Center (2018). Pitzer, https://osc.edu/ark:/
19495/hpc56htp.

Opletal, G., Petersen, T. C., O’Malley, B., Snook, I. K., McCulloch,
D. G. & Yarovsky, I. (2008). Comput. Phys. Commun. 178, 777–787.

Opletal, G., Petersen, T. C. & Russo, S. P. (2014). Comput. Phys.
Commun. 185, 1854–1855.

Pandey, A., Biswas, P. & Drabold, D. A. (2015). Phys. Rev. B, 92,
155205.

Panlener, R. J., Blumenthal, R. N. & Garnier, J. E. (1975). J. Phys.
Chem. Solids, 36, 1213–1222.

Peterson, P. F., Olds, D., McDonnell, M. T. & Page, K. (2021). J. Appl.
Cryst. 54, 317–332.

Podryabinkin, E. V. & Shapeev, A. V. (2017). Comput. Mater. Sci. 140,
171–180.

Podryabinkin, E. V., Tikhonov, E. V., Shapeev, A. V. & Oganov, A. R.
(2019). Phys. Rev. B, 99, 064114.

Schran, C., Brezina, K. & Marsalek, O. (2020). J. Chem. Phys. 153,
104105.

Shapeev, A. V. (2016). Multiscale Model. Simul. 14, 1153–1173.

Soper, A. K. (1996). Chem. Phys. 202, 295–306.

Tadmor, E. B., Elliott, R. S., Sethna, J. P., Miller, R. E. & Becker, C. A.
(2011). JOM, 63, 17.

Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S.,
Brown, W. M., Crozier, P. S., in ’t Veld, P. J., Kohlmeyer, A., Moore,
S. G., Nguyen, T. D., Shan, R., Stevens, M. J., Tranchida, J., Trott, C.
& Plimpton, S. J. (2022). Comput. Phys. Commun. 271, 108171.

Thompson, A. P., Swiler, L. P., Trott, C. R., Foiles, S. M. & Tucker, G. J.
(2015). J. Comput. Phys. 285, 316–330.

Tucker, M. G., Dove, M. T. & Keen, D. A. (2001). J. Appl. Cryst. 34,
630–638.

Tucker, M. G., Keen, D. A., Dove, M. T., Goodwin, A. L. & Hui, Q.
(2007). J. Phys. Condens. Matter, 19, 335218–335244.

Vandermause, J., Torrisi, S. B., Batzner, S., Xie, Y., Sun, L., Kolpak,
A. M. & Kozinsky, B. (2020). npj Comput. Mater. 6, 20.

Vandermause, J., Xie, Y., Lim, J. S., Owen, C. J. & Kozinsky, B. (2022).
Nat. Commun. 13, 5183.

Xie, Y., Vandermause, J., Sun, L., Cepellotti, A. & Kozinsky, B. (2021).
npj Comput. Mater. 7, 40.
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