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Analytical absorption corrections are employed in scaling diffraction data for

highly absorbing samples, such as those used in long-wavelength crystallography,

where empirical corrections pose a challenge. AnACor2.0 is an accelerated

software package developed to calculate analytical absorption corrections. It

accomplishes this by ray-tracing the paths of diffracted X-rays through a

voxelized 3D model of the sample. Due to the computationally intensive nature

of ray-tracing, the calculation of analytical absorption corrections for a given

sample can be time consuming. Three experimental datasets (insulin at � =

3.10 Å, thermolysin at � = 3.53 Å and thaumatin at � = 4.13 Å) were processed

to investigate the effectiveness of the accelerated methods in AnACor2.0. These

methods demonstrated a maximum reduction in execution time of up to 175�

compared with previous methods. As a result, the absorption factor calculation

for the insulin dataset can now be completed in less than 10 s. These acceleration

methods combine sampling, which evaluates subsets of crystal voxels, with

modifications to standard ray-tracing. The bisection method is used to find path

lengths, reducing the complexity from O(n) to O(log2 n). The gridding method

involves calculating a regular grid of diffraction paths and using interpolation to

find an absorption correction for a specific reflection. Additionally, optimized

and specifically designed CUDA implementations for NVIDIA GPUs are

utilized to enhance performance. Evaluation of these methods using simulated

and real datasets demonstrates that systematic sampling of the 3D model

provides consistently accurate results with minimal variance across different

sampling ratios. The mean difference of absorption factors from the full calcu-

lation (without sampling) is at most 2%. Additionally, the anomalous peak

heights of sulfur atoms in the Fourier map show a mean difference of only 1%

compared with the full calculation. This research refines and accelerates the

process of analytical absorption corrections, introducing innovative sampling

and computational techniques that significantly enhance efficiency while

maintaining accurate results.

1. Introduction

Processing X-ray crystallography diffraction data involves

integrating diffraction images to extract reflection intensities.

Integrated intensities, which are influenced by experimental

conditions, require data scaling to reflect the true structure-

factor amplitudes, jFhj
2. This involves correcting for

systematic effects such as sample illumination, variations in

beam intensity, radiation damage and absorption effects. By

fitting a scaling model that accounts for these factors, an

internally consistent dataset can be produced, improving the

quality of merged symmetry-equivalent reflections.
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The absorption effect is primarily determined by the crys-

tal’s composition, its shape and the wavelength of the X-ray

beam. In macromolecular crystallography, various data

reduction software packages, such as AIMLESS (Evans &

Murshudov, 2013), hkl3000 (Minor et al., 2006), SADABS

(Bruker, 2016) and DIALS (Winter et al., 2018), employ

spherical harmonics corrections to address absorption effects.

This method typically relies on data multiplicity, which is

unaffected by the sample’s material and geometry. However,

the effectiveness of this approach diminishes when it is diffi-

cult to obtain multiple datasets from different goniometer

orientations, such as with radiation-sensitive crystals in low-

symmetry space groups. In such cases, the limited number of

symmetry-equivalent reflections hampers the success of

spherical harmonics correction. Introducing analytical

absorption correction improves data-scaling quality in these

scenarios because it does not rely on data multiplicity.

AnACor1.0 (Lu et al., 2024) applies this method, which is

based on equation (1) below and utilizes a 3D model of the

sample,

Ah ¼
1

V

Z

V

exp � �½L1ðx; y; zÞ þ L2ðx; y; zÞ�
� �

dV; ð1Þ

where L1(x, y, z) and L2(x, y, z) (hereafter referred to as L1

and L2) are the incident and diffracted X-ray path lengths to

and from each crystal element dV, � is the absorption coef-

ficient of the crystal, and Ah is the inverse absorption factor

(referred to as the absorption factor in the following context)

(Albrecht, 1939). For the implementation of analytical

absorption correction on a voxelized 3D model, the integral in

equation (1) can be reformulated discretely (Lu et al., 2024):

Ah ¼
1

N

XN

n¼1

A
ðnÞ
h ; ð2Þ

where N is the number of crystal voxels in the 3D model

exposed to the X-ray beam. This is because the crystal volume

(Angel, 2004) is the only component that contributes to the

X-ray diffraction. In a crystallographic experiment, it is

common for the sample to consist of multiple materials. As a

result, the determination of the absorption correction factor

A
nð Þ

h for a crystal voxel can be reformulated as follows:

A
ðnÞ
h ¼ exp �

XM

m¼1

�mLðnÞm

" #

: ð3Þ

The symbol L nð Þ
m denotes the combined length of the incident

length L
nð Þ

m1 and the diffracted length L
nð Þ

m2 as they pass through

the material m being diffracted at the crystal voxel n.

In AnACor1.0, the path lengths are determined by a ray-

tracing method (described in Section 2.2), which needs to

traverse a large number of voxels in the 3D model to obtain

accurate results. Macromolecular crystallography often

requires examination of thousands of reflections, with the

number of crystal voxels in the 3D model N reaching into the

millions. This makes processing all reflections and voxels a

significant computational obstacle for efficient absorption

correction. In the previous work (Lu et al., 2024), AnACor1.0

performed analytical absorption correction by Python and

Numba 0.56.2 (Lam et al., 2015) to enhance computational

efficiency. It employed a systematic sampling method with a

0.05% sampling ratio, reducing the processing time for a

dataset to approximately 40 min. However, this is still too slow

for quickly analysing many datasets, especially for large

samples with numerous crystal voxels. To manage this load, we

present AnACor2.0, an innovative software solution designed

to streamline analytical absorption correction by incorpor-

ating new, sophisticated computational strategies

AnACor2.0 employs sampling methods to process fewer

crystal voxels N while maintaining result accuracy. It also uses

a bisection approach to enhance the standard ray-tracing

method for determining path lengths. Instead of traversing

every voxel along the diffracting ray, the bisection method

iteratively identifies the middle voxel’s material to locate all

material boundaries, which are used to calculate the path

lengths. This significantly improves time complexity, which is

crucial for large samples with many voxels. Additionally,

AnACor2.0 includes a module that calculates absorption

gridding maps for each crystal voxel n and uses interpolation

techniques to determine the path length for a given direction

of the diffracting ray. This approach reduces repetitive

computation of diffracting rays from similar directions. One of

the key characteristic modules of AnACor2.0 is its utilization

of NVIDIA’s CUDA platform for acceleration. This module

utilizes the capabilities of parallel computing on GPUs, a

computational accelerator that enables concurrent calcula-

tions across many processing units. Through these approaches,

AnACor2.0 can significantly reduce computing times.

This study explores three standout experimental datasets:

insulin at � = 3.10 Å, thermolysin at � = 3.53 Å and thaumatin

at � = 4.13 Å, all in high-symmetry space groups. Insulin is

spherical, thaumatin is pyramidal and thermolysin is asym-

metrical, demonstrating that AnACor2.0 is versatile and

applicable to various sample shapes.

This study assesses the performance of different sampling

methods and acceleration techniques on analytical absorption

correction in these experiments. It employs analytical

absorption correction followed by spherical harmonics

correction (ACSH) (Lu et al., 2024) for data scaling,

comparing absolute differences in absorption factors and

analysing relative variations in anomalous peak heights in the

anomalous difference Fourier maps of the crystals. Further

details on merging statistics and anomalous peak heights for

various absorption correction strategies [no correction, sphe-

rical harmonics correction (Beilsten-Edmands et al., 2020),

analytical absorption correction (Lu et al., 2024) and ACSH]

are provided in the supporting information.

All results were obtained using the Oxford Advanced

Research Computing supercomputer (Richards, 2015), on a

single node with an Intel Xeon Platinum 8268 CPU with 48

cores. We evaluated GPU performance on NVIDIA V100,

A100 and H100 GPUs. Section 3 compares the computational

time of the acceleration methods with the original baseline

presented in AnACor1.0 (Lu et al., 2024).
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AnACor2.0 is publicly released at https://github.com/

yishunlu-222/AnACor2.0.git with a GNU General Public

Licence v3.0.

2. Methodology

2.1. Data preparation and implementation

In selecting the protein samples for this study, we aimed for

morphological variation and to obtain crystals in high-

symmetry space groups, since previously we had focused only

on low-symmetry crystals.

All crystallization experiments were performed using the

sitting-drop vapour-diffusion method at 20�C in Swissci

(UVXPO-2 lens) 96-well plates, by mixing 100 nl of protein

solution with 100 nl of crystallization buffer. Crystals of

thaumatin (Sigma, T7638) were obtained from a 50 mg ml� 1

solution of the protein powder suspended in deionized water

and a crystallization buffer consisting of 100 mM ADA pH 6.5,

750 mM potassium sodium tartrate, dissolved in saturated 5,50-

dithiobis(2-nitrobenzoic acid) water, and 25% glycerol. The

crystal used in this study had dimensions of 110 � 84 �

75 mm3 in size. Insulin powder (Sigma, I5500) was dissolved to

a concentration of 25 mg ml� 1 in 50 mM Na2HPO4 pH 10.5

and 10 mM ethylenediaminetetraacetic acid, and crystallized

by mixing with 20% ethylene glycol. The crystal used here had

dimensions of 35 � 45 � 45 mm3 in size. To crystallize ther-

molysin, the protein powder (Sigma, P1512) was dissolved in a

buffer consisting of 50 mM 2-(N-morpholino)ethanesulfonic

acid pH 6.0, 45% dimethyl sulfoxide and 50 mM sodium

chloride, to a concentration of 50 mg ml� 1, and mixed with

1.2 M ammonium sulfate. The thermolysin crystal selected for

this study measured 230 � 70 � 70 mm3 in size.

Sample preparation for in-vacuum X-ray crystallography

followed a previously published procedure (Duman et al.,

2021). Data were collected on the long-wavelength beamline

I23 at Diamond Light Source (Wagner et al., 2016), with

tomography data collection performed at the same wave-

length, immediately following the diffraction experiment, as

previously described (Lu et al., 2024). All tomography datasets

were collected at 100% transmission and the beam adjusted to

a size of 700 � 700 mm2. For thaumatin, 360� of diffraction

data were collected at a wavelength of � = 4.13 Å, with a top-

hat beam size of 200 � 200 mm2, 50% transmission and a 0.1 s

per 0.1� exposure. The tomography dataset consisted of 1800

projections, 20 dark images (no X-ray beam on the sample)

and 20 flat-field images (sample out of the beam), recorded

with an exposure of 0.2 s per 0.1�. The insulin diffraction data

were measured at � = 3.1 Å as a 360� sweep, with 50%

transmission, a beam size of 100 � 100 mm2 and an exposure

of 0.1 s per 0.1�. For tomography, 1800 projections, 20 dark

images and 20 flat-field images were collected with an expo-

sure of 0.1 s per 0.1�. For the thermolysin diffraction data,

measured at � = 3.54 Å, 360� of data were collected with a

beam size of 350 � 350 mm2, 15% transmission and 0.1 s per

0.1� exposure, using a kappa goniometer setting of � 70� to

ensure data completeness, since the rod-like crystal was

aligned with the rotation axis. The tomography dataset

consisted of 900 projections, 20 dark images and 20 flat-field

images, recorded with an exposure of 0.2 s per 0.2�. The

diffraction data were indexed and integrated with DIALS

(Winter et al., 2018).

We use segmented tomographic reconstructions as our 3D

models of the samples. The tomography data were processed

with the SAVU pipeline (Kazantsev et al., 2022), using stan-

dard flat-field correction, followed by ring artefact removal

(Vo et al., 2018) and reconstruction by filter-back projection

with TomoPy (Gürsoy et al., 2014). The reconstruction

datasets were cropped from an initial size of 1600 � 200 �

1200 voxels to remove unnecessary background and reduce

the size of the dataset. The final dimensions of the tomo-

graphic datasets were 1120 � 1001 � 1001 voxels for thau-

matin, 470 � 1000 � 1000 voxels for insulin and 1210 �

1001 � 1001 voxels for thermolysin, with a voxel size of

0.3 � 0.3 � 0.3 mm3. The reconstruction images were subse-

quently annotated using the segmentation software Avizo

(Thermo Fisher), resulting in every pixel being labelled as one

of the three materials present in the sample: crystal, solvent,

loop or, alternatively, background.

To calculate the absorption correction factor, we use a

segmented 3D model in an array data structure, absorption

coefficients, and a table of directional vectors for the incident

and diffracted X-rays corresponding to the reflections h. The

absorption coefficients can be determined as described by Lu

et al. (2024) or provided as input. The absorption coefficients

of insulin, thermolysin and thaumatin are presented in Table 1.

Unlike AnACor1.0, which used Python, AnACor2.0’s core

computational modules are implemented as C function calls

with CPU parallelism via OpenMP. These modules also have a

Python interface and can be called directly from Python using

ctypes. The output is a collection of analytical absorption

factors Ah in JSON format, arranged by the order of reflec-

tions in the input table. Once the calculations are complete,

the analytical absorption correction is applied in the data-

scaling process using dials.scale in DIALS (Winter et al.,

2018; Beilsten-Edmands et al., 2020) with the flag of

analytical_correction = True.

The absorption factors obtained through the standard ray-

tracing technique with no sampling are established as the

benchmarks for each dataset. The use of mean absolute

percentage differences between the absorption factors of

acceleration methods and a no-sampling standard method

helps to assess the performance differences in acceleration.

The differences are calculated as [abs(Aacc � Ano)] /Ano on an

absolute scale, where Aacc and Ano are, respectively, the

absorption factors of the same reflection in the accelerated

method and the no-sampling standard method. We also

computer programs
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Table 1
Absorption coefficients of materials in the samples.

Sample Crystal Liquor Loop

Insulin at � = 3.10 Å 0.00745 0.00720 0.00690

Thermolysin at � = 3.53 Å 0.01312 0.01583 0.01172
Thaumatin at � = 4.13 Å 0.01926 0.02019 0.01864
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considered the peak heights in the anomalous difference

Fourier maps of experimental datasets to examine if the final

data quality prevails after applying acceleration methods. The

published structures, Protein Data Bank (PDB) ID 4a7e

(Burkhardt et al., 2012) for insulin, PDB ID 1kei for ther-

molysin and PDB ID 1rqw for thaumatin, are used as starting

models for the Dimple pipeline (https://ccp4.github.io/dimple/).

The --anode option (Thorn & Sheldrick, 2011) is used to

calculate anomalous difference Fourier maps with anomalous

peak heights, and the option --free-r-flags in the

Refmac refinement (Murshudov et al., 1997) step ensures the

same R-free flags for all acceleration strategies. The peak

heights of sulfur atoms in insulin, thermolysin and thaumatin

are selected for comparison with no-sampling results. Similar

to the absorption factors, the percentage differences of peak

heights are calculated as [abs(Hacc � Hno)] /Hno, where Hacc

and Hno are the anomalous peak heights of the same atoms in

the accelerated method and no-sampling standard method,

respectively.

2.2. Standard ray-tracing method

The standard ray-tracing approach assumes X-rays incident

upon a crystal voxel n, subsequently undergoing diffraction at

that voxel, and consists of two algorithms: traversal and length

calculation. During each ray traversal along the incident and

scattered X-ray directions, the voxels’ coordinates and their

related material labels are calculated and subsequently

recorded. After finishing the traversal, the absorption factors

can be calculated from the recorded information via the length

calculation algorithm.

The construction of the model involves stacking 2D

segmented slices of the tomographic reconstruction, resulting

in a 3D array that can be referred to as a cuboid with six

planes. The traversal algorithm is inspired by the fast voxel

traversal algorithm (Amanatides & Woo, 1987), which is used

in voxel traversal through a 3D array. We consider a 2D case to

better illustrate the traversal algorithm in Fig. 1, and it is easy

to extend to 3D. A ray passes the pixels from bottom left to

top right, with an equation of uþ vs, where v is the direction

of the ray and u is a point on the ray. In Fig. 1, the ray splits

down into intervals of s along the X axis, corresponding to one

pixel. Then, all of the coordinates of the traversed pixels b, c,

d, e and f can be calculated by starting at pixel a [ua ¼ ð0; 0Þ] in

the ascending interval order (s = 1, 2, 3 . . . n, where n is the

maximum interval and n = 5 in Fig. 1), and then rounding to

the nearest pixel coordinates. This is because, to calculate the

path length, the start point and the end point are crucial and

the intermediate pixels along the ray are less significant, where

only one pixel is enough for each interval. That is why the

pixel below pixel e does not count. Hence, in this case, the path

length from a to f is the Euclidean length between coordinates

(0, 0) and (5, 2).

The determination of which axis should split depends on the

plane of the array that intersects with the ray. This ensures that

all calculated results fall within the array’s range, and every

pixel along the ray can be accurately identified. For instance, if

the Y axis is chosen to split in Fig. 1, the interval sequence

would be s = 1, 2, 3. Consequently, the calculated coordinates

of b would be the same as the coordinates of point a, and this

pattern would continue through the coordinates of (c, d) and

(e, f). Therefore, the path length calculations are incorrect.

More specifically, there are two stages in the traversal

algorithm: initialization and incremental traversal. The first

phase determines the exit points of the ray (such as pixel f in

Fig. 1), which can confirm which axis to split down and if this

interval order is ascending or descending (s = 1, 2, 3 . . . n or s =

n . . . 3, 2, 1). This is in contrast to the fast voxel traversal

algorithm (Amanatides & Woo, 1987), where our algorithm

only considers incrementing or decrementing along one

direction (either x or y). In the incremental traversal stage, in

Fig. 1, the coordinates of the new pixel are computed by �Y

and �X along the y and x axes from the starting pixel (X, Y)

with rounding to the nearest integers. �X indicates how far

along the ray we must move along the x axis component in one

step s. It is straightforward to see that �Y is determined by

multiplying the direction of the ray v. The basic loop of Fig. 1 is

outlined in Algorithm 1:

In 3D cases, the initialization in the traversal algorithm that

aims to find the exit faces of the ray becomes more difficult. A

ray-casting technique is used, as outlined in equations (4)–(6):

ti ¼
n̂i � xi � P0ð Þ

n̂i � d
for i ¼ 1 to 6; ð4Þ

tmin ¼ minfti : ti � 0; i ¼ 1; 2; . . . ; 6g; ð5Þ

P ¼ P0 þ tmind: ð6Þ

The cuboid model consists of six faces, which can be mathe-

matically represented as six planes that extend to infinity.

These planes are defined by the vertices of the cuboid within

the vector space. The calculation in equation (4) determines
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4 of 12 Yishun Lu et al. � AnACor2.0 J. Appl. Cryst. (2024). 57

Figure 1
Schematic diagram of ray-tracing traversal algorithm with a ray traversing
from bottom left to top right.
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the distance ti between the crystal coordinate and the inter-

section with the plane. This is done by utilizing the unit normal

vector n̂i of the plane, the vertex coordinates xi on the plane,

the directional vector d of the X-ray beam and the crystal

point P0. The vector d intersects with points on all six faces

within the infinite vector space. The minimal value of the non-

negative ti represents the location where plane i connects with

the cuboid in the positive direction of the vector d. Overall,

the exit coordinates can also be determined by equation (6)

and this identifies the specific face of the cuboid that intersects

with the X-ray beam, which helps finish initialization.

In the path length calculation algorithm for incident path

length L
nð Þ

m1, the crystal voxel n is considered as the starting

point for the X-ray traversal rather than the X-ray source, so

the direction of the incoming vector is reversed and it origi-

nates from the crystal voxel n. The algorithm iterates until it

encounters the boundary of the 3D model and the coordinates

and the corresponding labelled materials are recorded during

the traversal. When the iteration stops, the total path length is

calculated as the Euclidean distance between the starting

point and the last voxel where the iteration stops. As depicted

in Fig. 2, the coordinates recorded exhibit a zigzag pattern

along the X-ray path due to the voxelization process. To

mitigate this zigzag effect, the individual path lengths [L nð Þ
m ] for

material m are determined by first calculating the proportion

of the total path length that the material m occupies during

traversal and then multiplying this proportion by the total

path length. This product is combined with the voxel size and

the corresponding absorption coefficients to obtain the final

exponent �mL nð Þ
m in equation (3). Finally, the calculation of the

absorption factor Ah for the reflection h involves summing

A
nð Þ

h for all crystal voxels, as shown in equation (2).

In a tomography reconstruction, there are air/vacuum

regions outside of the crystal sample which contribute negli-

gible absorption effect. It could be argued that it may save

computational time if they are neglected. However, as illu-

strated in Fig. 2, if the traversal chooses to stop at the vacuum/

air region, the absorption caused by the liquor and the loop at

the end of the ray cannot be counted. This is why we choose to

stop the traversal at the model’s boundary instead of any

vacuum/air region, trading computational efficiency to reduce

the impact of segmentation artefacts.

2.3. Sampling

To accurately calculate an absorption correction, a precise

3D representation of the sample is essential. This requires a

high-resolution tomographically reconstructed volume

composed of a large number of voxels. The computing cost

associated with calculating path lengths for a large number of

crystal voxels is high; along with this, neighbouring diffracting

crystal voxels contribute very similar amounts to the overall

absorption factor Ah. Given this, sub-sampling the crystal

voxels can yield potential computational performance

increases. On the other hand, equation (2) defines Ah to be the

numerical mean of the linear absorption factors of overall

crystal voxels. Hence a reduction in the number of summation

terms can be obtained by selecting sample crystal voxels

whose absorption factor coincides with the average absorption

factor of neighbouring crystal voxels. Crystals have a consid-

erable level of structural homogeneity and symmetry, resulting

in close absorption effects for adjacent crystal areas. To

demonstrate this, in Fig. 3, six histograms are created to depict

the absorption factors for different systematic sampling ratios

of a random reflection of thaumatin. The Kolmogorov–

Smirnov (KS) test (Massey, 1951) is employed to evaluate how

similar the distribution of each sampling ratio is to the

distribution at full sampling (100%). The null hypothesis for

this test assumes that the distributions being compared are

identical. As the sampling ratio increases, the KS test values

decrease and the P values increase, suggesting that the sampled

distributions become more similar to the full, no-sampling

computer programs
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Figure 2
A ray-tracing path marked in white for a tomographic reconstruction slice
of thermolysin (black, vacuum; red, crystal; yellow, loop; blue, mother
liquor). Two subplots in the green dashed regions demonstrate the zigzag
patterns where all the pixels on the ray-tracing path are marked in white.
The diffracted path contains a large region of vacuum/air.

Figure 3
Histograms of absorption factors for different systematic sampling ratios
(orange) of a random reflection of thaumatin, compared with that of no-
sampling (blue). The overlapping areas of the no-sampling and sampled
histograms are shown in dark orange. When the ratio rises to 0.5%, the P
values of the KS test (Massey, 1951) become greater than 0.95, failing to
reject the null hypothesis, and the two histograms mostly overlap.



distribution. Notably, P values exceed 0.95 starting from a

sampling ratio of 0.5%, indicating insufficient evidence to

reject the null hypothesis. At a sampling ratio of 1%, the P

value reaches 1, further affirming this trend.

Hence, employing systematic sampling techniques to select

voxels is a viable strategy. This methodology can effectively

ensure comprehensive coverage of various crystal locations,

facilitating a holistic understanding of the crystal’s absorption

characteristics. Conversely, this approach also reduces the

influence of specific irregularities or disturbances in a parti-

cular area and improves the statistical dependability, yielding

more resilient and precise estimations of the absorption

factors Ah. The methodology employed in our prior research

was the utilization of a systematic sampling technique (Lu et

al., 2024). This approach entailed arranging all crystal voxels

in a sorted 1D array and selecting a sample for every 2000

crystal voxels (sampling ratio of 0.05%). Nevertheless, it

should be noted that the process of systematic sampling may

not always result in the selection of the most representative

crystal voxels. In order to evaluate the effectiveness of the

current systematic sampling, three more sampling approaches

are proposed: random sampling, randomized systematic

sampling and stratified sampling. The random sampling

strategy selects crystal voxels randomly from a uniform

distribution (Leal et al., 2008). In contrast to systematic

sampling, randomized systematic sampling selects a crystal

voxel randomly within the interval rather than at the edges of

the interval. A stratified sampling method is also introduced,

which uses a k-means clustering approach by starting with a

random state. It separates the whole crystal volume into S

small regions according to their coordinates and the spatial

distances to the centroid of the crystal, where S is the number

of sampled crystal voxels. Then, the sampled crystal voxels are

the centroids of the small regions. In Section 3, a comparative

evaluation is conducted to evaluate the effectiveness of the

sampling strategies in different example datasets.

2.4. Ray-tracing by the bisection method

In order to achieve accurate analysis within the 3D model,

the standard ray-tracing method must include voxel traversal

for every voxel present in the X-ray direction until it meets the

end of the tomographic model. In essence, determining the

path length requires obtaining information regarding the

boundaries of the materials. In macromolecular crystal-

lography experiments, the samples comprise only a small

number of components, typically including mother liquor,

crystal and loop, and the sizes of these materials are large,

exhibiting distant boundaries. Calculating lengths by

traversing stepwise along the X-ray path is computationally

demanding. In conventional ray-tracing methods, this

approach necessitates a large number of repetitive calcula-

tions, especially within regions composed of a single material.

A more efficient strategy would involve computing distances

only across the boundaries separating different materials.

Hence, in order to optimize computational performance, it

is beneficial to calculate the boundary coordinates using a

bisection approach rather than traversing all of the voxels

along both the incident and diffracted X-ray paths. Addi-

tionally, a bisection approach has the potential to reduce the

time complexity from O(n) to O(log2 n). The bisection

approach is further elaborated in Algorithm 2:

The outermost coordinates are determined by the inter-

sections of the X-rays with the plane of the model, which can

be referred to as a cuboid with six planes. These coordinates

can be computed using equation (6). The bisection method is

capable of determining the coordinates of boundaries;

however, it lacks the ability to differentiate between inner and

outer limits. Algorithm 2 contains the GoingIn procedure,

which enables the bisection method to determine whether the

resulting boundaries are classified as inner or outer. Only the

crystal’s outer boundary is determined, as the ray traverses

from the coordinates within the crystal. This method is based

on the assumption that there are no air/vacuum gaps between

the crystal and the loop but only liquor in between them. It is

sufficient to consider only the borders of the crystal, the loop,

and the interface between the sample and the surrounding air

or vacuum. The default ordering to determine the boundaries

of the bisection method involves the following sequence: the

crystal outer boundary, the air boundary (which separates the

sample from the air), the loop inner boundary, the loop outer

boundary and, subsequently, the boundaries of other mate-

rials. The boundary determination process ceases once it has

successfully acquired all material boundaries except for the

mother liquor. The computation of final path lengths remains

consistent with the standard ray-tracing method. The place-

ment of the crystal and the loop can be random, resulting in

liquor regions of varying sizes between them that cannot be

predetermined. Calculating the dimensions of all these regions

is computationally demanding, especially for smaller liquor

regions. This variability adds complexity to the computational

process. Therefore, the determination of the path length

computer programs
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through the mother liquor is the subtraction of the total path

length from the path lengths through the crystal, loop, air/

vacuum and any additional elements. Hence, if there are some

air/vacuum regions inside the sample, the bisection method

may incur a high level of inaccuracy.

2.5. Gridding interpolation for multiple datasets

In the aforementioned approaches, the overall computing

runtime exhibits linear scaling with the number of reflections,

as both the ray-tracing and the bisection method are executed

for every individual reflection h. When dealing with multiple

datasets, the presence of numerous X-rays with similar

direction vectors might lead to redundant computations. To

enhance computational efficiency, a grid of angular-dependent

exponents Gð�;�Þ ¼ �
PM

m¼1 �mL nð Þ
m in equation (3) is created

by assuming that proximate directional vectors correspond to

similar path lengths with the same absorption coefficients. As

illustrated in Fig. 4, this grid is mapped to each crystal coor-

dinate, denoted by n. The total number of these path length

grids matches the total number of crystal coordinates, indi-

cated as N, as defined in equation (2). The path length grids

for the crystal coordinates are subsequently computed and

retained for future computational purposes. The angular-

dependent path length grid has dimensions of (360, 180) with a

1� difference between each grid point. To mitigate the inac-

curacy of the edge effect in interpolation, continuity at the

edges of the absorption grid is added by concatenating 1=12 of

the data from one side to the other side. Overall, the dimen-

sions of an absorption grid during the interpolation are (420,

210). After constructing the grid, we determine the exponent

in the absorption factor A
nð Þ

h for each crystal coordinate n by

combining the directional vectors for both the incident and

diffracted X-rays. Then, we apply nearest-neighbour inter-

polation techniques on the grid to complete the calculation.

The absorption factor Ah for the reflection h is determined

using the same method as described in equation (2). The

interpolations are implemented by GSL (a numerical library

for C and C++ under the GNU General Public Licence)

(Galassi et al., 1996), which requires double-precision data. If

sampling methods are not utilized, the storage of path length

grids for all crystal coordinates becomes practically unfeasible

due to the significant memory requirements. This is because a

double-precision grid for a crystal voxel typically consumes

approximately 1 MB of memory. Hence, the utilization of the

sampling strategy outlined in the preceding section renders

this approach more practicable and feasible.

2.6. CUDA implementation

The processing power of GPUs is now widely used in

scientific and industrial environments alike, as is perhaps most

acutely demonstrated by the breadth and depth of NVIDIA

libraries (https://developer.nvidia.com/gpu-accelerated-libraries).

To implement ray-tracing in the AnACor package on

NVIDIA GPUs, we have used the CUDA programming

language. To fully utilize the resources of a GPU, enough

parallelism has to be available and exposed by the imple-

mentation. For scientific GPUs like NVIDIA A100 GPU or

similar, hundreds of thousands of threads need to run

concurrently.

There are several ways to expose parallelism in the AnACor

ray-tracing module. We can parallelize along reflections, inci-

dent and diffracted X-rays, and voxels that each ray is stepping

through. To achieve a large number of concurrent threads, we

have used all of the above. The GPU implementation follows

the same steps as outlined in Section 2.2 with modifications as

described where necessary.

The major bottleneck of any GPU implementation is the

transfer of data from the CPU memory to the GPU memory,

as the memory bandwidth between the CPU and GPU is slow.

To minimize these transfers, the voxel cube is transferred to

the GPU once, and all reflections are calculated in parallel.

computer programs
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Figure 4
Illustration of gridding interpolation algorithm. There are N absorption grids, the same number as the crystal voxels with a shape of (360, 180). Each grid
point is an angular-dependent exponent of the absorption factor.
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After transferring the voxel cube to the GPU, AnACor

precalculates the rotation of the incident and refracted rays,

angles � and �, and step sizes �xyz for each reflection. These

values are shared by all rays within reflection h. Furthermore,

to calculate them, a large number of transcendental function

calls, which are calculated by the GPU’s special function units

that have reduced throughput compared with floating-point

units, are used. Then, each ray is calculated by a single

threadblock. A threadblock is a set of CUDA threads residing

on the same streaming multiprocessor that can share and

collaborate on a given task. For each ray, an entry and exit face

is determined and threads collaborate on the calculation of an

absorption factor A
nð Þ

h of the ray.

All threads from a threadblock step along the path of the

ray in chunks. The number of iterations depends on the size of

the voxel cube. Each thread counts the number of different

material voxels it encounters. Like the serialized algorithm

mentioned previously, it always ends traversal when it

encounters the boundary of the overall voxel cube, the

reduced operation gathers partial absorption factors calcu-

lated by each thread, and the total absorption factor A
nð Þ

h for a

given ray is recovered. Also, for better efficiency of memory

usage, FP32 is used by each thread.

3. Results

Fig. 5 compares the mean percentage differences in absorption

factors of various sampling strategies (a) and acceleration

methods (b) with no-sampling results. These illustrate the

difference across sampling ratios from 0.001% to 1%, with

error bars representing one standard deviation.

Fig. 5(a) shows that, when the sampling ratio is at least

0.01%, all mean differences are smaller than 2%, with

systematic sampling generally having smaller mean differ-

ences and less deviation. After the sampling ratio exceeds

0.5%, the differences become nearly zero across all sampling

methods, with minor deviations. The exceptions are stratified

sampling in thaumatin and thermolysin. This finding aligns

with the KS test results in Fig. 3, where the P value approaches

1 for the 0.5% and 1.0% sampling ratios.

Randomized systematic sampling closely aligns with

systematic sampling but shows greater variances. However, it

consistently outperforms random sampling for ratios larger

than 0.01%. For insulin crystals, which are roughly spherical,

stratified sampling proves more effective, showing smaller

differences at low sampling ratios. In contrast, for thermolysin

and thaumatin crystals, which grow as large rods and bi-

pyramids, respectively, stratified sampling performs less

favourably at high sampling ratios. This highlights the signifi-

cant impact of crystal size and shape on the success of strati-

fied sampling strategies.

In this analysis of acceleration techniques for computational

sampling, we focus on the systematic sampling method

because its absorption factor differences have smaller devia-

tions across various sampling ratios, relying less on the crystal

shape. Fig. 5(b) illustrates the absolute mean differences

between results from no-sampling and those achieved using

acceleration methods. The bisection and gridding methods

exhibit consistent differences once the sampling ratio exceeds

0.01%, showing uniform deviations across different datasets.

Conversely, the GPU acceleration method, which uses a

technique similar to the standard method, displays smaller

computer programs
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Figure 5
Mean absorption factor differences (%) between sampling and no-sampling (a) and between acceleration methods and no-sampling (b) for test crystal
datasets across various sampling ratios. The sampling methods in (b) are all systematic. The error bars represent one standard deviation.



deviations. Specifically, in the cases of insulin and thaumatin,

bisection methods show higher deviations than gridding.

However, for thermolysin, gridding results in larger devia-

tions, suggesting that the performance differences between

bisection and gridding depend on the crystal’s shape.

Absolute percentage differences between the anomalous

peak heights of no-sampling and those determined by

sampling and acceleration methods are displayed in Fig. 6,

showing the mean differences of sulfur atoms with peak

heights above 10�. Detailed results for each method are

provided in the supporting information. For sampling ratios

larger than 0.01%, all sampling and acceleration methods

display mean peak height differences within 1% compared

with the no-sampling results. This indicates that methods with

sampling ratios above 0.01% can achieve similar peak height

results. Except for insulin, all sampling methods perform

similarly at the same sampling ratios. Although there are

differences in the absorption factors of the bisection and

gridding methods, their peak height differences perform

similarly to those of the standard and GPU methods at the

computer programs
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Figure 6
Mean anomalous peak height differences (%) of sulfur atoms between sampling and no-sampling (a) and between acceleration methods and no-
sampling (b) for test crystal datasets across various sampling ratios. The error bars represent the maximum and minimum differences.

Figure 7
Average time spent on processing sampling methods for 10 runs. They are all determined on the same node with an Intel Xeon Platinum 8268 CPU with
48 cores.
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same sampling ratios, except for the gridding method of

thermolysin. For insulin, for the thresholds of �0:01%, the

differences between sampling methods either stabilize around

the mean of 1% with similar maximum and minimum values

across various sampling ratios or become very close to zero.

Conversely, the large differences in absorption factors in the

gridding method do not affect the peak heights shown in Fig.

6(b). The anomalous peak height differences remain around

1% with much smaller error bars. Thaumatin shows the largest

error bar for sampling ratios of 0.05% and 0.1%, with the

maximum absolute differences exceeding 2% for sulfur atom

SG_A:CYS66, while the mean differences remain very small.

As shown in Fig. 7, the processing time for systematic and

randomized systematic sampling is generally shorter and

shows little difference compared with random sampling. Both

systematic and randomized systematic sampling times increase

with higher sampling ratios, while the random sampling time

remains unaffected by the sampling ratios. Although more

crystal voxels lead to longer processing times for all sampling

methods, they still remain under 10 s. In contrast, the time

required for stratified sampling increases exponentially with

higher sampling ratios. This is particularly evident for ther-

molysin and thaumatin crystals, which have substantially more

voxels (>30 million and >20 million, respectively) than insulin

crystals (>2 million voxels). This variation highlights the

impact of crystal shape and sampling strategy on the efficiency

of the sampling process.

In analysing the balance between accuracy and computa-

tional speed provided by acceleration methods, Fig. 8 presents

detailed comparisons of computational time, using a sampling

ratio of 0.5%. Fig. 8 highlights two key findings: firstly, accel-

eration methods significantly shorten computational times

across sampling ratios compared with the baseline reported by

Lu et al. (2024); secondly, it evaluates the efficiency in handling

an increased number of reflections. The comparative analysis

on the top row of Fig. 8 reveals that acceleration techniques

boost computational speed by at least 5 times at sampling

ratios >0.01%. Among these, the GPU-based approach stands

out for its exceptional time efficiency, taking around 1=30,

1=180 and 1=90 of the time required by the baseline for insulin,

thermolysin and thaumatin, respectively. On CPUs, the

bisection method demonstrates superior speed over the stan-

dard and gridding methods for sampling ratios >0.1%.

Notably, the performance of the gridding method varies with

sample shape and the number of reflections: it is faster for

thermolysin, while for insulin and thaumatin, the gridding

method is less efficient than the standard method. The lower

section of Fig. 8 illustrates cross-over points between the

gridding method and other CPU-based methods. Notably, with

an increasing number of reflections, as seen in thermolysin and

thaumatin datasets, the performance of the gridding method

approaches that of the GPU method. This emphasizes that the

gridding method has the advantage when dealing with large

datasets if advanced GPUs are not available. Fig. 9 compares

the performance of three modern NVIDIA computational

cards, H100, A100 and V100, across different sampling ratios.

The results indicate similar trends in time expenditure among

these GPU models, highlighting the consistent benefits of

GPU acceleration across a range of computational hardware.

This comparison underscores the importance of choosing the
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Figure 8
Top: computational time taken by different acceleration methods across sampling ratios. Bottom: computational time taken by acceleration methods
with a systematic sampling ratio of 0.5% to process increasing numbers of reflections. The black dotted line indicates the number of reflections in each
experimental dataset, with computational times presented in the legend.



right acceleration method and computational hardware based

on the specific requirements of the diffraction experiment,

balancing speed against the need for accuracy in the final

results.

4. Discussion

In this study, we demonstrate the effectiveness of acceleration

methods in AnACor2.0 for improving the efficiency of

analytical absorption corrections over AnACor1.0 (Lu et al.,

2024). We detail the utilization of a ray-tracing algorithm for

path length calculations in tomography reconstructions. This

method is versatile and applicable to various fields for the

determination of X-ray diffraction path lengths when a 3D

model and its orientation are available.

In the previous study (Lu et al., 2024), we demonstrated the

validity of the ray-tracing approach for analytical absorption

corrections based on long-wavelength data from proteins

crystallized in monoclinic and triclinic space groups. The data

presented here, from crystals in cubic (insulin), hexagonal

(thermolysin) and tetragonal (thaumatin) space groups,

confirm the previous findings. We show that a combination of

analytical absorption correction and spherical harmonics

yields substantial improvements in data quality, over spherical

harmonics, for data collected at wavelengths larger than 3.5 Å

(supporting information).

Our findings indicate that the systematic sampling used in

AnACor1.0 consistently yields stable results with minimal

differences and variance compared with no-sampling

approaches, across increasing sampling ratios. Interestingly,

stratified sampling, employing a k-means clustering algorithm,

can outperform systematic sampling for crystals with more

spherical shapes, such as insulin, even for small sampling

ratios. However, it becomes less practical for crystals with a

large number of voxels due to the exponentially increasing

sampling time and the challenges of achieving global optimi-

zation with the clustering algorithm. Random and randomized

systematic sampling do not show clear advantages over the

other sampling methods, so they are removed from practical

use in AnACor2.0. While stratified sampling is recommended

for small crystals and spherical crystals, systematic sampling

remains the default option in AnACor2.0.

The analysis also reveals that the deviations between

sampled and no-sampling absorption factors diminish beyond

a 0.5% sampling ratio threshold in the test crystal datasets,

advocating for the use of sampling-based calculations. For all

the sampling methods, the anomalous peak height results, for

sampling ratios larger than 0.01%, show mean differences

smaller than 1% compared with no-sampling. The default

sampling ratio is set to 0.5% to ensure accuracy, as confirmed

by the P value of the KS test of over 0.95. To prioritize

computational speed, the sampling ratio can be adjusted

accordingly.

The introduction of acceleration techniques in this study

has led to a remarkable increase in computational efficiency,

improving the performance up to 175 times over AnACor1.0

(Lu et al., 2024), by using NVIDIA GPUs. Although the

standard and GPU methods use the same underlying algo-

rithm, the GPU method enhances data transfer by employing

float32 in core computations. This optimization addresses the

significant bottleneck of transferring data from the CPU to the

GPU. GPU acceleration with NVIDIA’s H100 and a sampling

ratio of 0.5% reduce the processing time of insulin and

thaumatin to a few minutes (Fig. 8), maintaining an absorption

factor difference below 0.5%, compared with 100% sampling

results (Fig. 5).

If GPU acceleration is not available, AnACor2.0 also offers

the bisection and gridding methods for improved CPU

performance.

The bisection method emerges as a fast option, reducing the

time complexity from O(n) to O(log2 n). Meanwhile, the

gridding method is particularly adept at handling large data-

sets, offering an interpolation approach to reduce computa-

tional time. The results reveal that the bisection algorithm

consistently shows the largest differences from no-sampling

outcomes in the insulin and thaumatin cases. This is attributed

to its approximation approach to the standard ray-tracing

method, which assumes fixed relative locations for different

materials and significant spacing between their boundaries.

The gridding method enhances computational efficiency by

pre-calculating absorption factors in a spherical coordinate

system with 1� increments between grids and employing

nearest-neighbour interpolation during the inference stage.

The efficiency of the gridding method surpasses that of other
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Figure 9
Computational time taken by different NVIDIA computational accelerator cards.
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methods when the number of reflections reaches a certain

threshold, as depicted in Fig. 8, but it is sample dependent. For

instance, in the case of insulin and thaumatin, with a smaller

number of reflections, the advantage of the gridding method is

reduced, as fewer computations of similar path lengths are

needed. However, the gridding method can introduce errors

because of the nearest-neighbour interpolation when there is a

large path length difference between adjacent gridding points,

as illustrated in the thermolysin case. In Fig. 2, if the direction

of the ray rotates anticlockwise, the path lengths through the

solvent increase significantly, causing inaccurate interpolation.

Therefore, the gridding method is more suitable for cases

where the number of reflections is large and the crystal shape

is closer to spherical.

The mean absorption factor differences between the

bisection and gridding methods are larger than those of GPU

acceleration. However, as illustrated in Fig. 6(b), this is not

reflected in the anomalous peak height differences of sulfur

atoms, which are similar across the acceleration methods.

Hence, a user can benefit from any of the acceleration

methods presented, with their choice determined by the

computational hardware available to them.

5. Conclusion

Analytical absorption corrections based on a ray-tracing

approach improve the data quality for macromolecular crys-

tallography at very long wavelengths. AnACor2.0 leverages

numerical algorithms and GPU parallelism to significantly

increase computational efficiency for calculating analytical

absorption factors.

AnACor2.0 can calculate absorption factors in 6.5 s for

insulin, 1315.9 s for thermolysin, and 235.2 s for thaumatin,

with GPU acceleration. This achieves computational efficiency

improvements of over 90�, 175� and 100�, respectively,

compared with AnACor1.0. The deviations in absorption

factors are minimal compared with the no-sampling results

with AnACor1.0’s standard ray-tracing method, at 0.09% for

insulin and thermolysin, and 0.16% for thaumatin. Addition-

ally, the mean anomalous peak heights of sulfur atoms show

deviations of only 0.82% for insulin, 0.17% for thermolysin

and 0.28% for thaumatin. In our research, the segmented 3D

model was created using X-ray tomography at beamline I23,

Diamond Light Source. Importantly, AnACor2.0’s utility

extends beyond data from this source and will be integrated

within DIALS in the future. It can facilitate analytical

absorption corrections for any dataset, provided that a voxel-

annotated file is available and the relationship between the

coordinate system of the 3D model and the diffraction

experiment is clearly defined.
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